
Reversibility and Adiabatic Computation: Trading

Time and Space for Energy

�

Ming Li

y

University of Waterloo

Paul Vit�anyi

z

CWI and University of Amsterdam

Abstract

Future miniaturization and mobilization of computing devices re-

quires energy parsimonious `adiabatic' computation. This is contin-

gent on logical reversibility of computation. An example is the idea of

quantum computations which are reversible except for the irreversible

observation steps. We propose to study quantitatively the exchange

of computational resources like time and space for irreversibility in

computations. Reversible simulations of irreversible computations are

memory intensive. Such (polynomial time) simulations are analysed

here in terms of `reversible' pebble games. We show that Bennett's

pebbling strategy uses least additional space for the greatest number

of simulated steps. We derive a trade-o� for storage space versus ir-

reversible erasure. Next we consider reversible computation itself. An

alternative proof is provided for the precise expression of the ultimate

irreversibility cost of an otherwise reversible computation without re-

strictions on time and space use. A time-irreversibility trade-o� hierar-

chy in the exponential time region is exhibited. Finally, extreme time-

irreversibility trade-o�s for reversible computations in the thoroughly

unrealistic range of computable versus noncomputable time-bounds are

given.

�

Parts of this paper were presented in preliminary form in Proc. IEEE Physics of

Computation Workshop, Dallas (Texas), Oct. 4-6, 1992, pp. 42-46, and Proc. 11th IEEE

Conference on Computational Complexity, Philadelphia (Pennsylvania), May 24-27, 1996.

y

Supported in part by NSERC operating grant OGP-046506, ITRC, and a CGAT

grant. Address: Computer Science Department, University of Waterloo, Waterloo, On-

tario, Canada N2L 3G1. Email: mli@math.uwaterloo.ca

z

Partially supported by the European Union through NeuroCOLT ESPRIT Working

Group Nr. 8556, and by NWO through NFI Project ALADDIN under Contract number

NF 62-376 and NSERC under International Scienti�c Exchange Award ISE0125663. Ad-

dress: CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands. Email: paulv@cwi.nl

1

1 Introduction

The ultimate limits of miniaturization of computing devices, and there-

fore the speed of computation, are constrained by the increasing density

of switching elements in the device. Linear speed up by shortening inter-

connects on a two-dimensional device is attended by cubing the dissipated

energy per area unit per second. Namely, we square the number of switching

elements per area unit and linearly increase the number of switching events

per switch per time unit. The attending energy dissipation on this scale

in the long run cannot be compensated for by cooling. Reduction of the

energy dissipation per elementary computation step therefore determines

future advances in computing power. In view of the di�culty in improving

low-weight small-size battery performance, low-energy computing is already

at this time of writing a main determining factor in advanced mobilization

of computing and communication.

Since 1940 the dissipated energy per bit operation in a computing device

has with remarkable regularity decreased by roughly one order of magnitude

(tenfold) every �ve years, [Keyes, 1988, Landauer, 1988]. Extrapolations of

current trends show that the energy dissipation per binary logic operation

needs to be reduced below kT (thermal noise) within 20 years. Here k is

Boltzmann's constant and T the absolute temperature in degrees Kelvin,

so that kT � 3 � 10

�21

Joule at room temperature. Even at kT level,

a future device containing 10

18

gates in a cubic centimeter operating at

a gigahertz dissipates about 3 million watts/second. For thermodynamic

reasons, cooling the operating temperature of such a computing device to

almost absolute zero (to get kT down) must dissipate at least as much energy

in the cooling as it saves for the computing, [Merkle, 1993].

Considerations of thermodynamics of computing started in the early

�fties. J. von Neumann reputedly thought that a computer operating at

temperature T must dissipate at least kT ln 2 Joule per elementary bit op-

eration, [Burks, 1966]. But R. Landauer [Landauer, 1961] demonstrated

that it is only the `logically irreversible' operations in a physical computer

that are required to dissipate energy by generating a corresponding amount

of entropy for each bit of information that gets irreversibly erased. As a

consequence, any arbitrarily large reversible computation can be performed

on an appropriate physical device using only one unit of physical energy in

principle.

Examples of logically reversible operations are `copying' of records, and

`canceling' of one record with respect to an identical record provided it is

2

known that they are identical. They are physically realizable (or almost re-

alizable) without energy dissipation. Such operations occur when a program

sets y := x and later (reversibly) erases x := 0 while retaining the same value

in y. We shall call such reversible erasure `canceling' x against y. Irrespec-

tive of the original contents of variable x we can always restore x by x := y.

However, if the program has no copy of the value in variable x which can

be identi�ed by examining the program without knowing the contents of

the variables, then after (irreversibly) erasing x := 0 we cannot restore the

original contents of x even though some variable z may have by chance the

same contents. `Copying' and `canceling' are logically reversible, and their

energy dissipation free execution gives substance to the idea that logically

reversible computations can be performed with zero energy dissipation.

Generally, an operation is logically reversible if its inputs can always be

deduced from the outputs. Erasure of information in a way such that it can-

not be retrieved is not reversible. Erasing a bit irreversibly necessarily dissi-

pates kT ln 2 energy in a computer operating at temperature T . In contrast,

computing in a logically reversible way says nothing about whether or not

the computation dissipates energy. It merely means that the laws of physics

do not require such a computer to dissipate energy. Logically reversible

computers built from reversible circuits, [Fredkin & To�oli, 1982], or the re-

versible Turing machine, [Bennett, 1982], implemented with current technol-

ogy will presumably dissipate energy but may conceivably be implemented

by future technology in an adiabatic fashion. Current conventional electronic

technologies for implementing `adiabatic' logically reversible computation

are discussed in [Merkle, 1993, Proc. PhysComp, 1981, 1992, 1994].

An example of a hypothetical reversible computer that is both logically

and physically perfectly reversible and perfectly free from energy dissipa-

tion is the billiard ball computer, [Fredkin & To�oli, 1982]. Another ex-

ample is the exciting prospect of quantum computation, [Feynman, 1985,

Deutsch, 1985, Shor, 1994], which is reversible except for the irreversible

observation steps.

1.1 Outline of the Paper

Here we propose the quantitative study of exchanges of computing resources

such as time and space for irreversibility which we believe will be relevant

for the physics of future computation devices.

Reversible simulation. Bennett [Bennett, 1989] gives a general re-

versible simulation for irreversible algorithms in the stylized form of a pebble

3

game. While such reversible simulations incur little overhead in additional

computation time, they may use a large amount of additional memory space

during the computation. We show that among all simulations which can be

modelled by the pebble game, Bennett's simulation is optimal in that it uses

the least auxilliary space for the greatest number of simulated steps. That

is, if S is the space used by the simulated irreversible computation, then the

simulator uses nS space to simulate (2

n

�1)S steps of the simulated compu-

tation. Moreover, we show that no simple generalization of such simulations

can simulate that many steps using (n� 1)S space. On the other hand, we

show that at the cost of a limited amount of erasure the simulation can be

made more space e�cient: we can save kS space in the reversible simulation

at a cost of (2

k+2

� 1)S irreversible bit erasures, for all k with 1 � k � n.

Hence there can be an advantage in adding limited irreversibility to an oth-

erwise reversible simulation of conventional irreversible computations. This

may be of some practical relevance for adiabatic computing.

Reversible computation. Next, we consider irreversibility issues re-

lated to reversible computations themselves. Such computations may be

directly programmed on a reversible computer or may be a reversible simula-

tion of an irreversible computation. References [Lecerf, 1963, Bennett, 1973]

show independently that all computations can be performed logically re-

versibly at the cost of eventually �lling up the memory with unwanted

garbage information. This means that reversible computers with bounded

memories require in the long run irreversible bit operations, for example, to

erase records irreversibly to create free memory space. The minimal possible

number of irreversibly erased bits to do so determines the ultimate limit of

heat dissipation of the computation by Landauer's principle.

To establish the yardstick for subsequent trade-o�s, we give an alterna-

tive direct operational proof for the known exact expression of the ultimate

number of irreversible bit operations in an otherwise reversible computa-

tion, without any bounds on computational resources like time and space,

Theorem 2.

