The Google Similarity Distance

Rudi L. Ciibrarsi and Paul M.B. Vitányi

Abstract—Words and phrases acquire meaning from the way they are used in society, from their relative semantics to other words and phrases. For computers, the equivalent of “society” is “database,” and the equivalent of “use” is “a way to search the database.” We present a new theory of similarity between words and phrases based on information distance and Kolmogorov complexity. To fix thoughts, we use the World Wide Web (WWW) as the database, and Google as the search engine. The method is also applicable to other search engines and databases. This theory is then applied to construct a method to automatically extract similarity, the Google similarity distance, of words and phrases from the WWW using Google page counts. The WWW is the largest database on earth, and the context information entered by millions of independent users averages out to provide automatic semantics of useful quality. We give applications in hierarchical clustering, classification, and language translation. We give examples to distinguish between colors and numbers, cluster names of paintings by 17th century Dutch masters and names of books by English novelists, the ability to understand emergencies and primes, and we demonstrate the ability to do a simple automatic English-Spanish translation. Finally, we use the WordNet database as an objective baseline against which to judge the performance of our method. We conduct a massive randomized trial in binary classification using support vector machines to learn categories based on our Google distance, resulting in an a mean agreement of 87 percent with the expert crafted WordNet categories.

Index Terms—Accuracy comparison with WordNet categories, automatic classification and clustering, automatic meaning discovery using Google, automatic relative semantics, automatic translation, dissimilarity semantic distance, Google search, Google distribution via page hit counts, Google code, Kolmogorov complexity, normalized compression distance (NCD), normalized information distance (NID), normalized Google distance (NGD), meaning of words and phrases extracted from the Web, parameter-free data mining, universal similarity metric.

1 INTRODUCTION

Objects can be given literally, like the literal four-letter genome of a mouse or the literal text of War and Peace by Tolstoy. For simplicity, we take it that all meaning of the object is represented by the literal object itself. Objects can also be given by name, like “the four-letter genome of a mouse” or “the text of War and Peace by Tolstoy.” There are also objects that cannot be given literally, but only by name, and that acquire their meaning from their contexts in background common knowledge in humankind, like “home” or “red.” To make computers more intelligent, one would like to represent meaning in computer-digestable form. Long-term and labor-intensive efforts like the Cyc project [22] and the WordNet project [33] try to establish semantic relations between common objects, or, more precisely, names for those objects. The idea is to create a semantic Web of such vast proportions that rudimentary intelligence, and knowledge about the real world, spontaneously emerge. This comes at the great cost of designing structures capable of manipulating knowledge and entering high quality contents in these structures by knowledgeable human experts. While the efforts are long-running and large scale, the overall information entered is minute compared to what is available on the WWW.

The rise of the WWW has enticed millions of users to type in trillions of characters to create billions of Web pages of, on average, low-quality contents. The sheer mass of the information about almost every conceivable topic makes it

• The authors are with CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands. E-mail: {cilibrar, paulv}@cwi.nl.

Manuscript received 12 Apr. 2005; revised 12 Dec. 2005; accepted 12 Sept. 2006; published online 18 Jan. 2007.
For information on obtaining reprints of this article, please send e-mail to: tkde@computer.org, and reference IEEECS Log Number TKDE-0143-0405.

likely that extremes will cancel and the majority or average is meaningful in a low-quality approximate sense. We devise a general method to tap the amorphous low-grade knowledge available for free on the WWW, typed in by local users aiming at personal gratification of diverse objectives, and, yet, globally achieving what is effectively the largest semantic electronic database in the world. Moreover, this database is available for all by using any search engine that can return aggregate page-count estimates for a large range of search-queries, like Google.

Previously, we and others developed a compression-based method to establish a universal similarity metric among objects given as finite binary strings [2], [25], [26], [7], [8], [39], [40], which was widely reported [20], [21], [13]. Such objects can be genomes, music pieces in MIDI format, computer programs in Ruby or C, pictures in simple bitmap formats, or time sequences such as heart rhythm data. This method is feature-free in the sense that it does not analyze the files looking for particular features; rather, it analyzes all features simultaneously and determines the similarity between every pair of objects according to the most dominant shared feature. The crucial point is that the method analyzes the objects themselves. This precludes comparison of abstract notions or other objects that do not lend themselves to direct analysis, like emotions, colors, Socrates, Plato, Mike Bonanno, and Albert Einstein. While the previous method that compares the objects themselves is particularly suited to obtain knowledge about the similarity of objects themselves, irrespective of common beliefs about such similarities, here, we develop a method that uses only the name of an object and obtains knowledge about the similarity of objects, a quantified relative Google semantics, by tapping available information generated by multitudes of Web users. Here, we are reminded of the
words of Rumsfeld [31] “A trained ape can know an awful lot / Of what is going on in this world / Just by punching on his mouse / For a relatively modest cost!” In this paper, the Google semantics of a word or phrase consists of the set of Web pages returned by the query concerned.

1.1 An Example
While the theory we propose is rather intricate, the resulting method is simple enough. We give an example: At the time of doing the experiment, a Google search for “horse” returned 46,700,000 hits. The number of hits for the search term “rider” was 12,200,000. Searching for the pages where both “horse” and “rider” occurred gave 2,630,000 hits, and Google indexed 8,058,044,651 Web pages. Using these numbers in (6), we derive below, with \(N = 8,058,044,651 \), a Normalized Google Distance between the terms “horse” and “rider” as follows:

\[
\text{NGD}(\text{horse}, \text{rider}) \approx 0.443.
\]

In the sequel of the paper, we argue that the NGD is a normed semantic distance between the terms in question, usually (but not always, see below) in between 0 (identical) and 1 (unrelated), in the cognitive space invoked by the usage of the terms on the WWW as filtered by Google. Because of the vastness and diversity of the Web, this may be taken as related to the current use of the terms in society. We did the same calculation when Google indexed only one-half of the number of pages: 4,285,199,774. It is instructive that the probabilities of the used search terms did not change significantly over this doubling of pages, with number of hits for “horse” equal 23,700,000, for “rider” equal 6,270,000, and for “horse, rider” equal to 1,180,000. The NGD(\(\text{horse}, \text{rider} \)) we computed in that situation was \(\approx 0.460 \). This is in line with our contention that the relative frequencies of Web pages containing search terms gives objective information about the semantic relations between the search terms. If this is the case, then the Google probabilities of search terms and the computed NGDs should stabilize (become scale invariant) with a growing Google database.

