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Abstract

Children learn their native language by exposure to their linguistic and communicative environ-

ment, but apparently without requiring that their mistakes be corrected. Such learning from “posi-

tive evidence” has been viewed as raising “logical” problems for language acquisition. In

particular, without correction, how is the child to recover from conjecturing an over-general gram-

mar, which will be consistent with any sentence that the child hears? There have been many

proposals concerning how this “logical problem” can be dissolved. In this study, we review recent

formal results showing that the learner has sufficient data to learn successfully from positive

evidence, if it favors the simplest encoding of the linguistic input. Results include the learnability

of linguistic prediction, grammaticality judgments, language production, and form-meaning map-

pings. The simplicity approach can also be “scaled down” to analyze the learnability of specific

linguistic constructions, and it is amenable to empirical testing as a framework for describing

human language acquisition.

Keywords: Child language acquisition; No negative evidence; Probabilistic Bayesian models;

Minimum description length; Simplicity principle; Natural language; Induction; Learning

Children appear to learn language primarily by exposure to the language of others. But

how is this possible? The computational challenges of inferring the structure of language

from mere exposure are formidable. In light of this, many theorists have conjectured that

language acquisition is only possible because the child possesses cognitive machinery that

fits especially closely with the structure of natural language. This could be because the

brain has adapted to language (Pinker & Bloom, 1990) or because language has been

shaped by the brain (Christiansen & Chater, 2007).
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A number of informal arguments concerning the challenge of language learning from

experience have been influential. Chomsky (1980) argued that the “poverty of the stimu-

lus” available to the child was sufficiently great that the acquisition of language should

be viewed as analogous to the growth of an organ, such as the lung or the heart, unfold-

ing along channels pre-specified in the genome. Here, we focus on a specific facet of

poverty of the stimulus: That children do not appear to receive or attend to “negative evi-

dence”: explicit feedback that certain utterances are ungrammatical (Bowerman, 1988;

Brown & Hanlon, 1970; Marcus, 1993).1

The ability to learn language in the absence of negative evidence is especially puz-

zling, given that linguistic rules are riddled with apparently capricious restrictions. For

example, a child might naturally conclude from experience that there is a general rule

that is can be contracted, as in He’s taller than she is. But contractions are not always

allowed, for example: *He is taller than she’s. The puzzle is that, once the learner has

entertained the possibility that the overgeneral rule is correct, it appears to have no way

to “recover” from overgeneralization and recognize that restrictions should be added. This

is because each contraction that it hears conforms to the overgeneral rule. Now, if the

learner uses the overgeneral rule to generate language, then it will from time to time pro-

duce utterances such as *John isn’t coming but Mary’s. A listener’s startled reaction or

look of incomprehension might provide a crucial clue that the rule is overgeneral. How-

ever, such feedback is the very negative evidence that appears to be inessential to child

language acquisition. Thus, if children do not require such negative evidence, how can

they recover from such overgeneralizations? Various scholars argue that they cannot:

Restrictions on overgeneral grammatical rules must, instead, be innately specified (e.g.,

Crain & Lillo-Martin, 1999). Other theorists argue that avoiding overgeneral rules poses

a fundamental “logical problem” for language acquisition (Baker & McCarthy, 1981;

Dresher & Hornstein, 1976).

One way to defuse the puzzle is to challenge its premise. One possibility is that,

despite appearances, children can access and use negative evidence in a subtle form. In

this study, we set aside these contentious issues (e.g., Demetras, Post, & Snow, 1986;

Marcus, 1993) and argue that, regardless of whether negative evidence is available to, or

used by, the child, language can successfully be learned without it (following, e.g., Mac-

Whinney, 1993, 2004; Rohde & Plaut, 1999; Tomasello, 2004).

The arguments for learnability from positive evidence presented here are part of a

broader tradition of research on learnability (e.g., Angluin, 1980, 1988; Clark &

Eyraud, 2007; Feldman, 1972; Gold, 1967; Horning, 1969; Jain, Osherson, Royer, &

Kumar Sharma, 1999; Niyogi, 2006; Wharton, 1974). And formal learnability argu-

ments are complementary to recent developments of language engineering systems,

which have shown that it is possible to learn automatically non-trivial aspects of pho-

nology, morphology, syntax, and semantics from positive language input (Goldsmith,

2001; Klein & Manning, 2005; Steyvers, Griffiths, & Dennis, 2006). While such sys-

tems are still very far from being able to acquire language from mere exposure, the

pace of progress suggests that a priori barriers to learning may not necessarily be

insurmountable.
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Rather than surveying these developments, and indicating how they may be extended,

here we will take a more direct approach: We focus on one major line of positive learna-

bility results based on the “simplicity principle.” We begin by introducing the simplicity

principle (section 1) and considering how it can be embodied in an “ideal learner” (sec-

tion 2). We then outline some recent formal results on how the simplicity principle can

be used to learn aspects of language such as utterance prediction, grammaticality judg-

ments, language production, and mapping between form and meaning (sections 3–6). We

then briefly describe a practical method for assessing learnability of linguistic patterns

using the simplicity approach, and how this assessment can be linked with experimental

data (section 7). Overall, the contribution of the work reviewed here is to show that,

under fairly mild conditions, language acquisition from sufficient amounts of positive

evidence is possible; and to indicate how the simplicity-based approach can potentially

provide a framework for understanding child language acquisition.

1. Ideal learning using a simplicity principle

The simplicity principle has a long history in the philosophy of science and the study

of perception (e.g., Mach, 1959), and it has been proposed as a general cognitive princi-

ple (Chater & Vit�anyi, 2002). A formal analysis of simplicity learning starts with suppos-

ing a learner (human or artificial) that is faced with a set of positive data. For language,

these data are a set of observed grammatical sentences.2 Any set of observed sentences

will be consistent with an infinite number of grammars. That is, any set of sentences

could have been generated by any of an infinite number of grammars. How can the lear-

ner choose among these infinite possibilities?

The simplicity principle recommends that the learner prefers hypotheses that allow for

the simplest encoding of the data. For language, the data will be the observed sentences,

and hypotheses are grammars (or other linguistic representations), which can be viewed

as a set of probabilistic rules which captures the patterns in the linguistic input to the

learner. Simplicity can be measured by viewing hypotheses (here, grammars) as computer
programs that encode the data (the data are generated as the output of the program). The

simplicity principle thus favors the grammar that provides the shortest encoding of the

data.3

How can a grammar be viewed as a computer program for encoding linguistic input?