1

Time-Irreversibility trade-o�s. Clearly, to potentially reduce phys-

ical energy dissipation one �rst needs to reduce the number of irreversible

bit erasures in an otherwise reversible computation. This can be achieved

by using more computation steps to drive the number of irreversible com-

putation steps closer to ultimate limits. The method typically reversibly

1

This is the unpublished proof in [Li and Vit�anyi, 1992]; compare with the proof in

[Bennett et al., 1993].

4

compresses `garbage' information before irreversibly erasing it. (A similar

situation holds for space bounds on memory use.)

Time-Irreversibility hierarchy. For exponential time bounds diag-

onalization techniques are used to establish the existence of a sequence of

increasing time bounds for a computation resulting in a sequence of de-

creasing irreversibility costs. (These time bounds are exponential func-

tions, while practical adiabatic computation usually deals with less-than-

exponential time in the size of the input.)

Extreme trade-o�s. In the thoroughly unrealistic realm of computable

versus noncomputable time-bounds it turns out that there exist most ex-

treme time-irreversibility trade-o�s.

1.2 Previous Work

Currently, we are used to design computational procedures containing irre-

versible operations. To perform the intended computations without energy

dissipation the related computation procedures need to become completely

reversible. Fortunately, all irreversible computations can be simulated in a

reversible manner, [Lecerf, 1963, Bennett, 1973]. All known reversible sim-

ulations of irreversible computations use little overhead in time but large

amounts of additional space. Commonly, polynomial time computations are

considered as the practically relevant ones. Reversible simulation will not

change such a time bound signi�cantly, but requires considerable additional

memory space. In this type of simulation one needs to save on space; time

is already almost optimal.

The reversible simulation in [Bennett, 1973] of T steps of an irreversible

computation from x to f(x) reversibly computes from input x to output

hx; f(x)i in T

0

= O(T) time. However, since this reversible simulation at

some time instant has to record the entire history of the irreversible compu-

tation, its space use increases linear with the number of simulated steps T .

That is, if the simulated irreversible computation uses S space, then for some

constant c > 1 the simulation uses T

0

� c+ cT time and S

0

� c+ c(S + T)

space. The question arises whether one can reduce the amount of auxiliary

space needed by the simulation by a more clever simulation method or by

allowing limited amounts of irreversibility.

In [Bennett, 1989] another elegant simulation technique is devised re-

ducing the auxiliary storage space. This simulation does not save the entire

history of the irreversible computation but it breaks up the simulated com-

putation into segments of about S steps and saves in a hierarchical manner

5

checkpoints consisting of complete instantaneous descriptions of the simu-

lated machine (entire tape contents, tape heads positions, state of the �nite

control). After a later checkpoint is reached and saved, the simulating ma-

chine reversibly undoes its intermediate computation reversibly erasing the

intermediate history and reversibly canceling the previously saved check-

point. Subsequently, the computation is resumed from the new checkpoint

onwards.

The reversible computation simulates k

n

segments of length m of irre-

versible computation in (2k� 1)

n

segments of length �(m+S) of reversible

computation using n(k � 1) + 1 checkpoint registers using �(m+ S) space

each, for each k; n;m.

This way it is established that there are various trade-o�s possible in

time-space in between T

0

= �(T) and S

0

= �(TS) at one extreme (k =

1;m = T; n = 1) and (with the corrections of [Levine and Sherman, 1990])

T

0

= �(T

1+�

=S

�

) and S

0

= �(c(�)S(1 + log T=S)) with c(�) = �2

1=�

for each

� > 0, using always the same simulation method but with di�erent parame-

ters k; n where � = log

k

(2k�1) and m = �(S). Typically, for k = 2 we have

� = log 3. Since for T > 2

S

the machine goes into a computational loop,

we always have S � log T . Therefore, it follows from Bennett's simulation

that each irreversible Turing machine using space S can be simulated by a

reversible machine using space S

2

in polynomial time.

2 Reversible Simulation

Analysing the simulation method of [Bennett, 1989] shows that it is essen-

tially no better than the simple [Bennett, 1973] simulation in terms of time

versus irreversible erasure trade-o�. Extra irreversible erasing can reduce

the simulation time of the former method to �(T), but the `simple' method

has �(T) simulation time without irreversible erasures anyway, but at the

cost of a large space consumption. Therefore, it is crucial to decrease the

extra space required for the pure reversible simulation without increasing

time if possible, and in any case further reduce the extra space at the cost

of limited numbers of irreversible erasures.

Since there is no better general reversible simulation of an irreversible

computation known as the above one, and it seems likely that each proposed

method must have similar history preserving features, analysis of this par-

ticular style of simulation may in fact give results with more general validity.

We establish lower bounds on space use and upper bounds on space versus

6

irreversible erasure trade-o�s.

To analyse such trade-o�s we use Bennett's brief suggestion in [Bennett, 1989]

that a reversible simulation can be modelled by the following `reversible'

pebble game. Let G be a linear list of nodes f1; 2; : : : ; T

G

g. We de�ne a

pebble game on G as follows. The game proceeds in a discrete sequence of

steps of a single player. There are n pebbles which can be put on nodes of

G. At any time the set of pebbles is divided in pebbles on nodes of G and

the remaining pebbles which are called free pebbles. At each step either an

existing free pebble can be put on a node of G (and is thus removed from

the free pebble pool) or be removed from a node of G (and is added to the

free pebble pool). The rules of the game are as follows.

1. Initially G is unpebbled and there is a pool of free pebbles.

2. In each step the player can put either

(a) a free pebble on node 1 or remove a pebble from node 1, or

(b) for some node i > 1, put a free pebble on node i or remove a pebble

from node i, provided node i� 1 is pebbled at the time.

3. The player wins the game if he pebbles node T

G

and subsequently

removes all pebbles from G.

The maximum number n of pebbles which are simultaneously on G at

any time in the game gives the space complexity nS of the simulation. If one

deletes a pebble not following the above rules, then this means a block of

bits of size S is erased irreversibly. The limitation to Bennett's simulation

is in fact space, rather than time. When space is limited, we may not

have enough place to store garbage, and these garbage bits will have to be

irreversibly erased. We establish a tight lower bound for any strategy for

the pebble game in order to obtain a space-irreversibility trade-o�.

Lemma 1 There is no winning strategy with n pebbles for T

G

� 2

n

.

Proof. Fix any pebbling strategy for the player. To prove the lemma

it su�ces to show that the player cannot reach node f(k) = 2

k

using k

pebbles, and also remove all the pebbles at the end, for k := 1; 2; : : :. We

proceed by induction.

Basis: k = 1. It is straightforward to establish f(1) = 2 cannot be

reached with 1 pebble.

7

Induction: k ! k + 1. Assume that f(i) = 2

i

cannot be reached with i

pebbles, for i = 1; : : : ; k, has been established. Consider pebbling G using

k + 1 pebbles. Assume, that the player can pebble node f(k) + 1 = 2

k

+ 1

(otherwise the induction is �nished).

Then, by the rules of the game, there must be a least step t such that for

all times t

0

> t there are pebbles on some nodes in f(k)+1; f(k)+2; : : : ; T

G

.

Among other things, this implies that at step t+1 node f(k)+1 is pebbled.

Partition the �rst f(k)� 2 nodes of G into disjoint consecutive regions:

starting with node 1, region L

i

consists of the next block of f(k � i) nodes,

for i = 1; : : : ; k � 1. That is, L

i

= f

P

k�i+1

j=1

2

k�j

+ 1; : : : ;

P

k�i

j=1

2

k�j

g. The

regions L

1

; : : : ; L

k�1

cover nodes 1; : : : ; f(k)�2. Denote the remainder of G

but for nodes f(k)�1; f(k) by R, that isR = G�ff(k)�1; f(k)g�

S

k�1

i=1

L

i

=

ff(k) + 1; f(k) + 2; : : : ; T

G

g.

Consider the game from step t+1 onwards. If there is always at least one

pebble on nodes 1; : : : ; f(k), then by inductive assumption the player can

pebble with one initial pebble on f(k)+1 and the remaining k�1 free pebbles

at most f(k)�1 nodes and hence no further than node 2f(k)�1 = 2

k+1

�1,

and the induction is �nished.