1.2 Related Work
There is a great deal of work in cognitive psychology [37], linguistics, and computer science about using word (phrases) frequencies in text corpora to develop measures for word similarity or word association, partially surveyed in [34], [36], going back to at least [35]. One of the most successful is Latent Semantic Analysis (LSA) [37], which has been applied in various forms in a great number of applications. We discuss LSA and its relation to the present approach in the Appendix. As with LSA, many other previous approaches of extracting correlations from text documents are based on text corpora that are many orders of magnitude smaller, are in local storage, and are based on assumptions that are more refined than what we propose. In contrast, [11], [1], and the many references cited there, use the Web and Google counts to identify lexicosyntactic patterns or other data. Again, the theory, aim, feature analysis, and execution are different from ours and cannot be meaningfully compared. Essentially, our method below automatically extracts semantic relations between arbitrary objects from the Web in a manner that is feature-free, up to the search-engine used, and computationally feasible. This seems to be a new direction altogether.

1.3 Outline
The main thrust is to develop a new theory of semantic distance between a pair of objects, based on (and unavoidably biased by) a background contents consisting of a database of documents. An example of the latter is the set of pages constituting the WWW. Similarity relations between pairs of objects are distilled from the documents by just using the number of documents in which the objects occur, singly and jointly (irrespective of location or multiplicity). For us, the Google semantics of a word or phrase consists of the set of Web pages returned by the query concerned. Note that this can mean that terms with different meanings have the same semantics, and that opposites like “true” and “false” often have a similar semantics. Thus, we just discover associations between terms, suggesting a likely relationship. As the Web grows, the Google semantics may become less primitive. The theoretical underpinning is based on the theory of Kolmogorov complexity [27] and is in terms of coding and compression. This allows us to express and prove properties of absolute relations between objects that cannot even be expressed by other approaches. The theory, application, and the particular NGD formula to express the bilateral semantic relations are (as far as we know) not equivalent to any earlier theory, application, and formula in this area. The current paper is a next step in a decade of cumulative research in this area, of which the main thread is [27], [2], [28], [26], [7], [8] with [25], [3] using the related approach of [29]. We first start with a technical introduction outlining some notions underpinning our approach: Kolmogorov complexity, information distance, and the compression-based similarity metric (Section 2). Then, we give a technical description of the Google distribution, the Normalized Google Distance, and the universality of these notions (Section 3). While it may be possible in principle that other methods can use the entire WWW to determine semantic similarity between terms, we do not know of a method that both uses the entire Web, or computationally can use the entire Web, and (or) has the same aims as our method. To validate our method, we therefore cannot compare its performance to other existing methods. Ours is a new proposal for a new task. We validate the method in the following way: by theoretical analysis, by anecdotal evidence in a plethora of applications, and by systematic and massive comparison of accuracy in a classification application compared to the uncontroversial body of knowledge in the WordNet database. In Section 3, we give the theoretic underpinning of the method and prove its universality. In Section 4, we present a plethora of clustering and classification experiments to validate the universality, robustness, and accuracy of our proposal. In Section 5, we test repetitive automatic performance against uncontroversial semantic knowledge: We present the results of a massive randomized classification trial we conducted to gauge the accuracy of our method to the expert knowledge as implemented over the decades in the WordNet database. The preliminary publication [9] of this work on the Web archives was widely reported and discussed, for example, [16], [17]. The actual experimental data can be downloaded from [5]. The method is implemented as an easy-to-use software tool available on the Web [6], available to all.
1.4 Materials and Methods
The application of the theory we develop is a method that is justified by the vastness of the WWW, the assumption that the mass of information is so diverse that the frequencies of pages returned by Google queries averages the semantic information in such a way that one can distill a valid semantic distance between the query subjects. It appears to be the only method that starts from scratch, is feature-free in that it uses just the Web and a search engine to supply contents, and automatically generates relative semantics between words and phrases. A possible drawback of our method is that it relies on the accuracy of the returned counts. As noted in [1], the returned Google counts are inaccurate, and especially if one uses the Boolean OR operator between search terms, at the time of writing. The AND operator we use is less problematic, and we do not use the OR operator. Furthermore, Google apparently estimates the number of hits based on samples, and the number of indexed pages changes rapidly. To compensate for the latter effect, we have inserted a normalizing mechanism in the CompLearn software. Generally though, if search engines have peculiar ways of counting the number of hits, in large part this should not matter, as long as some reasonable conditions hold on how counts are reported. Linguists judge the accuracy of Google counts trustworthy enough: In [23] (see also the many references to related research), it is shown that Web searches for rare two-word phrases correlated well with the frequency found in traditional corpora, as well as with human judgments of whether those phrases were natural. Thus, Google is the simplest means to get the most information. Note, however, that a single Google query takes a fraction of a second, and that Google restricts every IP address to a maximum of (currently) 500 queries per day—although they are cooperative enough to extend this quotient for noncommercial purposes. The experimental evidence provided here shows that the combination of Google and our method yields reasonable results, gauged against common sense (“colors” are different from “numbers”) and against the expert knowledge in the WordNet database. A reviewer suggested downscaling our method by testing it on smaller text corpora. This does not seem useful. Clearly, perfomance will deteriorate with decreasing database size. A thought experiment using the extreme case of a single Web page consisting of a single term suffices. Practically addressing this issue is begging the question. Instead, in Section 3, we experiment using the extreme case of a single Web page whose contents, and automatically generates relative semantics using subsets of Web pages.