One concrete approach involves two steps. The first step is to specify the grammatical

rules (and, crucially, probabilities of their use). This defines a probabilistic process for

generating sentences and thus defines a probability distribution over possible strings. The

second step is to encode the specific sentences in the input. It is intuitively clear that the

most efficient way to do this is to reserve shorter codes for probable strings, and longer

codes for less probable strings. A basic result from information theory (e.g., Cover &

Thomas, 2006) is that the optimal way to do this is to assign a binary code of length

log21/p to a string with probability p.4 So, intuitively, a (probabilistic) grammar provides

a short encoding of the linguistic input if it can itself be specified briefly, and if it makes
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the sentences that are actually observed as probable as possible. There is a tension

between these objectives. An “over-precise” grammar, which encodes exactly those sen-

tences that have been encountered and no others will make those particular sentences

highly probably; but the code for such a grammar will be long (roughly, it will consist

just of a list of the “allowed” sentences). Conversely, a very simple but overgeneral

grammar (e.g., stating, roughly, that words can occur in any order with equal probability)

will have a short code, but, because the space of possible allowed sentences is vast, the

code for the specific sentences observed by the learner will be very long. The simplicity

principle recommends finding a balance between these extremes: Postulating restrictions

in the grammar just when these “pay off” by sufficiently reducing the code length of the

sentences, encoded by the grammar.

As we have indicated, in general, the better the grammar captures the structure of

the language, the shorter the encoded representation of the linguistic input will be. For

a concrete example, let us first consider hypotheses (i.e., grammars) describing artifi-

cially simplistic language data. Suppose the observed language was the following

repeating infinite string of sentences: Hi! Bye! Hi! Bye!… One hypothesis could be

“The language is a sequence of ‘Hi!’ and ‘Bye!’ occurring independently, and each

with a p-value of .5.” Under this hypothesized grammar, the encoded specification of

the language input will be “0101…,” where 0 and 1 correspond to ‘Hi!’ and ‘Bye!’
respectively. Now, if the hypothesis was a more powerfully descriptive grammar such

as “The language contains a single sentence ‘Hi! Bye!’,” then no further code at all is

required to specify the linguistic input. Now, an infinite language input is fully speci-

fied in a simple finite description—and, more generally, the more precisely the gram-

mar captures the structure of the linguistic input, the shorter the encoding of that

linguistic input will be.

Initially, the learner may not have sufficient data to favor the latter hypothesis, but

eventually the latter “grammar” will provide the simpler encoding because it correctly

captures regularities in the input. Hence, as linguistic input accumulates, the grammar that

provides the simplest encoding will be updated. An ideal simplicity learner (as in the

mathematical results below) will have access to all (infinite) possibly hypothetical gram-

mars that describe its current language data input, and choose the “simplest”; any real,

and hence computationally limited, learner can of course only approximate this calcula-

tion to some degree.

Crucially, note that the simplicity-based learner has a mechanism for avoiding over-

general grammars, when learning from positive evidence. Although our artificial data are

compatible with a random sequence of ‘Hi!’ and ‘Bye!,’ the corresponding grammar is

eliminated without the need for negative evidence, but because another grammar provides

a shorter encoding of the input.5

This point applies equally to learning natural languages. Consider the case of is con-

traction mentioned above. Consider two possible grammars, one that allows is contraction
everywhere, and one that is more restricted (allowing He’s taller than she is but not *He
is taller than she’s). The latter “grammar” will be more complex (because it involves

specifying more precisely when contraction can occur); but it will encode the linguistic

38 A. S. Hsu, N. Chater, P. Vit�anyi / Topics in Cognitive Science 5 (2013)



input more briefly, because it more accurately captures the structure of the language.

Given sufficient linguistic input, the benefit of the more accurate encoding of the linguis-

tic input will overwhelm any additional costs in encoding the grammatical rule, and the

more precise rule will be favored. Thus, it appears that an overgeneral grammar can be

eliminated by applying the simplicity principle to positive data only.

This intuition is encouraging but hardly definitive. Knowing that a learner can poten-

tially eliminate a single over-general grammar does not, of course, indicate that it can

successfully choose between the infinity of possible grammars, and home in on the “true”

grammar, or some approximation to it. We shall see, however, that positive mathematical

results along these lines are possible. Moreover, in section 7, we shall apply the style of

argument sketched above to the learnability of some specific, and much-discussed,

linguistic regularities (see Hsu, Chater, & Vit�anyi, 2011).

2. An”ideal” learner

Below, we consider some formal theoretical results describing what an “ideal” learner

can learn purely from exposure to an (indefinitely long) sequence of linguistic input (i.e.,

positive evidence) by using the simplicity principle.

What is the structure of the linguistic material to be learned? Fortunately, it turns

out that we need assume only that this input is generated probabilistically by some

computable process.6 This restriction is mild because cognitive science takes comput-

ability constraints on mental processes, including the generation of language, as found-

ing assumptions (Pylyshyn, 1984) and, indeed, specific models of language structure

and generation all adhere to this assumption. Finally, for mathematical convenience

and without loss of generality, we assume that the linguistic input is coded in binary

form.

Importantly, note that these assumptions allow that there can be any (computable)

relationship between different parts of the input—we do not, for example, assume that

sentences are independently sampled from a specific probability distribution. Our very

mild assumption allows sentences to be highly interdependent (this is one generalization

with respect to earlier results, e.g., Angluin, 1980; Feldman, 1972; Wharton, 1974), and

this includes the possibility that the language may be modified or switched during the

input or indeed that sentences from many different languages might be interleaved.

Specifically, suppose that the linguistic input, coded as a binary sequence, x, is gener-

ated by a computable probability distribution, lC(x).
7 Intuitively, we can view this as

meaning that there is a computer program, C (which might, e.g., encode a grammar, as

above), which receives random input y, from a stream of coin flips. When fed to C, this

random input generates x as output, that is, C(y) = x. The probability of this y is 2�l(y)

(the probability of generating any specific binary sequence of length l(y) from unbiased

coin flips). Many y may generate the same x, so the probability of an output with initial

segment x, lC(x), is the sum of the probabilities of such y:
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lCðxÞ ¼
X

y:CðyÞ¼x...

2�lðyÞ ð1Þ

The distribution lC(x) is built on a simplicity principle: Outputs that correspond to

short programs for the computer program, C, are overwhelmingly more probable than

outputs for which there are no short programs.