Therefore, to possibly pebble node 2

k+1

the player needs to remove all

pebbles from nodes 1; : : : ; f(k) �rst. Because node f(k) + 1 was pebbled at

step t+1, we know that node f(k) did have a pebble at that time according

to the game rules. By assumption, from time t + 1 there will henceforth

always be a leading pebble in region R. Moreover, at time t + 1 there is a

pebble on node f(k). To remove all the pebbles in range 1; : : : ; f(k), the

following requirements have to be satis�ed.

� From time t+1 onwards, there must always be a pebble at a strategic

location in L

1

until the last remaining pebble in G � (L

1

[R) =

ff(k � 1) + 1; : : : ; f(k)g is removed. Otherwise with at most k � 1

pebbles, the player cannot cross the unpebbled region L

1

(because

jL

1

j = f(k� 1)) to reach and remove the �nally last remaining pebble

in the range G � (L

1

[R). There are only k � 1 pebbles available

because from time t+1 on we have a pebble in region R, and at least

one pebble in H = G� (L

1

[R).

� From time t+1 onwards, there must always be a pebble at a strategic

location in L

2

until the last remaining pebble in G� (L

1

[L

2

[R) =

ff(k�1)+f(k�2)+1; : : : ; f(k)g is removed. Otherwise, with at most

k�2 pebbles, the player cannot cross the unpebbled region L

2

(because

8

jL

2

j = f(k� 2)) to reach and remove the �nally last remaining pebble

in the range G� (L

1

[L

2

[R). There are only k� 2 pebbles available

because from time t+ 1 on we have a pebble in region R, a pebble in

L

1

(to help removing the last remaining pebble in L

2

), and at least

one pebble in H = G� (L

1

[L

2

[R).

� By iteration of the argument, there must be a pebble in each region

L

i

at time t+ 1, for i = 1; : : : ; k � 1.

But these requirements use up k�1 pebbles located in regions L

1

; : : : ; L

k�1

.

None of these regions can become pebble-free before we free the pebble on

node f(k), that is, the kth pebble. The (k+1)st pebble is in region R forever

after step t+ 1. Therefore, there is no pebble left to pebble node f(k) � 1

which is not in R

S

ff(k)g

S

k�1

i=1

L

i

. Hence it is impossible to remove all k

pebbles from the �rst nodes 1; : : : ; f(k). Thus, leaving one pebble in region

f1; : : : ; f(k)g with at most k remaining pebbles, by inductive assumption,

the player can pebble no farther than node 2f(k) � 1, which �nishes the

induction. 2

Lemma 2 There is a winning strategy with n pebbles for T

G

= 2

n

� 1.

Proof. Bennett's simulation [Bennett, 1989] is a winning strategy.

We describe his game strategy as the pebble game G = f1; : : : ; T

G

g, re-

cursively. Let I

k

= I

k�1

i

k�1

I

k�2

i

k�2

: : : I

1

i

1

I

0

i

0

where I

j

is a sequence of

2

j

� 1 consecutive locations in G, and i

j

is the node directly following I

j

,

for j = 0; 1; : : : ; k � 1. Note that jI

0

j = 0.

Let F (k; I

k

) be the program to pebble an initially pebble-free interval I

k

of length 2

k

� 1 of G, starting with k free pebbles and a pebble-free I

k

and

ending with k pebbles on I

k

including one pebble on the last node of I

k

.

Let F

�1

(k; I

k

) be the program starting with the end con�guration of

F (k; I

k

) and executing the operation sequence of F (k; I

k

) in reverse, each

operation replaced by its inverse which undoes what the original operation

did, ending with F (k; I

k

)'s initial con�guration. We give the precise proce-

dure in self-explanatory pseudo PASCAL.

Procedure F (k; I

k

):

for i := 1; 2; : : : ; k:

F (k � i; I

k�i

);

put pebble on node i

k�i

;

9

F

�1

(k � i; I

k�i

)

Procedure F

�1

(k; I

k

):

for i := k; k � 1; : : : ; 1:

F

�1

(k � i; I

k�i

);

remove pebble on node i

k�i

;

F (k � i; I

k�i

)

Note that this way both F (0; I

0

) and F

�1

(0; I

0

) are `skip' operations

which don't change anything. The size T

G

of a pebble game which is won

using this strategy using n pebbles is jI

n

j = 2

n

� 1. Moreover, if F (k; I

k

)

takes t(k) steps we �nd t(k) = 2t(k � 1) + � � � + f(1) + k � 1. Then, t(k) =

3t(k� 1)� 1. That is, the number of steps T

0

G

of a winning play of a pebble

game of size T

G

= 2

n

� 1 is T

0

G

� 3

n

, that is, T

0

G

� T

log 3

G

. 2

The simulation given in [Bennett, 1989] follows the rules of the pebble

game of length T

G

= 2

n

� 1 with n pebbles above. A winning strategy for

a game of length T

G

using n pebbles corresponds with reversibly simulating

T

G

segments of S steps of an irreversible computation using S space such

that the reversible simulator uses T

0

� ST

0

G

� ST

log 3

G

steps and total space

S

0

= nS. The space S

0

corresponds to the maximal number of pebbles on

G at any time during the game. The placement or removal of a pebble in

the game corresponds to the reversible copying or reversible cancelation of

a `checkpoint' consisting of the entire instantaneous description of size S

(work tape contents, location of heads, state of �nite control) of the sim-

ulated irreversible machine. The total time T

G

S used by the irreversible

computation is broken up in segments of size S so that the reversible copy-

ing and canceling of a checkpoints takes about the same number of steps as

the computation segments in between checkpoints.

2

We can now formulate a trade-o� between space used by a polynomial

time reversible computation and irreversible erasures. First we show that

allowing a limited amount of erasure in an otherwise reversible computation

means that we can get by with less work space. Therefore, we de�ne an

2

In addition to the rules of the pebble game there is a permanently pebbled initial

node so that the simulation actually uses n+ 1 pebbles for a pebble game with n pebbles

of length T

G

+ 1. The simulation uses n + 1 = S

0

=S pebbles for a simulated number of

S(T

G

+ 1) steps of the irreversible computation.

10

m-erasure pebble game as the pebble game above but with the additional

rule

� In at most m steps the player can remove a pebble from any node

i > 1 without node i� 1 being pebbled at the time.

Anm-erasure pebble game corresponds with an otherwise reversible com-

putation using mS irreversible bit erasures, where S is the space used by

the irreversible computation being simulated.

Lemma 3 There is a winning strategy with n pebbles and 2m� 1 erasures

for pebble games G with T

G

= m2

n�1

, for all m � 1.

Proof. The strategy is to advance in blocks of size 2

n�1

�1 using n�1

pebbles without erasures (as in Lemma 2), put the nth pebble in front,

and invert the advancement process to free all the pebbles in the block.

The last remaining pebble has no predecessor and needs to be irreversibly

erased except in the initial block. The initial pebble is put in front of the

lastly placed nth pebble which, having done its duty as springboard for this

block, is subsequently irreversibly erased. Therefore, the advancement of

each block requires two erasures, except the �rst block which requires one,

yielding a total of 2m � 1 erasures. Let G = f1; 2; : : : ; T

G

g be segmented

as B

1

b

1

: : : B

m

b

m

, where each B

i

is a copy of interval I

n�1

above and b

i

is

the node following B

i

, for i = 1; : : : ;m. Hence, T

G

= m2

n�1

. We give the

precise procedure in self-explanatory pseudo PASCAL using the procedures

given in the proof of Lemma 2.

Procedure A(n;m;G):

for i := 1; 2; : : : ;m:

F (n� 1; B

i

);

erase pebble on node b

i�1

;

put pebble on node b

i

;

F

�1

(n� 1; B

i

) (removal of pebble from �rst node of B

i

is an erasure)

The simulation time T

0

G

is T

0

G

� 2m�3

n�1

+2 � 2m(T

G

=m)

log 3

= 2m

1�log 3

T

log 3

G

for T

G

= m2

n�1

. 2

11

Theorem 1 (Space-Irreversibility Trade-o�) (i) Pebble games G of size

2

n

� 1 can be won using n pebbles but not using n� 1 pebbles.