2 Technical Preliminaries
The basis of much of the theory explored in this paper is Kolmogorov complexity. For an introduction and details, see the textbook [27]. Here, we give some intuition and notation. We assume a fixed reference universal programming system. Such a system may be a general computer language like LISP or Ruby, and it may also be a fixed reference universal Turing machine in a given standard enumeration of Turing machines. The latter choice has the advantage of being formally simple and, hence, easy to theoretically manipulate. But, the choice makes no difference in principle, and the theory is invariant under changes among the universal programming systems, provided we stick to a particular choice. We only consider universal programming systems such that the associated set of programs is a prefix code—as is the case in all standard computer languages. The Kolmogorov complexity of a string \(x \) is the length, in bits, of the shortest computer program of the fixed reference computing system that produces \(x \) as output. The choice of computing system changes the value of \(K(x) \) by an additive fixed constant at most. Since \(K(x) \) goes to infinity with \(x \), this additive fixed constant is an ignorable quantity if we consider large \(x \). One way to think about the Kolmogorov complexity \(K(x) \) is to view it as the length, in bits, of the ultimate compressed version from which \(x \) can be recovered by a general decompression program. Compressing \(x \) using the compressor gzip results in a file \(x_g \) with (for files that contain redundancies) the length \(|x_g| < |x| \). Using a better compressor, like PPMZ, results in a file \(x_p \) with (for again appropriately redundant files) \(|x_p| < |x| \). The Kolmogorov complexity \(K(x) \) gives a lower bound on the ultimate value: For every existing compressor, or compressors that are possible but not known, we have that \(K(x) \) is less than or equal to the length of the compressed version of \(x \). That is, \(K(x) \) gives us the ultimate value of the length of a compressed version of \(x \) (more precisely, from which version \(x \) can be reconstructed by a general purpose decompressor), and our task in designing better and better compressors is to approach this lower bound as closely as possible.

2.1 Normalized Information Distance
In [2], we considered the following notion: Given two strings \(x \) and \(y \), what is the length of the shortest binary program in the reference universal computing system such that the program computes output \(y \) from input \(x \), and also output \(x \) from input \(y \)? This is called the information distance and denoted as \(E(x, y) \). It turns out that, up to a negligible logarithmic additive term,

\[
E(x, y) = K(x, y) - \min\{K(x), K(y)\},
\]

where \(K(x, y) \) is the binary length of the shortest program that produces the pair \(x, y \) and a way to tell them apart. This distance \(E(x, y) \) is actually a metric: Up to close precision, we have \(E(x, x) = 0, E(x, y) > 0 \) for \(x \neq y \), \(E(x, y) = E(y, x) \), and \(E(x, y) \leq E(x, z) + E(z, y) \), for all \(x, y, z \). We now consider a large class of admissible distances: All distances (not necessarily metric) that are nonnegative, symmetric, and computable in the sense that, for every such distance \(D \) there is a prefix program that, given two strings \(x \) and \(y \), has binary length equal to the distance \(D(x, y) \) between \(x \) and \(y \). Then,

\[
E(x, y) \leq D(x, y) + c_D,
\]

where \(c_D \) is a constant that depends only on \(D \) but not on \(x, y \), and we say that \(E(x, y) \) minorizes \(D(x, y) \) up to an additive constant. We call the information distance \(E \) universal for the family of computable distances, since the former minorizes every member of the latter family up to an additive constant. If two strings \(x \) and \(y \) are close according to some computable distance \(D \), then they are at least as
close according to distance E. Since every feature in which we can compare two strings can be quantified in terms of a distance, and every distance can be viewed as expressing a quantification of how much of a particular feature the strings do not have in common (the feature being quantified by that distance), the information distance determines the distance between two strings minorizing the dominant feature in which they are similar. This means that, if we consider more than two strings, the information distance between every pair may be based on minorizing a different dominating feature. If small strings differ by an information distance which is large compared to their sizes, then the strings are very different. However, if two very large strings differ by the same (now relatively small) information distance, then they are very similar. Therefore, the information distance itself is not suitable to express true similarity. For that, we must define a relative information distance: We need to normalize the information distance. Such an approach was first proposed in [25] in the context of genomics-based phylogeny and improved in [26] to the one we use here. The normalized information distance (NID) has values between 0 and 1, and it inherits the universality of the information distance in the sense that it minorizes, up to a vanishing additive term, every other possible normalized computable distance (suitably defined). In the same way as before, we can identify the computable normalized distances with computable similarities according to some features, and the NID discovers, for every pair of strings, the feature in which they are most similar, and expresses that similarity on a scale from 0 to 1 (0 being the same and 1 being completely different in the sense of sharing no features). Considering a set of strings, the feature in which two strings are most similar may be a different one for different pairs of strings. The NID is defined by

$$\text{NID}(x, y) = \frac{K(x, y) - \min(K(x), K(y))}{\max(K(x), K(y))}.$$

(2)

It has several wonderful properties that justify its description as the most informative metric [26].