The learner’s task, then, can be viewed as approximating lC(x), given a sample x,
generated from the computer program, C. So, for example, if C generated independent

samples from a specific stochastic phrase structure grammar, then the learner’s aim is to

find a probability distribution that matches the probabilities generated by that stochastic

grammar as accurately as possible. To the extent that this is possible, we might conjec-

ture that the learner should (a) be able to predict how the corpus will continue; (b) decide

which strings are allowed by lC(x); and (c) generate output similar to that generated by

lC(x). Framing these points in terms of language acquisition, this means that, by approxi-

mating lC(x), the learner can, to some approximation (a) predict what phoneme, word, or

sentence will come next (insofar as this is predictable at all); (b) learn to judge grammati-

cality; and (c) learn to produce language, indistinguishable from that to which it has been

exposed. We explore these issues in turn in sections 3–5.
How, then, can the learner approximate lC(x), given that it has exposure to just one

(admittedly arbitrarily long) corpus x, and no prior knowledge of the specific computa-

tional process, C, which has generated this corpus? It turns out that we can make progress

by assuming only that the learner can, in principle, entertain all and only computable

hypotheses—that is, that the learner’s representational resources are universal: that is,

sufficient to encode any possible computation. Elementary results in computability theory

(e.g., Odifreddi, 1988) have shown that this assumption of universality is surprisingly

mild, and it is satisfied by very simple abstract languages (such as the lambda calculus,

Barendregt, 1984) and familiar practical languages from Fortran, to C++, to Java and

Scheme. We assume, then, that the brain (and our ideal learner) has at least these

representational resources.

We have stated that a simplicity-based learner favors simple “explanations,” measured

in terms of code length in some programming language. But surely the length of a pro-

gram depends on the programming language used? What may be easy to write in MatLab

may be difficult to write in Prolog; and vice versa. It turns out, however, that the choice

of programming language affects program lengths only to a limited degree. An important

result, known as the invariance theorem (Li & Vit�anyi, 1997), states that, for any two

universal programming languages, the length of the shortest program for any computable

object in each language is bounded by a fixed constant. A caveat is appropriate; however,

“invariance” up to an additive constant is sufficient for establishing mathematical results,

such as those below; but choice of representation language is crucial for making learning

practically feasible, as we shall note in section 7.8 Nonetheless, so long as we assume

that the learner’s coding language is universal, we can avoid having to provide a specific

account of the program that the learner uses.9
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Now suppose the learner assumes only that the corpus, x, is generated by a computable

process (and hence makes no assumptions that it is generated by a specific type of gram-

mar, or indeed, any grammar at all; makes no assumption that “sentences” are sampled

independently, etc.). Then the probability of each possible x is given by the probability

that this sequence will be generated from the output of a random input, y, of length l(y)
(as before, by random coin flips) fed to a universal computer, U.10 Analogous to Eq. 1,

we can define this “universal monotone distribution” (Solomonoff, 1978) k(x):

kðxÞ ¼
X

y:Uðy...Þ¼x

2�lðyÞ ð2Þ

where U(y) are programs y written in the universal programming language. Thus, an ideal

learner draws on its universal programming language and the simplicity principle to for-

mulate k(x). Remarkably, it turns out that k(x) serves as a good enough approximation to

lC(x) to allow the ideal learner to predict future linguistic input; and we show below that

this allows the ideal learner to make grammaticality judgments, produce grammatical

utterances, and map sound to meaning.

What is the mysterious k(x) in more concrete terms? Roughly, it is what would result

from randomly typing into a computer; feeding the resulting “programs” (most of which

will, of course, not even be syntactically valid, or will loop indefinitely) to the interpreter

for some universal programming language (say, C++); and considering the outputs of the

(small number of) valid and terminating programs. Thus, we can alter the familiar image

of monkeys randomly hitting the keys on a typewriter and, supposedly, eventually gener-

ating the works of Shakespeare, to the image of monkeys typing computer programs and
generating outputs x according to k(x). The probability k(x) will depend, of course, on

the length of the shortest program generating x, as short programs are overwhelmingly

more likely to be chanced upon by the monkey.

We shall explore the remarkable properties of k(x) shortly. But it is worth noting at

the outset that k(x) is known to be uncomputable (Li & Vit�anyi, 1997) and hence must

be approximated. It remains an open question how closely k(x) can be approximated and

how this affects learnability results. Promisingly, computable approximations to the uni-

versal distribution can be developed into practical tools in statistics and machine learning

(e.g., Rissanen, 1987; Wallace & Freeman, 1987). Related approximations will be consid-

ered briefly in section 7 in relation to developing a methodology for assessing the learna-

bility of specific linguistic patterns.

3. Prediction

One indication of the degree to which a learner understands the patterns in the data in

any domain is its ability to predict. Thus, if the linguistic input is governed by grammati-

cal or other principles of whatever complexity, any learner that can predict how the
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linguistic material will continue, arbitrarily well, must, in some sense, have learned such

regularities. Prediction has been used as a measure of how far the structure of a language

has been learned since Shannon (1951); and it is widely used as a measure of learning in

connectionist models of language processing (Christiansen & Chater, 1994, 1999; Elman,

1990). And, as we have noted, this result for prediction will be a foundation for results

concerning grammaticality judgments, language production, and form-meaning mapping,

as we discuss in subsequent sections.

We formulate the task of prediction as follows. At each point in a binary sequence x
(encoding our linguistic input), generated by computer C, the probabilities that, given

input x, that the next symbol is 0 or 1 can be written:

lCð0jxÞ ¼
lCðx0Þ
lCðxÞ

; lCð1jxÞ ¼
lCðx1Þ
lCðxÞ

ð3Þ

where lC(0|x) and lC(1|x) represent the probabilities that the subsequence x is followed

by a 0 and 1, respectively; and lC(x0) and lC(x1) are the probabilities the specific

sequence of x followed by 0 or 1, respectively. But the ideal learner does not have access

to lC(x), but instead uses k(x) for prediction. Thus, the learner’s predictions for the next

item of a binary sequence that has started with x is:

kð0jxÞ ¼ kðx0Þ
kðxÞ ; kð1jxÞ ¼ kðx1Þ

kðxÞ ð4Þ

A key result by Solomonoff (1978), which we call the Prediction Theorem, shows that,
in a specific rigorous sense, the universal monotone distribution k, described above, is

reliable for predicting any computable monotone distribution, l, with very little expected

error. More specifically, the difference in these predictions is measured by the square of

difference in the probabilities that l and k assign to 0 being the next symbol:

ErrorðxÞ ¼ ðkð0jxÞ � lð0jxÞÞ2 ð5Þ
And the expected sum-squared error for the n-th item in the sequence is:

sn ¼
X

x:lðxÞ¼n�1

lðxÞErrorðxÞ ð6Þ

The better k predicts l, the smaller sn will be. Given this, the overall expected predic-

tive success of the method across the entire sequence is obtained by summing the sn
across all n:

X1

n¼1

sn ð7Þ

Solomonoff’s prediction theorem shows that predictions using k approximate any com-

putable distribution, l, so that
P1

n¼1

sn is bounded by a constant. Thus, as the amount of
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data increases, the expected prediction error goes to 0. Specifically, the following result

holds:

Prediction theorem (Solomonoff, 1978): Let l be a computable monotone distribution,

predicted by a universal distribution k. Then,

X1

n¼1

sn� loge2

2
KðlÞ ð8Þ

where K(l) is the length of the shortest program on the universal machine that imple-

ments l, known as its Kolmogorov complexity (see Li & Vit�anyi, 1997, for further

details, and an accessible proof).