(ii) If G is a pebble game with a winning strategy using n pebbles without

erasures, then there is also a winning strategy for G using E erasures and

n� log(E + 1) pebbles (for E is an odd integer at least 1).

Proof. (i) By Lemmas 2, 1.

(ii) By (i), T

G

= 2

n

� 1 is the maximum length of a pebble game G

for which there is a winning strategy using n pebbles and no erasures. By

Lemma 3, we can pebble a game G of length T

G

= m2

n�logm

= 2

n

using

n+ 1� logm pebbles and 2m� 1 erasures. 2

We analyse the consequences of Theorem 1. It is convenient to consider

the special sequence of values E := 2

k+2

� 1 for k := 0; 1; : : :. Let G be

Bennett's pebble game of Lemma 2 of length T

G

= 2

n

� 1. It can be won

using n pebbles without erasures, or using n � k pebbles plus 2

k+2

� 1

erasures (which gives a gain over not erasing as in Lemma 2 only for k � 1),

but not using n� 1 pebbles.

Therefore, we can exchange space use for irreversible erasures. Such

a trade-o� can be used to reduce the excessive space requirements of the

reversible simulation. The correspondence between the erasure pebble game

and the otherwise reversible computations using irreversible erasures that

if the pebble game uses n � k pebbles and 2

k+2

� 1 erasures, then the

otherwise reversible computation uses (n�k)S space and erases (2

k+2

�1)S

bits irreversibly.

Therefore, a reversible simulation of an irreversible computation of length

T = (2

n

� 1)S can be done using nS space using (T=S)

log 3

S time, but is

impossible using (n � 1)S space. It can also be performed using (n � k)S

space, (2

k+2

� 1)S irreversible bit erasures and 2

(k+1)(1�log 3)+1

(T=S)

log 3

S

time. In the extreme case we use no space to store the history and erase

about 4T bits. This corresponds to the fact that an irreversible computation

may overwrite its scanned symbol irreversibly at each step.

De�nition 1 Consider a simulation using S

0

storage space and T

0

time

which computes y = hx; f(x)i from x in order to simulate an irreversible

computation using S storage space and T time which computes f(x) from

x. The irreversible simulation cost B

S

0

(x; y) of the simulation is the number

of irreversibly erased bits in the simulation (with the parameters S; T; T

0

understood).

12

If the irreversible simulated computation from x to f(x) uses T steps,

then for S

0

= nS and n = log(T=S) we have above treated the most space

parsimonious simulation which yields B

S

0

(x; y) = 0, with y = hx; f(x)i.

Corollary 1 (Space-Irreversibility Trade-o�) Simulating a T = (2

n

�

1)S step irreversible computation from x to f(x) using S space by a compu-

tation from x to y = hx; f(x)i, the irreversible simulation cost satis�es:

(i) B

(n�k)S

(x; y) � B

nS

(x; y) + (2

k+2

� 1)S, for n � k � 1.

(ii) B

(n�1)S

(x; y) > B

nS

(x; y), for n � 1.

For the most space parsimonious simulation with n = log(T=S) this

means that B

S(log(T=S)�k)

(x; y) � B

S log(T=S)

(x; y) + (2

k+2

� 1)S.

We conjecture that all reversible simulations of an irreversible computa-

tion can essentially be represented as the pebble game de�ned above, and

that consequently the lower bound of Lemma 1 applies to all reversible sim-

ulations of irreversible computations. If this conjecture is true then the

trade-o�s above turn into a space-irreversibility hierarchy for polynomial

time computations.

3 Reversible Computation

Given that a computation is reversible, either by being reversible a pri-

ori or by being a reversible simulation of an irreversible computation, it

will increasingly �ll up the memory with unwanted garbage information.

Eventually this garbage has to be irreversibly erased to create free memory

space. As before, the number of irreversibly erased bits in an otherwise re-

versible computation which replaces input x by output y, each unit counted

as kT ln 2, represents energy dissipation. Complementary to this idea, if such

a computation uses initially irreversibly provided bits apart from input x,

then they must be accounted at the same negated cost as that for irreversible

erasure. Because of the reversibility of the computation, we can argue by

symmetry. Namely, suppose we run a reversible computation starting when

memory contains input x and additional record p, and ending with memory

containing output y and additional garbage bits q. Then p is irreversibly

provided, and q is irreversibly deleted. But if we run the computation back-

ward, then the roles of x; p and y; q are simply interchanged.

Should we charge for the input x or the output y? We do not actually

know where the input comes from, nor where the the output goes to. Sup-

pose we cut a computation into two consecutive segments. If the output of

13

one computation segment is the input of another computation segment, then

the thermodynamic cost of the composition does not contain costs related to

these intermediate data. Thus, we want to measure just the number of irre-

versible bit operations of a computation. We can view any computation as

consisting of a sequence of reversible and irreversible operation executions.

We want the irreversibility cost to re
ect all nonreversible parts of the com-

putation. The irreversibility cost of an otherwise reversible computation

must be therefore set to the sum of the number of irreversibly provided and

the number of irreversibly erased bits.

We consider the following axioms as a formal basis on which to develop

a theory of irreversibility of computation.

Axiom 1 Reversible computations do not incur any cost.

Axiom 2 Irreversibly provided and irreversibly deleted bits in a computa-

tion incur unit cost each.

Axiom 3 In a reversible computation which replaces input x by output

y, the input x is not irreversibly provided and the output y is not

irreversibly deleted.

Axiom 4 All physical computations are e�ective.

Axiom 4 is simply an extended form of Church's Thesis: the notion

of physical computation coincides with e�ective computation which coin-

cides with the formal notion of Turing machines computation. Deutsch,

[Deutsch, 1985], and others have argued the possibility that this is false. If

that turns out to be the case then either our arguments are to be restricted

to those physical processes for which Axiom 4 holds, or, perhaps, one can

extend the notion of e�ective computations appropriately.

In reference [Bennett et al., 1993] we and others developed a theory of

information distance with application to the number of irreversible bit op-

erations in an otherwise reversible computation. A precursor to this line of

thought is [Zurek, 1989]. Among others, they considered the information

distance obtained by minimizing the total amount of information
owing

in and out during a reversible computation in which the program is not

retained.

Since the ultimate limit of energy dissipation by computation is ex-

pressed in the number of bits in the irreversibly erased records, we consider

compacti�cation of records. Rather as in analogy of garbage collection by a

14

garbage truck: the cost is less if we compact the garbage before we throw it

away.

The ultimate compacti�cation of data which can be e�ectively exploited

is given by its Kolmogorov complexity. This is a recursively invariant con-

cept, and expresses the limits to which e�ective methods can go. Conse-

quently, the mundane matter of energy dissipation of physical computation

can be linked to, and expressed in, the pristine rigorous notion of Kol-

mogorov complexity.

3.1 Kolmogorov Complexity and Irreversibility Cost

The Kolmogorov complexity, see [Li and Vit�anyi, 1993], of x is the length

of the shortest e�ective description of x. Formally, this can be de�ned as

follows. Let x; y; z 2 N , where N denotes the natural numbers and we iden-

tifyN and f0; 1g

�

according to the correspondence (0; �); (1; 0); (2; 1); (3; 00),

(4; 01); : : :. Hence, the length jxj of x is the number of bits in the binary

string x. Let T

1

; T

2

; : : : be a standard enumeration of all Turing machines.

Without loss of generality we assume that all machines in this paper have

binary input, storage, and output. Consider a standard reversible map-

ping that maps a pair of integers x; y to another integer hx; yi. Similarly,

hhx; yi; zi reversibly maps triplets of integers to a single integer. Let the

mapping be Turing-computable.