2.2 Normalized Compression Distance

The NID is uncomputable since the Kolmogorov complexity is uncomputable. But, we can use real data compression programs to approximate the Kolmogorov complexities $K(x)$, $K(y)$, and $K(x, y)$. A compression algorithm defines a computable function from strings to the lengths of the compressed versions of those strings. Therefore, the number of bits of the compressed version of a string is an upper bound on Kolmogorov complexity of that string, up to an additive constant depending on the compressor but not on the string in question. Thus, if C is a compressor and we use $C(x)$ to denote the length of the compressed version of a string x, then we arrive at the Normalized Compression Distance:

$$\text{NCD}(x, y) = \frac{C(xy) - \min(C(x), C(y))}{\max(C(x), C(y))}. $$

(3)

where, for convenience, we have replaced the pair (x, y) in the formula by the concatenation xy. This transition raises several tricky problems, for example, how the NCD approximates the NID if C approximates K, see [8], which does not need to concern us here. Thus, the NCD is actually a family of compression functions parameterized by the given data compressor C. The NID is the limiting case, where $K(x)$ denotes the number of bits in the shortest code for x from which x can be decompressed by a general purpose computable decompressor.

3 Theory of Googling for Similarity

Every text corpus or particular user combined with a frequency extractor defines its own relative frequencies of words and phrases usage. In the WWW and Google setting, there are millions of users and text corpora, each with its own distribution. In the sequel, we show (and prove) that the Google distribution is universal for all the individual Web users distributions. The number of Web pages currently indexed by Google is approaching 10^{10}. Every common search term occurs in millions of Web pages. This number is so vast, and the number of Web authors generating Web pages is so enormous (and can be assumed to be a truly representative very large sample from humankind), that the probabilities of Google search terms, conceived as the frequencies of page counts returned by Google divided by the number of pages indexed by Google, approximate the actual relative frequencies of those search terms as actually used in society. Based on this premise, the theory we develop in this paper states that the relations represented by the Normalized Google Distance (6) approximately capture the assumed true semantic relations governing the search terms. The NGD formula (6) only uses the probabilities of search terms extracted from the text corpus in question. We use the WWW and Google, but the same method may be used with other text corpora like the King James version of the Bible or the Oxford English Dictionary and frequency count extractors, or the WWW again and Yahoo as frequency count extractor. In these cases, one obtains a text corpus and frequency extractor-biased semantics of the search terms. To obtain the true relative frequencies of words and phrases in society is a major problem in applied linguistic research. This requires analyzing representative random samples of sufficient sizes. The question of how to sample randomly and representatively is a continuous source of debate. Our contention that the Web is such a large and diverse text corpus, and Google such an able extractor, that the relative page counts approximate the true societal word and phrases usage, starts to be supported by current real linguistics research [38], [23].

3.1 The Google Distribution

Let the set of singleton Google search terms be denoted by S. In the sequel, we use both singleton search terms and doubleton search terms $\{(x, y) : x, y \in S\}$. Let the set of Web pages indexed (possibility of being returned) by Google be Ω. The cardinality of Ω is denoted by $M = |\Omega|$, and, at the time of this writing, $8 \cdot 10^8 \leq M \leq 9 \cdot 10^8$ (and presumably greater by the time of reading this). Assume that, a priori, all Web pages are equi-probable, with the probability of being returned by Google being $1/M$. A subset of Ω is called an event. Every search term x usable by Google defines a singleton Google event $x \subseteq \Omega$ of Web pages that contain an occurrence
of x and are returned by Google if we do a search for x. Let L : Ω → [0, 1] be the uniform mass probability function. The probability of an event x is L(x) = |x|/M. Similarly, the doubleton Google event x ∩ y ⊆ Ω is the set of Web pages returned by Google if we do a search for pages containing both search term x and search term y. The probability of this event is L(x ∩ y) = |x ∩ y|/M. We can also define the other Boolean combinations: ¬x = Ω \ x and x ∪ y = ¬(¬x ∩ ¬y), each such event having a probability equal to its cardinality divided by M. If e is an event obtained from the basic events x, y, ..., corresponding to basic search terms x, y, ..., by finitely many applications of the Boolean operations, then the probability L(e) = |e|/M.

3.2 Google Semantics

Google events capture, in a particular sense, all background knowledge about the search terms concerned available (to Google) on the Web.

The Google event x, consisting of the set of all Web pages containing one or more occurrences of the search term x, thus embodies, in every possible sense, all direct context in which x occurs on the Web. This constitutes the Google semantics of the term.

Remark 1. It is, of course, possible that parts of this direct contextual material link to other Web pages in which x does not occur and thereby supply additional context. In our approach, this indirect context is ignored. Nonetheless, indirect context may be important and future refinements of the method may take it into account.

3.3 The Google Code

The event x consists of all possible direct knowledge on the Web regarding x. Therefore, it is natural to consider code words for those events as coding this background knowledge. However, we cannot use the probability of the events directly to determine a prefix code, or, rather, the underlying information content implied by the probability. The reason is that the events overlap and, hence, the summed probability exceeds 1. By the Kraft inequality [12], this prevents a corresponding set of code-word lengths. The solution is to normalize: We use the probability of the Google events to define a probability mass function over the set \{x, y : x, y ∈ S\} of Google search terms, both singleton and doubleton terms. There are |S| singleton terms, and \(\binom{|S|}{2}\) doubletons consisting of a pair of nonidentical terms. Define

\[N = \sum_{\{x, y\} \subseteq S} |x \cap y|, \]

counting each singleton set and each doubleton set (by definition unordered) once in the summation. Note that this means that, for every pair \{x, y\} ⊆ S, with x ≠ y, the Web pages x ∈ x ∩ y are counted three times: once in x = x ∩ x, once in y = y ∩ y, and once in x ∩ y. Since every Web page that is indexed by Google contains at least one occurrence of a search term, we have \(N \geq M\). On the other hand, Web pages contain, on average, more than a certain constant \(\alpha\) search terms. Therefore, \(N \leq \alpha M\). Define

\[g(x) = g(x, x), \quad g(x, y) = L(x \cap y)M/N = |x \cap y|/N. \]