The prediction theorem shows that learning by simplicity can, in principle, be expected

to converge to the correct conditional probabilities for predicting subsequent linguistic

material. This implies that the learner is able to learn the structure of the language—
because if not, the learner will not know which sentences are likely to be said, and hence

will make prediction errors. These results suggest that, given sufficient positive evidence,

linguistic restrictions, such as those on the allowed contraction of is mentioned above, are

learnable from positive evidence. Here “sufficient” means enough language input has

been observed such that the (more complex) grammar that contains the restriction pro-

vides the simplest overall coding of the data, because it provides an efficient specification

of that input. The learner that does not learn these restrictions will continue to predict the

ungrammatical form when it is not allowed and thus accrue an infinite number of predic-

tion errors. Note that while the prediction theorem demonstrates that an ideal learner,

with sufficient positive evidence, will learn to respect these linguistic restrictions, there is

no claim that the learner can recover grammar that generated the language—but the lear-

ner’s predictions will capture the structure of the language arbitrarily closely.

4. Learning grammatical judgments

One of the distinctive shifts from Bloomfield’s (1933) version of structural linguistics

to Chomsky’s (1957) generative grammar concerns methodology: While Bloomfield

considered the goal of linguistics to be inducing patterns in language from corpora of

utterances, Chomsky rejected this approach and stressed instead capturing native speaker

intuitions about, for example, the grammaticality of sentences. Our discussion of predic-

tion, based on the linguistic input to the learner, seems closely allied to Bloomfield’s per-

spective. But Chomsky’s approach presents a fresh challenge: Human language learners

appear not just to learn to predict, based on the structure of what they hear—instead,

people appear to be able learn to be able to distinguish grammatical from ungrammatical

sentences from positive evidence alone. This raises the question: Under what conditions

are grammaticality judgments learnable from positive data?

It turns out that the task of prediction extends surprisingly naturally to that of grammat-

icality judgments. The crucial move is to consider predictions for larger unit linguistic
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material (e.g., words, rather than binary codes) and ask how often the predicted utterance

will correspond to a continuation that is a grammatical sentence. The crucial question is

how far the learner’s predictions fit with the set of options that are grammatically possi-

ble in the language. Specifically, we can ask: How often does the learner overgeneralize
such that its guesses violate the rules of the language (e.g., predicting a contraction of is
where it is not allowed)? And, conversely, how often does the learner undergeneralize
what is possible, such that it fails to guess continuations that are acceptable (e.g., not pre-

dicting a contraction when it is allowed)? Results for overgeneralization and undergener-

alization errors are examined in turn.

4.1. Grammaticality errors: Overgeneralization

When considering grammaticality, it is, as we have noted, convenient to consider lan-

guage input as a sequence of words, rather than coded as a binary form. Thus, instead of

dealing with distributions, l, k, over binary sequences, one may consider distributions Pl

and Pk over sequences of a finite vocabulary of words. Suppose that the learner has seen

a corpus, x, of j-1 words and has a probability Dj(x) of incorrectly guessing a j-th word

that happens to be ungrammatical, that is, the string cannot be completed to produce a

grammatical sentence. One can write:

DjðxÞ ¼
X

k:xkisungramatical;lðxÞ¼j�1

PkðkjxÞ ð9Þ

As before, we focus on the expected value Dj

� �
:

hDji ¼
X

x:lðxÞ¼j�1

PlðxÞDjðxÞ ð10Þ

This expected value captures the probability that the learner’s prediction concerning

the j-th word will not actually be allowable in the language—that the learner overgeneral-

izes what the language contains. But such overgeneralizations are, of course, a failure of

prediction—and we know, from the prediction theorem above, that errors in the learner’s

predictions are gradually eliminated. So the prediction theorem can be used to provide a

“bound” on the number of overgeneralization errors that the learner will generate. Specifi-

cally, it is possible to derive the following “overgeneralization theorem” (Chater &

Vit�anyi, 2007):

X1

j¼1

hDji� KðlÞ
loge2

ð11Þ

That is, the total expected amount of probability devoted by the learner to overgener-

alizations, in the course of encountering an infinite corpus, sums to a finite quantity;
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and this quantity is close to the length of the shortest program that generates the lin-

guistic data. Thus, the expected amount of overgeneralization must tend to zero, as

more of the corpus has been encountered; and the number of errors will depend on the

complexity of the language to be learned (where complexity is measured in terms of

program length).

The ability to deal with overgeneralization of the grammar from linguistic experience

is particularly relevant to previous discussions of the “logical problem” of language

learnability, discussed above (Baker & McCarthy, 1981; Hornstein & Lightfoot, 1981;

Pinker, 1979, 1984). The learner only hears a finite corpus of sentences. Assuming the

language is infinite, a successful learner must therefore infer the acceptability of an infi-

nite number of sentences that it has never heard. Thus, not hearing a sentence cannot be

evidence against its existence. As noted above, this has raised the puzzle of whether it is

possible for overly general grammars ever to be eliminated by the learner. The overgener-

alization theorem shows that an ideal learner using the simplicity principle will eliminate

overly general grammars, given a sufficiently large corpus.

4.2. Grammaticality errors: Undergeneralization

The universal distribution used by the ideal learner was defined as being a combination

of all possible (computable) distributions over corpora, and thus all grammatical sen-

tences in the language will always be deemed possible (assigned non-zero probability).

This immediately implies that an ideal learner will never strictly undergeneralize, that is,

incorrectly deem a grammatical utterance to have probability 0. But perhaps an ideal lear-

ner could drastically underestimate a sentence’s probability of occurrence. One can inves-

tigate the extent to which an ideal learner might commit such errors of “soft”

undergeneralization, putting an upper bound on the number of soft undergeneralizations

an ideal learner will make. Suppose that the learner underestimates, by a factor of at least

f, the probability that word k will occur after linguistic material x. That is, Pk(k|x)
f � Pl(k|x). Let Λj,f(x) denote the probability that the word that is the true continuation

will be one of the k for which this underestimation occurs:

Kj;f ðxÞ ¼
X

k:f :PkðkjxÞ�PlðkjxÞ
PlðkjxÞ ð12Þ

The corresponding expected probability is:

hKj;f i ¼
X

x:lðxÞ¼j�1

PlðxÞKjðxÞ ð13Þ

Then, the following undergeneralization theorem holds, which bounds the expected

number of undergeneralization errors throughout the corpus, that is,
P1

j¼1

hKj;f i:

A. S. Hsu, N. Chater, P. Vit�anyi / Topics in Cognitive Science 5 (2013) 45



X1

j¼1

hKj;f i�KðlÞ 1

log2f=e
ð14Þ

so long as f > e, where e is the mathematical constant 2.71…
Thus, the expected number of soft undergeneralizations is bounded, even for an infi-

nitely long sequence of linguistic input and the expected rate at which such errors occur

converges to zero. As with overgeneralizations, the upper bound is proportional to K(l),
the complexity of the underlying computational mechanism generating the language

(including, presumably, the grammar). The higher the underestimation factor f is, the

fewer such undergeneralizations occur.