De�nition 2 Let U be an appropriate universal Turing machine such that

U(hhi; pi; yi) = T

i

(hp; yi) for all i and hp; yi. The Kolmogorov complexity

of x given y (for free) is

C(xjy) = minfjpj : U(hp; yi) = x; p 2 f0; 1g

�

; i 2 Ng:

Axioms 1|4 lead to the de�nition of the irreversibility cost of a compu-

tation as the number of bits we added plus the number of bits we erased

in computing one string from another. Let R = R

1

; R

2

; : : : be a standard

enumeration of reversible Turing machines, [Bennett, 1973].

The irreversibility cost of otherwise reversibly computing from x to y is

the number of extra bits (apart from x) that must be irreversibly supplied

at the beginning, plus the number of garbage bits (apart from y) that must

be irreversibly erased at the end of the computation to obtain a `clean'

y. The use of irreversibility resources in a computation is expressed in

terms of this cost, which is one of the information distances considered in

[Bennett et al., 1993]. It is shown to be within a logarithmic additive term

of the sum of the conditional complexities, C(yjx) +C(xjy).

15

De�nition 3 The irreversibility cost E

R

(x; y) of computing y from x by a

reversible Turing machine R is is

E

R

(x; y) = minfjpj+ jqj : R(hx; pi) = hy; qig:

We denote the class of all such cost functions by E.

We call an element E

Q

of E a universal irreversibility cost function, if

Q 2 R, and for all R in R

E

Q

(x; y) � E

R

(x; y) + c

R

;

for all x and y, where c

R

is a constant which depends on R but not on x

or y. Standard arguments from the theory of Turing machines show the

following.

Lemma 4 There is a universal irreversibility cost function in E. Denote it

by E

UR

.

Proof. In [Bennett, 1973] a universal reversible Turing machine UR is

constructed which satis�es the optimality requirement. 2

Two such universal (or optimal) machines UR and UR

0

will assign the

same irreversibility cost to a computation apart from an additive constant

term c which is independent of x and y (but does depend on UR and UR

0

).

We select a reference universal function UR and de�ne the irreversibility

cost E(x; y) of computing y from x as

E(x; y) � E

UR

(x; y):

In physical terms this cost is in units of kT ln 2, where k is Boltzmann's

constant, T is the absolute temperature in degrees Kelvin, and ln is the

natural logarithm.

Because the computation is reversible, this de�nition is symmetric: we

have E(x; y) = E(y; x).

In our de�nitions we have pushed all bits to be irreversibly provided

to the start of the computation and all bits to be erased to the end of the

computation. It is easy to see that this is no restriction. If we have a compu-

tation where irreversible acts happen throughout the computation, then we

can always mark the bits to be erased, waiting with actual erasure until the

end of the computation. Similarly, the bits to be provided can be provided

(marked) at the start of the computation while the actual reading of them

(simultaneously unmarking them) takes place throughout the computation).

16

3.2 Computing Between x and y

Consider a general computation which outputs string y from input string

x. We want to know the minimum irreversibility cost for such computation.

The result below appears in [Bennett et al., 1993] with a di�erent proof.

Theorem 2 (Fundamental theorem) Up to an additive logarithmic term

3

,

E(x; y) = C(xjy) + C(yjx):

Proof. We prove �rst an upper bound and then a lower bound.

Claim 1 E(x; y) � C(yjx) + C(xjy) + 2[C(C(yjx)jy) + C(C(xjy)jx)].

Proof. We start out the computation with programs p; q; r. Program p

computes y from x and jpj = C(yjx). Program q computes the value C(xjy)

from x and jqj = C(C(xjy)jx). Program r computes the value C(yjx) from

y and jrj = C(C(yjx)jy). To separate the di�erent binary programs we

have to encode delimiters. This takes an extra additional number of bits

logarithmic in the two smallest length of elements p; q; r. This extra log

term is absorbed in the additive log term in the statement of the theorem.

The computation is as follows. Everything is executed reversibly apart from

the �nal irreversible erasure.

1. Use p to compute y from x producing garbage bits g(x; y).

2. Copy y, and use one copy of y and g(x; y) to reverse the computation

to x and p. Now we have p; q; r; x; y.

3. Copy x, and use one copy of x and q to compute C(xjy) plus garbage

bits.

4. Use x; y; C(xjy) to dovetail the running of all programs of length

C(xjy) to �nd s, a shortest program to compute x from y. Doing

this, we produce more garbage bits.

3

Which is O(minfC(C(yjx)jy); C(C(xjy)jx)g) = O(log minfC(yjx); C(xjy)g). It has

been shown, [G�acs, 1974], that for some x of each length n we have

log n� log log n � C(C(x)jx);

and for all x of length n we have

C(C(x)jx) � log n + 2 log log n:

17

5. Copy s, and reverse the computations in Steps 4, 3, canceling the extra

copies and all garbage bits. Now we have p; q; r; s; x; y.

6. Copy y, and use this copy to compute the value C(yjx) from r and y

producing garbage bits.

7. Use x; y; C(yjx), to dovetail the running of all programs of length

C(yjx) to obtain a copy of p, the shortest program to compute y from

x, producing more garbage bits.

8. Delete a copy of p and reverse the computation of Steps 7, 6 canceling

the super
uous copy of y and all garbage bits. Now we are left with

x; y; r; s; q.

9. Compute from y and s a copy of x and cancel a copy of x. Reverse

the computation. Now we have y; r; s; q.

10. Erase s; r; q irreversibly.

We started out with additional shortest programs p; q; r apart from x. We

have irreversibly erased the shortest programs s; q; r, where jsj = C(xjy),

leaving only y. This proves the claim. 2

Note that all bits supplied in the beginning to the computation, apart

from input x, as well as all bits irreversibly erased at the end of the compu-

tation, are random bits. This is because we supply and delete only shortest

programs, and a shortest program p satis�es C(p) � jpj, that is, it is maxi-

mally random.

Claim 2 E(x; y) � C(yjx) + C(xjy).

Proof. To compute y from x we must be given a program to do so to

start out with. By de�nition the shortest such program has length C(yjx).

Assume the computation from x to y produces g(x; y) garbage bits. Since

the computation is reversible we can compute x from y and g(x; y). Conse-

quently, jg(x; y)j � C(xjy) by de�nition [Zurek, 1989]. To end the compu-

tation with y alone we therefore must irreversibly erase g(x; y) which is at

least C(xjy) bits. 2

Together Claims 1, 2 prove the theorem. 2

Erasing a record x is actually a computation from x to the empty string

�. Hence its irreversibility cost is E(x; �), and given by a corollary to Theo-

rem 2.

18

Corollary 2 Up to a logarithmic additive term, the irreversible cost of era-

sure is E(x; �) = C(x).

4 Trading Time and Space for Energy

In order to erase a record x, Corollary 2 actually requires us to have, apart

from x, a program p of length C(C(x)jx) for computing C(x), given x. The

precise bounds are C(x) � E(x; �) � C(x) + 2C(C(x)jx). This optimum

is not e�ective, it requires that p be given in some way. But we can use

the same method as in the proof of Theorem 2, by compressing x using

some time bound t. Using space bounds is entirely analogous. Instead of

the superscript `t', we can use everywhere `s', where `s(�)' denotes a space

bound, or `t; s' to denote simultaneous time and space bounds.

First we need some de�nitions as in [Li and Vit�anyi, 1993], page 378

and further. Because now the time bounds are important we consider the

universal Turing machine U to be the machine with two work tapes which

can simulate t steps of a multitape Turing machine T in O(t log t) steps. If

some multitape Turing machine T computes x in time t from a program p,

then U computes x in time O(t log t) from p plus a description of T .

De�nition 4 Let C

t

(xjy) be the minimal length of binary program (not

necessarily reversibly) for the two work tape universal Turing machine U

computing x given y (for free) in time t. Formally,

C

t

(xjy) = min

p2N

fjpj : U(hp; yi) = x in � t(jxj) stepsg:

C

t

(xjy) is called the t-time-limited conditional Kolmogorov complexity of

x given y. The unconditional version is de�ned as C

t

(x) := C

t

(x; �). A

program p such that U(p) = x in � t(jxj) steps and jpj = C

t

(x) is denoted

as x

�

t

.

Note that with C

t

T

(xjy) the conditional t-time-limited Kolmogorov com-

plexity with respect to Turing machine T , for all x; y, C

t

0

(xjy) � C

t

T

(xjy) +

c

T

, where t

0

= O(t log t) and c

T

is a constant depending on T but not on x

and y.