Then, \(\sum_{x, y \subseteq S} g(x, y) = 1\). This g-distribution changes over time and between different samplings from the distribution. But, let us imagine that g holds in the sense of an instantaneous snapshot. The real situation will be an approximation of this. Given the Google machinery, these are absolute probabilities which allow us to define the associated prefix code-word lengths (information contents) for both the singletons and the doubletons. The Google code-word length G is defined by

\[G(x) = G(x, x), \quad G(x, y) = \log 1/g(x, y). \]

3.4 The Google Similarity Distance

In contrast to strings x where the complexity \(C(x)\) represents the length of the compressed version of x using compressor \(C\), for a search term x (just the name for an object rather than the object itself), the Google code of length \(G(x)\) represents the shortest expected prefix-code word length of the associated Google event x. The expectation is taken over the Google distribution g. In this sense, we can use the Google distribution as a compressor for the Google semantics associated with the search terms. The associated NCD, now called the normalized Google distance (NGD), is then defined by (6) and can be rewritten as the right-hand expression:

\[\text{NGD}(x, y) = \frac{G(x, y) - \min\{G(x), G(y)\}}{\max\{G(x), G(y)\}} \]

\[= \frac{\max\{\log f(x), \log f(y)\} - \log f(x, y)}{\log N - \min\{\log f(x), \log f(y)\}}, \]

where \(f(x)\) denotes the number of pages containing x, and \(f(x, y)\) denotes the number of pages containing both x and y, as reported by Google. This NGD is an approximation to the NID of (2) using the prefix code-word lengths (Google code) generated by the Google distribution as defining a compressor approximating the length of the Kolmogorov code, using the background knowledge on the Web as viewed by Google as conditional information. In practice, we used the page counts returned by Google for the frequencies, and chose \(N\). From the right-hand side term in (6), it is apparent that, by increasing \(N\), we decrease the NGD, and everything gets closer together, and by decreasing \(N\), we increase the NGD, and everything gets further apart. Our experiments suggest that every reasonable (\(M\) or a value greater than any \(f(x)\)) value can be used as normalizing factor \(N\), and our results seem, in general, insensitive to this choice. In our software, this parameter \(N\) can be adjusted as appropriate, and we often use \(M\) for \(N\). The following are the main properties of the NGD (as long as we choose parameter \(N \geq M\)):

1. The range of the NGD is in between 0 and \(\infty\) (sometimes slightly negative if the Google counts are untrustworthy and state \(f(x, y) > \max\{f(x), f(y)\}\), see Section 1.4);
a. If \(x = y \) or if \(x \neq y \) but frequency
\[
f(x) = f(y) = f(x, y) > 0,
\]
then \(\text{NGD}(x, y) = 0 \). That is, the semantics of \(x \) and \(y \) in the Google sense is the same.

b. If frequency \(f(x) = 0 \), then for every search term \(y \), we have \(f(x, y) = 0 \), and then
\[
\text{NGD}(x, y) = \infty/\infty,
\]
which we take to be 1 by definition.

2. The NGD is always nonnegative and \(\text{NGD}(x, x) = 0 \) for every \(x \). For every pair \(x, y \), we have \(\text{NGD}(x, y) = \text{NGD}(y, x) \); it is symmetric. However, the NGD is not a metric: It does not satisfy \(\text{NGD}(x, y) > 0 \) for every \(x \neq y \). As before, let \(S \) denote the set of Web pages containing one or more occurrences of \(x \). For example, choose \(x \neq y \) with \(x = y \). Then, \(f(x) = f(y) = f(x, y) \) and \(\text{NGD}(x, y) = 0 \). Nor does the NGD satisfy the triangle inequality \(\text{NGD}(x, z) + \text{NGD}(z, y) \leq \text{NGD}(x, y) \) for all \(x, y, z \). For example, choose \(z = x \cup y \), \(f(y) = 0 \), \(x = x \cap z \), \(y = y \cap z \), and \(|x| = |y| = \sqrt{N} \). Then,
\[
\text{NGD}(x, z) = \text{NGD}(z, y) = 2/\log N,
\]
which violates the triangle inequality for all \(N \).

3. The NGD is scale-invariant in the following sense: Assume that when the number \(N \) of pages indexed by Google (accounting for the multiplicity of different search terms per page) grows, the number of pages containing a given search term goes to a fixed fraction of \(N \), and so does the number of pages containing a given conjunction of search terms. This means that, if \(N \) doubles, then so do the \(f \)-frequencies. For the NGD to give us an objective semantic relation between search terms, it needs to become stable when the number \(N \) grows unboundedly.

3.5 Universality of Google Distribution

A central notion in the application of compression to learning is the notion of “universal distribution,” see [27]. Consider an effective enumeration \(\mathcal{P} = p_1, p_2, \ldots \) of probability mass functions with domain \(\mathcal{S} \). The list \(\mathcal{P} \) can be finite or countably infinite.

Definition 1. A probability mass function \(p_i \) occurring in \(\mathcal{P} \) is universal for \(\mathcal{P} \) if, for every \(x \) in \(\mathcal{P} \), there is a constant \(c_i > 0 \) and \(\sum_{x \in \mathcal{S}} c_i \geq 1 \), such that, for every \(x \in \mathcal{S} \), we have \(p_i(x) \geq c_i \cdot p_i(x) \). Here, \(c_i \) may depend on the indexes \(i \), but not on the functional mappings of the elements of list \(\mathcal{P} \) or on \(x \).

If \(p_i \) is universal for \(\mathcal{P} \), then it immediately follows that, for every \(p_i \) in \(\mathcal{P} \), the prefix code-word length for source word \(x \), see [12], associated with \(p_i \), minimizes the prefix code-word length associated with \(p_i \), by satisfying \(\log 1/p_i(x) \leq \log 1/p_i(x) + \log 1/c_i \), for every \(x \in \mathcal{S} \).