In summary, formal results have shown that an ideal learner, using the universal proba-

bility distribution, Pk, and derived from the simplicity principle, can learn to make accurate

grammaticality judgments that avoid both overgeneralizations and undergeneralizations—
an issue that, as noted above, has been viewed as of fundamental importance in recent lin-

guistic theorizing. In the description above, grammaticality judgments have been framed as

the process of guessing which word comes next. However, it is important to note that these

results extend to all other units of linguistic analysis, for example, prediction of utterances

on the level phonemes, syllables, or sentences.

5. Learning to produce language

One method of describing language production is to assume that it is simply a matter

of predicting future utterances of arbitrarily long lengths. Thus, a learner, given an entire

history of linguistic input, can eventually “join in” and start saying its predictions. Pro-

duction success can be assessed by how well these productions blend in with the linguis-

tic input—that is, how well the learner’s productions match those that other speakers of

the language (i.e., those producing the learner’s corpus) might equally well have said.

This is, of course, a highly limited linguistic goal, given that a key purpose of language

is to express one’s own thoughts, which may diverge from what others have said before

(we will consider how this limitation can partially be dealt with in the next section).

However, as a first step, one can begin to assess a learner’s ability to speak a language

by assessing whether the learner can blend into the on going “conversation.”

Blending in can be described as the ability to match the actual probability that a new

sequence of utterances, y, will follow the previous utterances, x, which have been heard

so far in the conversation. This is the probability l(y|x), which reflects the distribution of

continued sequences that would be uttered by speakers of the language. As before, the

learner’s stream of utterances can be defined on any linguistic level, for example, pho-

nemes, words, or sentences. Because the ideal learner generates utterances using the distri-

bution it learned in prediction, k, the learner will predict continuations according to k(y|x).
The learner will blend in, to the extent that k(y|x) is a good approximation to l(y|x)—that

is, the extent to which the learner has a propensity to produce language that other
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speakers have a propensity to produce. Note, although, that the objective is now not

merely predicting the next binary code, piecemeal; the material to be predicted, y, can be

an arbitrarily large chunk of linguistic material (e.g., an entire clause or sentence).

It turns out that k(y|x) is a good approximation to any relevant l(y|x) (Li & Vit�anyi,
1997; this result does not follow directly from the prediction theorem): If l is, as above,

a probability distribution associated with a monotone computable process, and k denotes

the universal distribution, then for any finite sequence y, as the length of sequence x tends

to infinity:

kðyjxÞ
lðyjxÞ ! 1 ð15Þ

with a probability tending to 1, for fixed utterance y and growing prior linguistic experi-

ence x. Thus, viewing Eq. 15 in the context of language production, this means that, in

the asymptote, the learner will blend in arbitrarily well, so that its language productions

are indistinguishable from those of the language community to which it has been

exposed.

6. Learning to map linguistic forms to semantic representations

In addition to being able to predict, make grammatical judgments, and produce linguis-

tic regularities, language acquisition also involves associating linguistic forms with mean-
ings. Indeed, the ability to judge grammaticality, or produce language indistinguishable

from that of one’s speech community, would be pointless unless it were associated with

the ability to communicate: to map from utterances to some representation of their inter-

pretations, and back (we remain neutral here about nature of these representations).

A common assumption among researchers (Pinker, 1989) is that the child can infer

semantic interpretations from linguistic context. Therefore, the problem of learning inter-

pretations from linguistic input can be framed as a problem of induction from pairs of

linguistic and semantic representations. One can then show that, given sufficient pairs,

the ideal learner is able to learn this mapping, in either direction, in a probabilistic sense.

This result holds even though the mapping between linguistic and semantic representa-

tions can be many to many. That is, linguistic representations are often ambiguous; and

the same meaning can often be expressed linguistically in a number of different ways.

Concretely, we view the learner’s problem as learning a relation between linguistic

representations (e.g., as the i-th string of words), Si, and a semantic interpretations, Ij,
(representing the j-th meaning of the string). Suppose that the language consists of a set

of ordered pairs {<Si,Ij>}, which we sample randomly and independently according to

computable probability distribution Pr(Si,Ij).
Now, we can apply the prediction theorem, as described above, but where the data

now consist of pairs of sentences and interpretation, rather than strings of phonemes or

words. So, when provided with a stream of sentence–interpretation pairs sampled from
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Pr(Si,Ij), the learner can, to some approximation, infer the joint distribution Pr(Si,Ij). But,
of course, approximating this joint distribution is only possible if the learner can approxi-

mate the relationship between sentences Si and interpretations Ij.
Writing the length of the shortest program that will generate the computable joint

distribution, Pr(Si,Ij), as K(Pr(Si,Ij)), the prediction theorem above ensures that this

joint distribution is learnable from positive data by an ideal learner—if that positive

data includes both form and meaning. Specifically, by Eq. 8, this has an expected

sum-squared error bound of
loge2
2

KðPrðSi; IjÞÞ. Hence the expected value of error per

data sample will tend to zero because this bound is finite, but the data continue indef-

initely.

If ordered pairs of <Si,Ij> items can be predicted, then the relation between sentences

and interpretations can be captured; and this implies that the mapping from sentences to

probabilities of interpretations of those sentences, Pr(Ij|Si), and the mapping from inter-

pretations to probabilities of sentences with those interpretations, Pr(Si|Ij), are learnable.11

Thus, we can conclude that the ideal learner is able to learn to map back and forth

between sentences and their interpretations, given a sufficiently large supply of sentence–
interpretation pairs as data. That is, in this specific setting at least, the relation between

form and meaning can be derived from positive data alone.