This C

t

(�) is the standard de�nition of time-limited Kolmogorov com-

plexity. However, in the remainder of the paper we always need to use

reversible computations. Fortunately, in [Bennett, 1989] the following is

shown (using the simulations refered to in Section 3).

19

Lemma 5 For any � > 0, ordinary multitape Turing machines using T time

and S space can be simulated by reversible ones using time O(T) and space

O(ST

�

) (or in O(T) time and space O(S + T)).

To do e�ective erasure of compacted information, we must at the start of the

computation provide a time bound t. Typically, t is a recursive function and

the complexity of its description is small, say O(1). However, in Theorem 3

we allow for very large running times in order to obtain smaller C

t

(�) values.

(In the theorem below t need not necessarily be a recursive function t(jxj),

but can also be used nonuniformly. This leads to a stronger result.)

Theorem 3 (Irreversibility cost of e�ective erasure) If t(jxj) � jxj

is a time bound which is provided at the start of the computation, then eras-

ing an n bit record x by an otherwise reversible computation can be done in

time (number of steps) O(2

jxj

t(jxj)) at irreversibility cost C

t

(x)+2C

t

(tjx)+

4 logC

t

(tjx) bits. (Typically we consider t as some standard explicit time

bound and the last two terms adding up to O(1).)

Proof. Initially we have in memory input x and a program p of length

C

t

(t; x) to compute reversibly t from x. To separate binary x and binary p

we need to encode a delimiter in at most 2 logC

t

(tjx) bits.

1. Use x and p to reversibly compute t. Copy t and reverse the compu-

tation. Now we have x, p and t.

2. Use t to reversibly dovetail the running of all programs of length less

than x to �nd the shortest one halting in time t with output x. This

is x

�

t

. The computation has produced garbage bits g(x; x

�

t

). Copy

x

�

t

, and reverse the computation to obtain x erasing all garbage bits

g(x; x

�

t

). Now we have x; p; x

�

t

; t in memory.

3. Reversibly compute t from x by p, cancel one copy of t, and reverse

the computation. Now we have x; p; x

�

t

in memory.

4. Reversibly cancel x using x

�

t

by the standard method, and then erase

x

�

t

and p irreversibly.

2

Corollary 3 The irreversibility cost satis�es

E(x; �) � lim

t!1

C

t

(x) = C(x);

20

and by Theorem 2 up to an additional logarithmic term

E(x; �) = C(x):

Essentially, by spending more time we can reduce the thermodynamic

cost of erasure of x

�

t

to its absolute minimum. In the limit we spend the

optimal value C(x) by erasing x

�

, since lim

t!1

x

�

t

= x

�

. This suggests the

existence of a trade-o� hierarchy between time and energy. The longer one

reversibly computes on a particular given string to perform �nal irreversible

erasures, the less bits are erased and energy is dissipated. This intuitive as-

sertion will be formally stated and rigourously proved below as Theorem 4:

for each length n we will construct a particular string which can be com-

pressed more and more by a sequence of about

p

n=2 growing time bounds.

We proceed through a sequence of related `irreversibility' results.

De�nition 5 Let UR be the reversible version of the two worktape univer-

sal Turing machine, simulating the latter in linear time by Lemma 5. Let

E

t

(x; y) be the minimum irreversibility cost of an otherwise reversible com-

putation from x to y in time t. Formally,

E

t

(x; y) = min

p;q2N

fjpj+ jqj : UR(hx; pi) = hy; qi in � t(jxj) stepsg:

Because of the similarity with Corollary 3 (E(x; �) is about C(x)) one is

erroneously led to believe that E

t

(x; �) = C

t

(x) up to a log additive term.

However, the time-bounds introduce many di�erences. To reversibly com-

pute x

�

t

we may require (because of the halting problem) at least O(2

jxj

t(jxj))

steps after having decoded t, as indeed is the case in the proof of Theorem 3.

In contrast, E

t

(x; �) is about the number of bits erased in an otherwise re-

versible computation which uses at most t steps. Therefore, as far as we

know possibly C

t

(x) � E

t

0

(x; �) implies t

0

=
(2

jxj

t(jxj)). More concretely,

it is easy to see that for each x and t(jxj) � jxj,

E

t

(x; �) � C

t

(x) � E

t

0

(x; �)=2; (1)

with t

0

(jxj) = O(t(jxj). Namely, the left inequality follows since E

t

(x; �)

means that we can reversibly compute from hx; pi to h�; qi in t(jxj) time

where jpj+ jqj = E

t

(x; �). But this means that we can compute x from q in

t(jxj) time (reversing the computation) and therefore C

t

(x) � jqj. The right

inequality follows by the following scenario. At the start of the computa-

tion provide apart from input x also (irreversibly) x

�

t

, the shortest binary

21

program computing x in at most t(jxj) steps, so jx

�

t

j = C

t

(x). From x

�

t

reversibly compute a copy of x in O(t(jxj)) time, Lemma 5, cancel the input

copy of x, reverse the computation to obtain x

�

t

again, and irreversibly erase

x

�

t

.

Theorem 3 can be restated in terms of E

t

(�) as

E

t

0

(x; �) � C

t

(x) + 2C

t

(tjx) + 4 logC

t

(tjx);

with t

0

(jxj) = O(2

jxj

t(jxj)). Comparing this to the righthand inequality

of Equation 1 we have improved the upper bound on erasure cost at the

expense of increasing erasure time. However, these bounds only suggest but

do not actually prove that we can exchange irreversibility for time. Below,

we establish rigorous time-space-irreversibility trade-o�s.

5 Trade-o� Hierarchy

The following result establishes the existence of a trade-o� hierarchy of time

versus irreversibility for exponential time computations.

4

The proof pro-

ceeds by a sequence of diagonalizations which just �t in the exponential time

bounds.

Theorem 4 (Irreversibility-time trade-o� hierarchy) For every large

enough n there is a string x of length n and a sequence of m =

1

2

p

n time

4

A super�cially similar but quite di�erent result for the time-limited so-called uniform

Kolmogorov complexity variant C(x; jxj) was given in [Daley, 1973b], but is too weak for

our purpose. There the time bound t denotes decompression time while in E

t

0

(x; �) the

time bound t

0

relates to compression time. Moreover, the result shows a hierarchy in the

sense that for certain classes of unbounded functions ff

i

: i 2 Ng (satisfying 2f

i+1

(n) �

f

i

(n)), there exists a recursive in�nite sequence !

1

!

2

: : : and a recursive sequence of time

bounds ft

i

: i 2 Ng, such that for each i � 1 there are in�nitely many n such that

C

t

i

(!

1

: : : !

n

;n) > f

i

(n) while for all n we have C

t

i+1

(!

1

: : : !

n

; n) � f

i

(n). See also

Exercise 7.7 in [Li and Vit�anyi, 1993]. Note that the set of in�nitely many n in the

statement above may constitute a di�erent disjoint set for each i. Hence, for each pair

of distinct time bounds there are initial segments of the single in�nite sequence which

exhibit di�erent compressions, but not necessarily the same initial segment exhibiting

pairwise di�erent compressions for more than two time bounds simultaneously, let alone

a

p

n=2 level time-erasure hierarchy for single �nite sequences of each length n as in

Theorem 4. Even if it could be shown that there are in�nitely many initial segments,

each of which exhibits maximally many pairwise di�erent compressions for di�erent time

bounds, it would still only result in a log n level time-decompression hierarchy for sequences

of in�nitely many lengths n. In contrast, the proof of Theorem 4 also yields the analogous

p

n=2 level time-decompression hierarchy for Kolmogorov complexity.

22

functions t

1

(n) < t

2

(n) < : : : < t

m

(n), such that

E

t

1

(x; �) > E

t

2

(x; �) > : : : > E

t

m

(x; �):

Proof. Given n, we will construct a string x of length n satisfying the

requirements of the theorem. String x will be constructed in m steps, and x

will contain m blocks x

1

; x

2

; : : : ; x

m

each of length b = n=m. The idea is to

make these blocks harder and harder to compress. De�ne, for 1 � k � m,

t

k

(n) = 2

kn

:

In our construction, we will enforce the following things:

� All m blocks can be compressed i� given enough time. Precisely, x

k

can be compressed to O(log n) size given t

k+1

(n) time, but given t

k

(n)

time x

k

cannot be compressed at all.