In the following, we consider partitions of the set of Web pages, each subset in the partition together with a probability mass function of search terms. For example, we may consider the list \(\mathcal{A} = 1, 2, \ldots, a \) of Web authors producing pages on the Web, and consider the set of Web pages produced by each Web author, or some other partition. “Web author” is just a metaphor we use for convenience. Let Web author \(i \) of the list \(\mathcal{A} \) produce the set of Web pages \(\Omega_i \), and denote \(M_i = |\Omega_i| \). We identify a Web author \(i \) with the set of Web pages \(\Omega_i \) he produces. Since we have no knowledge of the set of Web authors, we consider every possible partition of \(\Omega \) into one of more equivalence classes, \(\Omega = \Omega_1 \cup \cdots \cup \Omega_{\alpha} \), and denote \(M = |\Omega| \), as defining a realizable set of Web authors \(\mathcal{A} = 1, \ldots, a \).

Consider a partition of \(\Omega \) into \(\Omega_1, \ldots, \Omega_a \). A search term \(x \) usable by Google defines an event \(x_i \subseteq \Omega_i \) of Web pages produced by Web author \(i \) that contain search term \(x \). Similarly, \(x \cap y_i \) is the set of Web pages produced by \(i \) that is returned by Google searching for pages containing both search term \(x \) and search term \(y \). Let
\[
N_i = \sum_{\{x, y\} \subseteq S} |x_i \cap y_i|.
\]

Note that there is an \(\alpha_i \geq 1 \) such that \(M_i \leq N_i \leq \alpha_i M_i \). For every search term \(x \in \mathcal{S} \), define a probability mass function \(g_x \) the individual Web author’s Google distribution, on the sample space \(\{\{x, y\} : x \in \mathcal{S}\} \) by
\[
g_x(x) = g_x(x, x), \quad g_x(x, y) = |x_i \cap y_i|/N_i.
\]

Then, \(\sum_{\{x, y\} \subseteq S} g_x(x, y) = 1 \).

Theorem 1. Let \(\Omega_1, \ldots, \Omega_a \) be any partition of \(\Omega \) into subsets (Web authors), and let \(g_1, \ldots, g_a \) be the corresponding individual Google distributions. Then, the Google distribution \(g \) is universal for the enumeration \(g_1, \ldots, g_a \).

Proof. We can express the overall Google distribution in terms of the individual Web author’s distributions:
\[
g(x, y) = \sum_{i \in \mathcal{A}} N_i g_i(x, y).
\]

Consequently, \(g(x, y) \geq (N_i/N)g_i(x, y) \). Since \(g(x, y) \geq g(x, y) \) also, we have shown that \(g(x, y) \) is universal for the family \(g_1, \ldots, g_a \) of individual Web author’s Google distributions, according to Definition 1. \(\square \)

Remark 2. Let us show that, for example, the uniform distribution \(L(x) = 1/s (s = |\mathcal{S}|) \) over the search terms \(x \in \mathcal{S} \) is not universal, for \(s > 2 \). By the requirement \(\sum c_i \geq 1 \), the sum taken over the number \(a \) of Web authors in the list \(\mathcal{A} \), there is an \(i \) such that \(c_i \geq 1/a \). Taking the uniform distribution on, say, \(s \) search terms assigns probability \(1/s \) to each of them. By the definition of universality of a probability mass function for the list of individual Google probability mass functions \(g_x \), we can choose the function \(g_x \) freely (as long as \(a \geq 2 \), and there is another function \(g_x \) to exchange probabilities of search terms with). So, choose some search term \(x \) and set \(g_x(x) = 1 \), and \(g(x, y) = 0 \) for all search terms \(y \neq x \). Then, we obtain \(g(x) = 1/s \geq c_i g(x) = 1/a \). This yields the required contradiction for \(s > a \geq 2 \).

3.6 Universality of Normalized Google Distance

Every individual Web author produces both an individual Google distribution \(g_x \), and an individual prefix code-word
length G_i, associated with g_i, (see [12] for this code) for the search terms.

Definition 2. The associated individual normalized Google distance NGD, of Web author i is defined according to (6), with G_i substituted for G.

These Google distances NGD, can be viewed as the individual semantic distances according to the bias of Web author i. These individual semantics are subsumed in the general Google semantics in the following sense: The normalized Google distance is universal for the family of individual normalized Google distances, in the sense that it is as about as small as the least individual normalized Google distance, with high probability. Hence, the Google semantics as evoked by all of the Web society in a certain sense captures the biases or knowledge of the individual Web authors. In Theorem 2, we show that, for every g_i satisfying $G(x) \leq G_i(x) + \log N/N_i$ and

$$G(x,y) \leq G_i(x,y) + \log N/N_i.$$

Substituting $G(x,y)$ by $G_i(x,y) + \log N/N_i$ in the middle term of (6), we obtain

$$\text{NGD}(x,y) \leq \frac{G(x,y) - \min\{G(x,y), Gy(y)\} + \log N/N_i}{\max\{G(x,y), Gy(y)\}}. \quad (9)$$

Markov’s Inequality says the following: Let p be any probability mass function; let f be any nonnegative function with p-expected value $E = \sum p(i)f(i) < \infty$. For $E > 0$, we have $\sum_i [p(i) : f(i)/E > k] < 1/k$.