7. Scaling down simplicity: A practical method for assessing learnability

We have described a range of rather abstract theoretical results concerning the viability

of language learning by simplicity. But how far can the simplicity-based approach be

“scaled-down” to inspire concrete models of learning? The practical instantiation of the

simplicity principle has been embodied using the minimum description length (MDL; Ris-

sanen, 1987) and minimum message length (MML; Wallace & Freeman, 1987) frame-

works. Simplicity has also widely been explored as general principle underpinning

concrete models in a range of areas of perception and cognition (e.g., Attneave & Frost,

1969; Feldman, 2000; Hochberg & McAlister, 1953; Leeuwenberg, 1969), including lan-

guage (e.g., Brent & Cartwright, 1996; Dowman, 2000; Ellison, 1992; Goldsmith, 2001;

Onnis, Roberts, & Chater, 2002; Vousden, Ellefson, Solity, & Chater, 2011; Wolff,

1988). Closely related Bayesian methods have also been widely employed (e.g., Kemp,

Perfors, & Tenenbaum, 2007; Langley & Stromsten, 2000; Perfors, Regier, & Tenen-

baum, 2006; Stolcke, 1994).

The type of theoretical analysis that we have outlined above applies, by the invariance

theorem, irrespective of specific choices of representations (as long as these are suffi-

ciently powerful). But to make the approach computationally concrete requires choosing

a specific representation—Typically, this will be a representational formalism developed

in linguistics (e.g., some type of grammar). A code length can then be assigned both to

the rules of the grammar as well as to the corpus when encoded in terms of those rules

(the corpus might consist of all the utterances that a learner has experienced so far, or a

subset of these).
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Suppose that we wish to evaluate how much data are required to learn a particular lin-

guistic regularity. This can be heuristically assessed by comparing two grammars that are

identical aside from the fact that only one captures the regularity of interest. For example,

consider how we might assess whether the corpus contains sufficient information to learn

the restrictions on cases where is can be contracted that we described earlier. A grammar

containing this additional regularity requires, of course, greater code length than one that

does not; but, on the other hand, because the resulting model of the language is more

accurate, the code length of the corpus, given this more accurate model, will be shorter.

Whether the “balance” favors the more complex but accurate grammar (thus allowing the

restrictions on contraction to be learned) depends on the corpus. For a null, or a short,

corpus, the advantage of a more accurate language model will not be sufficient; however,

once the corpus becomes sufficiently long, the more accurate model will produce a

shorter overall code length, and the regularity will be learned. The question is: How long

does the corpus need to be, for the regularity to be learnable?

As discussed in section 1, the simplicity principle automatically trades off competing

simpler and complex grammars. Simple, but over general, grammars can be described

more briefly, but because they are less accurate descriptions of actual language structure,

they give inefficient descriptions of language input. More complex grammars, which

include linguistic restrictions, have more complex descriptions, but better capture the lan-

guage and so give more efficient descriptions of the language input. By “investing” in a

more complicated grammar, which contains a restriction on a construction, the language

speaker obtains encoding savings every time the construction occurs. Intuitively, a lin-

guistic restriction is learned when the relevant linguistic context occurs often enough that

the accumulated savings makes the more complicated grammar worthwhile, just as the

extra cost of an energy-saving appliance is justified if it is used sufficiently often.

Recently, a simple and practical framework for assessing learnability of a wide variety of

linguistic constructions under simplicity has been proposed (Hsu & Chater, 2010). Using

natural-language corpora to simulate the language input available to the learner, this frame-

work quantifies learnability (e.g., in estimated number of years of linguistic exposure) for

any given linguistic constraint, such as the contraction of is mentioned earlier.

To get started, we need some description of the grammatical rule to be learned, that is,

a description of an original, incorrect (over-general) grammar and the new, correct gram-

mar, which contains the restriction rule. Moreover, we need a corpus that will serve as a

proxy for the learner’s input. Given these, the framework provides a method for quantify-

ing an upper bound on learnability from language input. This framework assumes an ideal

statistical learner and thus provides an upper bound on learnability based on language

statistics. However, measures of learnability should give an indication of the ease with

which various linguistic constraints can be learned.

While the details of implementing this framework are described elsewhere (Hsu &

Chater, 2010; Hsu et al., 2011), an intuitive description of how this framework works is

as follows: Under this framework, the learnability is affected by three factors as follows:

(a) the first is the complexity of the rule to be learned (greater complexity will decreases

learnability); (b) the second concerns with what probability the “disallowed forms” would
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otherwise be expected to appear in place of other similar constructions which do occur

(e.g., how often do non-contracted forms “he is,” “she is,” etc., and in which syntactic

contexts); and (c) how frequently does the putative regularity apply in real language

input. Points (a) and (b) determine how many occurrences of contexts where the regular-

ity applies are needed for learning, and point (c) then will determine how many millions

of words (or years of language input) are required to accrue the number of occurrences

needed. These assumptions are all, of course, provisional; and hence results from this

approach are suggestive rather than definitive.

Hsu and Chater (2010) applied this general framework to consider the learnability of various

linguistic restrictions, many of which have been viewed as presenting fundamental learnability

challenges. They assume that a learner’s input can be approximated using corpora of adult speech

and writing, such as the Corpus of ContemporaryAmerican English (COCA). They found that the

number of years of linguistic input required to learn putatively “unlearnable” constructions varied

surprisingly widely, from amatter of months tomore than a lifetime.

Might these learnability differences across different linguistic restrictions correlate with

how well people actually do learn them? This was tested in an experiment on adult native

English speakers in Hsu et al. (2011). Fig. 1a shows the predictions for 15 constructions

from Hsu and Chater (2010), sorted in descending learnability. Fig. 1b shows how often

the constructions occur per year of linguistic input, estimated from COCA. Note that the

occurrence rates do not monotonically decrease with the years required to learn the con-

struction, because other factors that affect learnability, for example, (a) and (b) listed

above. Interestingly, the more learnable the constraints according to the simplicity analy-

sis, the better they are learned in practice by native speakers: As log(1/predicted years

needed) increased, the difference in the grammatical acceptability of the grammatical ver-

sus ungrammatical form of the construction also increased. Thus, a simplicity-based

approach to language acquisition can provide not only general learnability results but con-

crete predictions concerning how people learn language.

8. Conclusion

In this study, we have reviewed some recent results concerning learning language from

experience by employing the simplicity principle, that is, favoring models of the language

to the degree that they provide a short encoding of the linguistic input. We have shown

theoretical results that indicate that an “ideal learner” implementing the simplicity princi-

ple can learn to predict language from experience; to determine which sentences of a lan-

guage are grammatical to an arbitrarily good approximation (assuming, somewhat

unrealistically, that the corpus of linguistic experience is noise-free, that is, containing

only grammatical sentences); to produce language; and to map between sentences and

their interpretations. This “ideal” learning approach is valuable for determining what

information is contained in a corpus. Yet it cannot be implemented computationally, as

the relevant calculations are known to be uncomputable (Li & Vit�anyi, 1997). Nonethe-
less, we have also shown how a local approximation to such calculations can be used to
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choose between different grammars which do or do not contain specific regularities (espe-

cially those concerned with exceptions) that have been viewed as posing particular prob-

lems for theories of language acquisition. Overall, these results form part of a wider

tradition of analytic and computational results on language learning which suggest that

general a priori arguments about whether language acquisition requires language-specific

innate constraints can be replaced by a more precise formal and empirical analysis.