� No \collective compression". If x

k

cannot be compressed in time t then

the concatenation x

k

: : : x

m

, as a single string, cannot be compressed

in time t either. In the construction, we will use only pre�xes from

strings in set S

k

which consists of strings that are not compressible in

time t

k

(n).

Algorithm to Construct x

Initialize: Set S

0

:= f0; 1g

n

, the set of all strings of length n, and

t

0

(n) := 0 and k := 0.

Repeat For k + 1 := 1; : : : ;m: =� Starting the (k+1)st repetition, the

�rst k blocks x

1

; : : : ; x

k

of x have already been constructed and in the

kth repetition we have constructed a set S

k

consisting of strings of

length n � kb, no element of which can be computed from programs

of length less than n� kb� 2k in time t

k

(n). Furthermore,

2

n�kb

� jS

k

j � 2

n�kb�2k

: � =

Construct x

k+1

from S

k

as follows. Let s be the lexicographic �rst

string of length b such that

jfs

0

: ss

0

2 S

k

gj � 2

n�(k+1)b�2k

: (2)

Such a s exists by Claim 3. Set x

k+1

:= s.

23

Construct S

k+1

from S

k

and x

k+1

as follows. Let S

0

k

= fs

0

:

x

k+1

s

0

2 S

k

g. We have jS

0

k

j � 2

n�(k+1)b�2k

by Equation 2. Simulate

each of the programs of length less than n � (k + 1)b � 2(k + 1) for

t

k+1

(n)=2 steps. Set S

k+1

to be the set of all strings s

0

of length

n � (k + 1)b such that s

0

2 S

0

k

and s

0

is not an output of any of

the above simulations. We have jS

k+1

j � 2

n�(k+1)b�2(k+1)

. Trivially,

2

n�(k+1)b

� jS

k+1

j. This �nishes the description of the algorithm.

Claim 3 There is a string s of length b such that

jfs

0

: ss

0

2 S

k

gj � 2

n�(k+1)b�2k

:

Proof. If the claim is false, then the number of elements in S

k

must

be less than

2

b

2

n�(k+1)b�2k

= 2

n�kb�2k

;

which is a contradiction. 2

Claim 4 For each k = 1; : : : ;m, the sequence of blocks x

1

; : : : ; x

k

can be

computed by a O(log n) sized program in time t

k+1

(n)=n.

Proof. Using the values of n; b; k and a constant size program we

can execute the Construction algorithm up to and including the (k � 1)th

repetition in at most

k�1

X

i=1

2

n�ib�2i

t

i

(n) � 2

n�b�2

k�1

X

i=1

2

ni

� 2

n�2

p

n�2

2

n(k�1)+1

� 2

nk

=2n = t

k

(n)=2n

steps. Subsequently, we can �nd x

k

in at most njS

k�1

j � t

k

(n)=2n steps.

Therefore, in a total number of steps not exceeding t

k

(n)=n, we can compute

the list x

1

; : : : ; x

k

by a O(log n) size program. 2

Claim 5 Let n; b;m; k be as above. Then, E

t

k

(x; �) � n� kb+O(log n).

Proof. Using Claim 4, we can compute x from an O(log n) bits program

and x

k+1

; : : : x

m

(� n� kb+O(log n) bits), collectively denoted as program

p, in t

k

(n)=n time. Trivially, we can compress x using an a program q (con-

taining n;m; k) with jqj = O(log n) to p in t

k

(n)=n time. Using methods

developed earlier in this paper, we can erase x in an otherwise reversible

computation irreversibly erasing only jpj = n� kb+O(log n) bits and irre-

versibly providing only jqj bits, in t

k

(n) time, as follows. By Lemma 5 the

overhead incurred by making these computations reversible is only linear.

24

1. Reversibly compute p from x and q, with garbage g(x; p), usingO(t

k

(n)=n)

steps. Now we have p; g(x; p).

2. Copy p, then reverse the computation of Item 1, absorbing the garbage

bits g(x; p), using at most O(t

k

(n)=n) steps. Now we have x; p; q.

3. Reversibly compute from p to x, with garbage g(p; x); then cancel a

copy of x, using at most O(t

k

(n)=n) time. Now we have x; q; g(p; x).

4. Reverse the computation of Item 3, absorbing the garbage bits g(p; x),

leaving only p; q, then remove p and q irreversibly, using at most time

t

k

(n)=n).

In total, above erasing procedure uses O(t

k

(n)=n) steps and erases jpj+ jqj

bits irreversibly and provides jqj bits irreversibly. This proves the claim. 2

Claim 6 Let n; b;m; k be as above. Then, E

t

k

(x; �) � n� kb� 2k� 7 log n.

Proof. Suppose the contrary, and we can reversibly compute h�; qi

from hx; pi, with

jqj � E

t

k

(x; �) < n� kb� 2k � 7 log n:

Then, reversing the computation, in t

k

(n) time a program q of size at most

n� kb� 2k � 7 log n can reversibly compute x possibly together with (here

irrelevant) garbage p. Therefore, this program q plus descriptions of n;m; k

of total size at most n�kb�2k�log n can (possibly non-reversible) compute

x

k+1

: : : x

m

in S

k

in time t

k

(n). But this contradicts the de�nition that no

string in S

k

can be (non-reversible) computed in time t

k

(n) by a program

of less than n� kb� 2k bits. 2

By Claim 5 using (k + 1) for k, Claim 6, and the assumption that b =

2

p

n, we have for all k such that 1 � k < m,

E

t

k

(x; �) > E

t

k+1

(x; �):

The theorem is proven. 2

We have demonstrated our theorem for the case when y = �. For y 6= �,

it is easy to see that the proof still holds if we simply require that jx

k

j � jyj

2

for each k and make sure y is always an extra input when we simulate all the

short programs to construct x. Therefore, the theorem can be generalized

to the following.

25

Corollary 4 For every y and every large enough n there is a string x of

length n and a sequence of m =

1

2

p

n time functions t

1

(n) < t

2

(n) < : : : <

t

m

(n), such that

E

t

1

(x; y) > E

t

2

(x; y) > : : : > E

t

m

(x; y):

Various di�erent information distances and thermodynamic cost mea-

sures can be considered. For example, considering only the maximum of

the irreversibly provided bits or initial program and the irreversibly erased

bits or �nal garbage. Following Landauer, [Landauer, 1961], we may for the

energy-dissipation consider only the number of irreversibly erased bits. All

such measures and also time-limited Kolmogorov complexities exhibit the

same or very similar time-irreversibility trade-o�s by the above proof. The

result is common to all reasonable cost measures, and the reader is referred

to [Bennett et al., 1993] for the �ne distictions among them and for their

physical meanings.

6 Extreme Trade-o�s

While the time functions in Theorem 4 are much too large for practical

computations, they are much smaller than the times required to squeeze

the irreversibility out of those computations most resistant to being made

reversible. The following blow-up Lemma 6, [Barzdin', 1968], was one of the

very �rst results in `time-limited' Kolmogorov complexity.

De�nition 6 Let set A � N . Its characteristic sequence � = �

1

�

2

: : : is

de�ned by �

i

= 1 if i 2 A and 0 otherwise (all i 2 N). If A is recursively

enumerable (r.e. for short), then we call � an r.e. sequence.

Lemma 6 (i) There is an r.e. sequence � such that for each total recursive

function t there is a constant c

t

(0 < c

t

< 1), such that for each n we have

C

t

(�

1

: : : �

n

jn) � c

t

n.

(ii) Each r.e. sequence � satis�es C(�

1

: : : �

n

) � 2 log n + c for all n,

where c is a constant dependent on � (but not on n).

It follows from Equation 1 that E

t

(x; �) � C

t

(x) for all time bounds t.