Fix Web author $i \in A$. We consider the conditional probability mass functions $g'_i(x) = g(x|x \in S)$ and $g'_y(x) = g_i(x|x \in S)$ over singleton search terms in S (no doubletons): The g'_i-expected value of $g'_i(x)/g'_i(x)$ is

$$\sum_x g'_i(x)/g'_i(x) \leq 1,$$

since g_i is a probability mass function summing to ≤ 1. Then, by Markov’s Inequality

$$\sum_x [g'_i(x) : g'_i(x)/g'_i(x) > k] < \frac{1}{k}. \quad (10)$$

Since the probability of an event of a doubleton set of search terms is not greater than that of an event based on either of the constituent search terms, and the probability of a singleton event conditioned on it being a singleton event is at least as large as the unconditional probability of that event, $2g(x) \geq g'_i(x) \geq g(x)$ and $2g_y(x) \geq g'_y(x) \geq g_i(x)$. If $g(x) > 2kg(x)$, then $g'(x)/g(x) > k$ and the search terms x satisfy the condition of (10). Moreover, the probabilities satisfy $g_i(x) \leq g'_i(x)$. Together, it follows from (10) that

$$\sum_x [g(x) : g(x)/2g(x) > k] < \frac{1}{k}$$

and, therefore,

$$\sum_x [g(x) : g(x) \leq 2kg(x)] > 1 - \frac{1}{k}.$$

For the x’s with $g(x) \leq 2kg(x)$, we have

$$G(x) \leq G(x) + \log(2k).$$

Substitute $G_i(x) - \log(2k)$ for $G(x)$ (there is g_i-probability $\geq 1/1/k$ that $G_i(x) - \log(2k) \leq G(x)$) and $G_i(y) - \log(2k) \leq G(y)$ in (9), both in the min-term in the numerator, and in the max-term in the denominator. Noting that the two
\(g_i\)-probabilities \((1 - 1/k)\) are independent, the total \(g_i\)-probability that both substitutions are justified is at least \((1 - 1/k)^2\).

Therefore, the Google normalized distance minorizes every normalized compression distance based on a particular user’s generated probabilities of search terms, with high probability up to an error term that in typical cases is ignorable.

4 Applications and Experiments

4.1 Hierarchical Clustering

We used our software tool available from http://www.complearn.org, the same tool that has been used in our earlier papers [8], [7] to construct trees representing hierarchical clusters of objects in an unsupervised way. However, now, we use the normalized Google distance (NGD) instead of the normalized compression distance (NCD). The method works by first calculating a distance matrix whose entries are the pairwise NGDs of the terms in the input list. Then, calculate a best-matching unrooted ternary tree using a novel quartet-method style heuristic based on randomized hill-climbing using a new fitness objective function for the candidate trees. Let us briefly explain what the method does: for more explanation, see [10], [8]. Given a set of objects as points in a space provided with a (not necessarily metric) distance measure, the associated distance matrix has as entries the pairwise distances between the objects. Regardless of the original space and distance measure, it is always possible to configure \(n\) objects in \(n\)-dimensional euclidean space in such a way that the associated distances are identical to the original ones, resulting in an identical distance matrix. This distance matrix contains the pairwise distance relations according to the chosen measure in raw form. But, in this format, that information is not easily usable, since, for \(n > 3\) our cognitive capabilities rapidly fail. Just as the distance matrix is a reduced form of information representing the original data set, we now need to reduce the information even further in order to achieve a cognitively acceptable format like data clusters. To extract a hierarchy of clusters from the distance matrix, we determine a dendrogram (ternary tree) that agrees with the distance matrix according to a fidelity measure. This allows us to extract more information from the data than just flat clustering (determining disjoint clusters in dimensional representation). This method does not just take the strongest link in each case as the “true” one and ignore all others; instead, the tree globally represents all the relations in the distance matrix with as little overall distortion as is possible. In the particular examples we give below, as in all clustering examples we did but did not depict, the fidelity was close to 1, meaning that the relations in the distance matrix are faithfully represented in the tree. The objects to be clustered are search terms consisting of the names of colors, numbers, and some tricky words. The program automatically organized the colors toward one side of the tree and the numbers toward the other, as shown in Fig. 1. It arranges the terms which have as only meaning a color or a number, and nothing else, on the farthest reach of the color side and the number side, respectively. It puts the more general terms black and white, and zero, one, and two, toward the center, thus indicating their more ambiguous interpretation. Also, things which were not exactly colors or numbers are also put toward the center, like the word “small.” As far as the authors know, there do not exist other experiments that create this type of semantic distance automatically from the Web using Google or similar search engines. Thus, there is no baseline to compare against; rather, the current experiment can be a baseline to evaluate the behavior of future systems.

4.2 Dutch 17th Century Painters

In the example in Fig. 2, the names of 15 paintings by Steen, Rembrandt, and Bol were entered. We use the full name as a single Google search term (also in the next experiment with book titles). In the experiment, only painting title names were used; the associated painters are given below. We do not know of comparable experiments to use as a baseline to judge the performance; this is a new type of contents clustering made possible by the existence of the Web and search engines. The painters and paintings used are as follows:

- **Jan Steen**: Leiden Baker Arend Oostwaert, Keyzerswaert, Two Men Playing Backgammon, Woman at her Toilet, Prince’s Day, and The Merry Family.
- **Ferdinand Bol**: Maria Rey, Consul Titus Manlius Torquatus, Swartenhout, and Venus and Adonis.

4.3 English Novelists

Another example is English novelists. The authors and texts used are:

- **William Shakespeare**: A Midsummer Night’s Dream, Julius Caesar, Love’s Labours Lost, and Romeo and Juliet.
- **Oscar Wilde**: Lady Windermere’s Fan, A Woman of No Importance, Salome, and The Picture of Dorian Gray.