Acknowledgments

Anne Hsu and Nick Chater were partially supported by ESRC Grants RES-000-22-

3275 and RES-000-22-2768. Nick Chater was partially support by ERC Advanced Grant

295917-RATIONALITY.

(a)
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(b)

Fig. 1. Learnability predictions and experimental evidence: These results are re-plotted from Hsu et al.

(2011). (a) Estimated years required to learn construction. (b) Number of occurrences per year (estimated

from COCA). (c) Relative grammaticality versus learnability for Sentence Set 1 (r = .67; p = .006). Relative

grammaticality judgments were elicited from 200 native English speakers in an online study. Learnability is

log of the inverse of the number of estimated years needed to learn the construction.
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Notes

1. Language acquisition involves dealing with other challenges, including the compu-

tational complexity of searching the space of grammars (Clark & Lappin, 2013),

but these are outside our scope here.

2. Typical speech is, of course, full of grammatical errors, repetitions, and incomplete

utterances. Along with most other learnability analyses, we will ignore the “noisy”

character of linguistic input.

3. All code lengths are assumed, by convention, to be written in a binary alphabet.

4. This approach implicitly assumes, among other things, no sequential dependencies

between sentences, but generalizations are relatively straightforward.

5. Recovery from overgeneralization can be explored in a number of frameworks, for

example, Carlucci and Case (2013).

6. Informally, we can view this process as embodying a Turing machine (or any other

computer) combined with a source of randomness (i.e., a sequence of coin flips).

The source of randomness captures the possibility that the process of generating

the linguistic input may be non-deterministic (although it need not be); the restric-

tion to computable probability distributions requires that the structure in the lin-

guistic input is computable.

7. Strictly, l is a measure, rather than a probability distribution, as the sequence

is infinite; indeed, it is actually a semi-measure. Measures and semi-measures

are generalizations of the standard notion of probability distributions. We

ignore these technicalities here (see Chater & Vit�anyi, 2007; Li & Vit�anyi,
1997).

8. Note, although, that people presumably will share a mental representation lan-

guage. Hence, the representational language used to formulate hypotheses in learn-

ing language will presumably automatically be ideally suited to the natural

languages that have been learned and generated by past generations of speakers

(see, e.g., Christiansen & Chater, 2010).

9. We have discussed how (probabilistic) generative grammars and computer pro-

grams generate linguistic data. The relation between these can be very close: In

some formalisms (e.g., Definite Clause Grammars, Pereira & Warren, 1980), the

program generating from the grammar is just a specification of the grammar

itself. In general, the picture is slightly more complex, but we do not consider

this further here.

10. Technically, it is important that this computer is monotone (Chater & Vit�anyi,
2007), but we shall ignore this complication.

11. Of course, if interpretation, Ij, is such that Pr(Ij) = 0, then the fact that Pr(Ij, Si)
can be approximated arbitrarily well says nothing about Pr(Si|Ij); similarly for

sentences, Si, such that Pr(Si) = 0. But the learner presumably needs only learn sen-

tences that express meanings that might actually arise; and interpret sentences that

might actually be said, so this restriction is fairly mild.

52 A. S. Hsu, N. Chater, P. Vit�anyi / Topics in Cognitive Science 5 (2013)



References

Angluin, D. (1980). Inductive inference of formal languages from positive data. Information and Control, 45,
117–135.

Angluin, D. (1988). Identifying languages from stochastic examples. Technical report YALEU/DCS/RR-614.
New Haven, CT: Yale University.

Attneave, E., & Frost, R. (1969). The determination of perceived tridimensional orientation by minimum

criteria. Perception & Psychophysics, 6, 391–396.
Baker, C. L., & McCarthy, J. J. (1981). The logical problem of language acquisition. Cambridge, MA: MIT

Press.

Barendregt, H. P. (1984). The lambda calculus. Amsterdam: Elsevier.

Bloomfield, L. (1933). Language. New York: Henry Holt.

Bowerman, M. (1988). The ‘No Negative Evidence’ problem: How do children avoid constructing an overly

general grammar? In J. Hawkins (Ed.), Explaining language universals (pp. 73–101). Oxford, England:
Blackwell.

Brent, M. R., & Cartwright, T. A. (1996). Distributional regularity and phonotactic constraints are useful for

segmentation. Cognition, 61, 93–126.
Brown, R., & Hanlon, C. (1970). Derivational complexity and order of acquisition in child speech. In J. R.

Hayes (Ed.), Cognition and the development of language. New York: Wiley.

Carlucci, L., & Case, J. (2013). On the necessity of U-shaped learning. Topics in Cognitive Science (this

issue), 5, 56–88.
Chater, N., & Vit�anyi, P. (2002). Simplicity: A unifying principle incognitive science? Trends in Cognitive

Sciences, 7, 19–22.
Chater, N., & Vit�anyi, P. (2007). Ideal learning of natural language: Positive results about learning from

positive evidence. Journal of Mathematical Psychology, 51, 135–163.
Chomsky, N. (1957). Syntactic structures. The Hague/Paris: Mouton.

Chomsky, N. (1980). Rules and representations. Cambridge, MA: MIT Press.

Christiansen, M. H., & Chater, N. (1994). Generalization and connectionist language learning. Mind &
Language, 9, 273–287.

Christiansen, M. H., & Chater, N. (1999). Connectionist natural language processing: The state of the art.

Cognitive Science, 23, 417–437.
Christiansen, M. H., & Chater, N. (2007). Generalization and connectionist language learning. Mind &

Language, 9, 273–287.
Christiansen, M., & Chater, N. (2010). Language acquisition meets language evolution. Cognitive Science,

34, 1131–1157.
Clark, A., & Eyraud, R. (2007). Polynomial identification in the limit of substitutable context-free languages.

Journal of Machine Learning Research, 8, 1725–1745.
Clark, A., & Lappin, S. (2013). Complexity in language acquisition. Topics in Cognitive Science (this issue),

5, 89–110.
Cover, T. M., & Thomas, J. A. (2006). Elements of information theory (2nd ed.). Hoboken, NJ: Wiley.

Crain, S., & Lillo-Martin, D. (1999). Linguistic theory and language acquisition. Oxford, England:

Blackwell.

Demetras, M., Post, K., & Snow, C. (1986). Feedback to first language learners: The role of repetitions and

clarification questions. Journal of Child Language, 13, 275–292.
Dowman, M. (2000). Addressing the learnability of verb subcategorizations with Bayesian inference. In L. R.

Gleitman & A. K. Joshi (Eds.), Proceedings of the Twenty Second Annual Conference of the Cognitive
Science Society (pp. 107–112). Mahwah, NJ: Erlbaum.