Then, by Lemma 6 (i), there is a sequence � = �

1

�

2

: : : such that for

each total recursive time bound t there is a constant c

t

> 0 such that

E

t

(�

1

: : : �

n

; �) > c

t

n.

26

However, for a large enough nonrecursive time bound T (like T (n) =

1) we have E

T

(�

1

: : : �

n

) = C(�

1

: : : �

n

), for all n. Then, by Lemma 6

(ii) all such sequences � = �

1

�

2

: : : satisfy E

T

(�

1

: : : �

n

) � 2 log n + c,

for all n (with c > 0 a constant depending only on �). These two facts

together demonstrate that with respect to the irreversible erasure of certain

strings exponential energy dissipation savings are sometimes possible when

any recursive time bound whatsoever available for the erasure procedure is

changed to a large enough nonrecursive time bound.

Theorem 5 There is a r.e. sequence � and some (nonrecursively) large

time bound T , such that for each total recursive time bound t, for each

initial segment x of �

E

t

(x; �) > c

t

2

E

T

(x;�)=2

;

where c

t

> 0 is a constant depending only on t and �.

The trade-o� can be slightly improved for a restricted set of in�nitely

many initial segments of � in the sense of dropping the dependency of the

constant c

t

on t. Using a result [Daley, 1973a], page 306 last line, instead of

Barzdin's Lemma 6 (i), changes the theorem to:

\There is an r.e. sequence � and some (nonrecursively) large time bound

T , such that for each total recursive time bound t, for in�nitely many initial

segments x of �:

E

t

(x; �) > c2

E

T

(x;�)=2

;

where c is a constant depending only on �."

In other situations the trade-o� can be even more extreme. We just

mention the results and do not explain the esotheric notions involved but

refer the interested reader to the cited literature. For so-called Mises-Wald-

Church random binary sequences ! = !

1

!

2

: : : where the admissible place-

selection rules are restricted to the total recursive functions (instead of the

more common de�nition using the partial recursive functions) Daley has

shown the following. (We express his results in the Kolmogorov complexity

variant called uniform complexity he uses. In [Li and Vit�anyi, 1993], Exer-

cise 2.42, the uniform complexity of x is denoted as C(x; l(x)))

There are sequences ! as described above such that for each unbounded

total recursive function f (no matter how small) we have C(!

1

: : : !

n

;n) <

f(n) for all large enough n, [Daley, 1975], given as Exercise 2.47 Item (c) in

[Li and Vit�anyi, 1993].

27

Moreover, for all such ! and each total unbounded nondecreasing time

bound t (no matter how great) there are in�nitely many n such that C

t

(!

1

: : : !

n

;n) �

n=2, [Daley, 1973a], given as Exercise 7.6 in [Li and Vit�anyi, 1993].

De�ning a uniform energy dissipation variant E

u

(�; �) similar to De�-

nitions 3, 5 but using the uniform Kolmogorov complexity variant, these

results translate in the now familiar way to the statement that the energy-

dissipation can be reduced arbitrarily computably far by using enough (that

is, a noncomputable amount of) time.

Lemma 7 There is a sequence ! and a (nonrecursively) large time bound

T , such that for each unbounded total recursive function f , no matter how

large, for each total recursive time bound t, there are in�nitely many n for

which

E

t

u

(!

1

: : : !

n

; �) > f(E

T

u

(!

1

: : : !

n

; �)):

Acknowledgements

We thank the referees for their valuable comments of how to improve presen-

tation, and we thank one of the referees for the interesting idea to investigate

reversible simulations and extreme trade-o�s.

References

[Barzdin', 1968] Y.M. Barzdin', Complexity of programs to determine

whether natural numbers not greater than n belong to a recursively

enumerable set, Soviet Math. Dokl.,9 (1968), 1251-1254.

[Bennett, 1973] C.H. Bennett. Logical reversibility of computation. IBM J.

Res. Develop., 17:525{532, 1973.

[Bennett, 1982] C.H. Bennett. The thermodynamics of computation|a re-

view. Int. J. Theoret. Phys., 21(1982), 905-940.

[Bennett, 1989] C.H. Bennett. Time-space trade-o�s for reversible compu-

tation. SIAM J. Comput., 18(1989), 766-776.

[Bennett et al., 1993] C.H. Bennett, P. G�acs, M. Li, P.M.B. Vit�anyi and

W.H Zurek, Thermodynamics of computation and information distance

Proc. 25th ACM Symp. Theory of Computation. ACM Press, 1993, 21-

30.

28

[Daley, 1973a] R.P. Daley, Minimal program complexity of sequences with

restricted resources, Inform. Contr., 23(1973), 301-312.

[Daley, 1973b] R.P. Daley, An example of information and computation-

resource trade-o�, J. Assoc. Comput. Mach., 20:4(1973), 687-695.

[Daley, 1975] R.P. Daley, Minimal-program complexity of pseudo-recursive

and pseudo-random sequences, Math. Systems Theory, 9(1975), 83-94.

[Deutsch, 1985] D. Deutsch, Quantum theory, the Church-Turing principle

and the universal quantum computer. Proc. Royal Society London. Vol.

A400(1985), 97-117.

[Feynman, 1985] R. Feynman. Quantum mechanical computers. Founda-

tions of Physics, 16(1986), 507-531. (Originally published in Optics

News, February 1985.)

[G�acs, 1974] P. G�acs. On the symmetry of algorithmic information. Soviet

Math. Dokl., 15:1477{1480, 1974. Correction, Ibid., 15:1480, 1974.

[Fredkin & To�oli, 1982] E. Fredkin and T. To�oli. Conservative logic. Int.

J. Theoret. Phys., 21(1982),219-253.

[Keyes, 1988] R.W. Keyes, IBM J. Res. Dev., 32(1988), 24-28.

[Landauer, 1961] R. Landauer. Irreversibility and heat generation in the

computing process. IBM J. Res. Develop., 5:183{191, 1961.

[Landauer, 1988] R. Landauer, Dissipation and noise immunity in compu-

tation and communication, Nature, 335(1988), 779-784.

[Lecerf, 1963] Y. Lecerf, Machines de Turing r�eversibles. R�ecursive insolu-

bilit�e en n 2 N de l'�equation u = �

n

, o�u � est un \isomorphisme de

codes", Comptes Rendus, 257(1963), 2597-2600.

[Levine and Sherman, 1990] R.Y. Levine and A.T. Sherman, A note on Ben-

nett's time-space trade-o� for reversible computation, SIAM J. Com-

put., 19:4(1990), 673-677.

[Li and Vit�anyi, 1992] M. Li and P.M.B. Vit�anyi, Theory of thermodynam-

ics of computation, Preliminary Proc. Physics of Computation Work-

shop, held in October 2-4, 1992, Dallas, Texas, (unpublished), and as

extended abstract with the same title in the published record of that

29

meeting, IEEE Proc. Physics and Computation Workshop, IEEE Com-

puter Society Press, 1992, pp. 42-46.

[Li and Vit�anyi, 1993] M. Li and P.M.B. Vit�anyi. An Introduction to Kol-

mogorov Complexity and Its Applications. Springer-Verlag, New York,

1993.

[Merkle, 1993] R.C. Merkle, Reversible electronic logic using switches, Nan-

otechnology, 4(1993), 21-40.

[Proc. PhysComp, 1981, 1992, 1994] Proc. 1981 Physics and Computation

Workshop. Int. J. Theoret. Phys., 21(1982). Proc. IEEE 1992 Physics

and Computation Workshop. IEEE Computer Society Press, 1992.

Proc. IEEE 1994 Physics and Computation Workshop. IEEE Com-

puter Society Press, 1994.

[Shor, 1994] Shor, P., Algorithms for quantum computation: Discrete log

and factoring, Proc. 35th IEEE Symposium on Foundations of Com-

puter Science, 1994, 124-134.

[Burks, 1966] J. von Neumann. Theory of Self-Reproducing Automata. A.W.

Burks, Ed., Univ. Illinois Press, Urbana, 1966.

[Zurek, 1989] W.H. Zurek. Thermodynamic cost of computation, algorith-

mic complexity and the information metric. Nature, 341:119{124, 1989.

30