Dresher, B., & Hornstein, N. (1976). On some supposed contributions of artificial intelligence to the

scientific study of language. Cognition, 4, 321–398.

A. S. Hsu, N. Chater, P. Vit�anyi / Topics in Cognitive Science 5 (2013) 53



Ellison, M. (1992). The machine learning of phonological structure. PhD Thesis, University of Western

Australia, Crawley, Western Australia.

Elman, J. (1990). Finding structure in time. Cognitive Science, 14, 179–211.
Feldman, J. (1972). Some decidability results on grammatical inference and complexity. Information and

Control, 20, 244–262.
Feldman, J. (2000). Minimization of Boolean complexity in human concept learning. Nature, 403, 630–633.
Gold, E. M. (1967). Language identification in the limit. Information and Control, 16, 447–474.
Goldsmith, J. (2001). Unsupervised learning of the morphology of a natural language. Computational

Linguistics, 27, 153–198.
Hochberg, J., & McAlister, E. (1953). A quantitative approach to figure “goodness.” Journal of Experimental

Psychology, 46, 361–364.
Horning, J. J. (1969). A study of grammatical inference. Technical Report CS 139. Palo Alto, CA: Stanford

University.

Hornstein, N., & Lightfoot, D. (1981). Explanation in linguistics: The logical problem of language
acquisition. London: Longman.

Hsu, A., & Chater, N. (2010). The logical problem of language acquisition: A probabilistic perspective.

Cognitive Science, 34, 972–1016.
Hsu, A., Chater, N., & Vit�anyi, P. (2011). The probabilistic analysis of language acquisition: Theoretical,

computational, and experimental analysis. Cognition, 120, 380–390.
Jain, S., Osherson, D. N., Royer, J. S., & Kumar Sharma, A. (1999). Systems that learn (2nd ed.).

Cambridge, MA: MIT Press.

Kemp, C., Perfors, A., & Tenenbaum, J. B. (2007). Learning over hypothesis with hierarchical Bayesian

models. Developmental Science, 10, 307–321.
Klein, D., & Manning, C. (2005). Natural language grammar induction with a generative constituent-context

model. Pattern Recognition, 38, 1407–1409.
Langley, P., & Stromsten, S. (2000). Learning context-free grammars with a simplicity bias. In Proceedings

of the Eleventh European Conference on Machine Learning (pp. 220–228). London: Springer-Verlag.
Leeuwenberg, E. L. J. (1969). Quantitative specification of information in sequential patterns. Psychological

Review, 76, 216–220.
Li, M., & Vit�anyi, P. (1997). An introduction to Kolmogorov complexity and its applications (2nd ed.).

London: Springer.

Mach, E. (1959). The analysis of sensations and the relation of the physicalto the psychical. New York:

Dover Publications (original work published in 1886).

MacWhinney, B. (1993). The (il)logical problem of language acquisition. In Proceedings of the 15th annual
conference of the Cognitive Science Society (pp. 61–70). Mahwah, NJ: Erlbaum.

MacWhinney, B. (2004). A multiple process solution to the logical problem of language acquisition. Journal
of Child Language, 31, 883–914.

Marcus, G. F. (1993). Negative evidence in language acquisition. Cognition, 46, 53–85.
Niyogi, P. (2006). The computational nature of language learning and evolution. Cambridge, MA: MIT

Press.

Odifreddi, P. (1988). Classical recursion theory. North Holland: Elsevier.

Onnis, L., Roberts, M., & Chater, N. (2002). Simplicity: A cure for overgeneralizations in language

acquisition? In D. Gray & C. D. Schunn (Eds.), Proceedings of the 24th Annual Conference of the
Cognitive Science Society (pp. 720–725. Mahwah, NJ: Erlbaum.

Pereira, F. C. N., & Warren, D. H. D. (1980). Definite clause grammars for language analysis. Artificial
Intelligence, 13, 231–278.

Perfors, A., Regier, T., & Tenenbaum, J. B. (2006). Poverty of the Stimulus? A rational approach. In R. Sun

& N. Miyaki (Eds.), Proceedings of the Twenty-Eighth Annual Conference of the Cognitive Science
Society (pp. 663–668.) Mahwah, NJ: Erlbaum.

Pinker, S. (1979). Formal models of language learning. Cognition, 7, 217–283.

54 A. S. Hsu, N. Chater, P. Vit�anyi / Topics in Cognitive Science 5 (2013)



Pinker, S. (1984). Language learnability and language development (7th ed.). Cambridge, MA: Harvard

University Press.

Pinker, S. (1989). Learnability and cognition: The acquisition of argument structure. Cambridge, MA: MIT

Press.

Pinker, S., & Bloom, P. (1990). Natural language and natural selection. Behavioral and Brain Sciences, 13,
707–784.

Pylyshyn, Z. W. (1984). Computation and cognition: Toward a foundation for cognitive science. Cambridge,

MA: Bradford Books/MIT Press.

Rissanen, J. (1987). Stochastic complexity. Journal of the Royal Statistical Society, Series B,49, 223–239.
Rohde, D. L. T., & Plaut, D. C. (1999). Language acquisition in the absence of explicit negative evidence:

How important is starting small?. Cognition, 72, 68–109.
Shannon, C. E. (1951). Prediction and entropy of printed English. Bell Systems Technical Journal, 31, 64.
Solomonoff, R. J. (1978). Complexity-based induction systems: comparisons and convergence theorems.

IEEE Transactions on Information Theory, IT, 24, 422–432.
Steyvers, M., Griffiths, T., & Dennis, S. (2006). Probabilistic inference in human semantic memory. Trends

in Cognitive Sciences, 10, 309–318.
Stolcke, A. (1994). Bayesian learning of probabilistic language models. Berkeley: University of California.

Tomasello, M. (2004). Syntax or semantics? Response to Lidz et al. Cognition, 93, 139–140.
Vousden, J. I., Ellefson, M. R., Solity, J. E., & Chater, N. (2011). Simplifying reading: Applying the

simplicity principle to reading. Cognitive Science, 35, 34–78.
Wallace, C. S., & Freeman, P. R. (1987). Estimation and inference by compact coding. Journal of the Royal

Statistical Society, Series B, 49, 240–251.
Wharton, R. M. (1974). Approximate language identification. Information and Control, 26, 236–255.
Wolff, J. G. (1988). Learning syntax and meanings through optimisation and distributional analysis. In

Y. Levy, I. M. Schlesinger, & M. D. S. Braine (Eds.), Categories and processes in language acquisition,
(pp. 179–215). Hillsdale, NJ: LEA.

A. S. Hsu, N. Chater, P. Vit�anyi / Topics in Cognitive Science 5 (2013) 55