The clustering is given in Fig. 3, and to provide a feeling for the figures involved, we give the associated NGD matrix in Fig. 4. The \(S(T)\) value in Fig. 3 gives the fidelity of the tree as a representation of the pairwise distances in the NGD matrix \((S(T) = 1)\) is perfect and \(S(T) = 0\) is as bad as possible. For details, see [6], [8]. The question arises as to why we should expect this. Are names of artistic objects so distinct? (Yes. The point also being that the distances from every single object to all other objects are involved. The tree takes this global aspect into account and, therefore, disambiguates other meanings of the objects to retain the meaning that is relevant for this collection.) Is the distinguishing feature subject matter or title style? In these experiments, with objects belonging to the cultural heritage, it is clearly a subject matter. To stress the point, we used “Julius Caesar” of Shakespeare. This term occurs on the Web overwhelmingly in other contexts and styles. Yet, the collection of the other objects used, and the semantic distance toward those objects, given by the NGD formula, singled out the semantics of “Julius Caesar” relevant to this experiment. Term co-occurrence in this specific context of author discussion is not swamped by other uses of this common English term because of the particular form of the
NGD and the distances being pairwise. Using book titles which are common words, like “Horse” and “Rider” by author X, supposing they exist, will create a situation in which this swamping effect will presumably arise. Does the system get confused if we add more artists? (Representing the NGD matrix in bifurcating trees without distortion becomes more difficult for, say, more than 25 objects. See [8].) What about other subjects, like music or sculpture? (Presumably, the system will be more trustworthy if the subjects are more common on the Web.) These experiments are representative for those we have performed with the current software. We did not cherry-pick the best outcomes.
For example, all experiments with these three English writers, with different selections of four works of each, always yielded a tree so that we could draw a convex hull around the works of each author, without overlap. Interestingly, a similar experiment with Russian authors gave worse results. The readers can do their own experiments to satisfy their curiosity using our publicly available software tool at http://clo.complearn.org/, also used in the depicted experiments. Each experiment can take a long time, hours, because of the Googling, network traffic, and tree reconstruction and layout. Do not wait, just check for the result later. On the Web page http://clo.complearn.org/clo/listmonths/t.html the ongoing cumulated results of all (in December 2005 some 160) experiments by the public, including the ones depicted here, are recorded.

4.4 SVM—NGD Learning

We augment the Google method by adding a trainable component of the learning system. Here, we use the Support Vector Machine (SVM) as a trainable component. For the SVM method used in this paper, we refer to the exposition [4]. We use LIBSVM software for all of our SVM experiments.

The setting is a binary classification problem on examples represented by search terms. We require a human expert to provide a list of at least 40 training words, consisting of at least 20 positive examples and 20 negative examples, to illustrate the contemplated concept class. The expert also provides, say, six anchor words \(a_1, \ldots, a_6 \), of which half are in some way related to the concept under consideration. Then, we use the anchor words to convert

<table>
<thead>
<tr>
<th>A Woman of No Importance</th>
<th>0.000</th>
<th>0.458</th>
<th>0.479</th>
<th>0.444</th>
<th>0.494</th>
<th>0.149</th>
<th>0.362</th>
<th>0.471</th>
<th>0.371</th>
<th>0.300</th>
<th>0.278</th>
<th>0.261</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Midsummer Night's Dream</td>
<td>0.458</td>
<td>-0.011</td>
<td>0.563</td>
<td>0.382</td>
<td>0.301</td>
<td>0.506</td>
<td>0.340</td>
<td>0.244</td>
<td>0.499</td>
<td>0.537</td>
<td>0.535</td>
<td>0.425</td>
</tr>
<tr>
<td>A Modest Proposal</td>
<td>0.479</td>
<td>0.573</td>
<td>0.002</td>
<td>0.323</td>
<td>0.506</td>
<td>0.575</td>
<td>0.607</td>
<td>0.502</td>
<td>0.605</td>
<td>0.335</td>
<td>0.360</td>
<td>0.463</td>
</tr>
<tr>
<td>Gulliver’s Travels</td>
<td>0.445</td>
<td>0.392</td>
<td>0.323</td>
<td>0.000</td>
<td>0.368</td>
<td>0.509</td>
<td>0.485</td>
<td>0.339</td>
<td>0.535</td>
<td>0.285</td>
<td>0.330</td>
<td>0.228</td>
</tr>
<tr>
<td>Julius Caesar</td>
<td>0.494</td>
<td>0.299</td>
<td>0.507</td>
<td>0.368</td>
<td>0.000</td>
<td>0.611</td>
<td>0.313</td>
<td>0.211</td>
<td>0.373</td>
<td>0.491</td>
<td>0.535</td>
<td>0.447</td>
</tr>
<tr>
<td>Lady Windermere’s Fan</td>
<td>0.149</td>
<td>0.566</td>
<td>0.575</td>
<td>0.565</td>
<td>0.612</td>
<td>0.000</td>
<td>0.524</td>
<td>0.604</td>
<td>0.571</td>
<td>0.347</td>
<td>0.347</td>
<td>0.461</td>
</tr>
<tr>
<td>Love’s Labours Lost</td>
<td>0.363</td>
<td>0.332</td>
<td>0.607</td>
<td>0.486</td>
<td>0.313</td>
<td>0.525</td>
<td>0.000</td>
<td>0.351</td>
<td>0.549</td>
<td>0.514</td>
<td>0.462</td>
<td>0.513</td>
</tr>
<tr>
<td>Romeo and Juliet</td>
<td>0.471</td>
<td>0.248</td>
<td>0.502</td>
<td>0.339</td>
<td>0.210</td>
<td>0.604</td>
<td>0.351</td>
<td>0.000</td>
<td>0.389</td>
<td>0.527</td>
<td>0.544</td>
<td>0.380</td>
</tr>
<tr>
<td>Salome</td>
<td>0.371</td>
<td>0.499</td>
<td>0.605</td>
<td>0.540</td>
<td>0.373</td>
<td>0.568</td>
<td>0.553</td>
<td>0.389</td>
<td>0.000</td>
<td>0.520</td>
<td>0.538</td>
<td>0.407</td>
</tr>
<tr>
<td>Tale of a Tub</td>
<td>0.300</td>
<td>0.537</td>
<td>0.335</td>
<td>0.284</td>
<td>0.492</td>
<td>0.347</td>
<td>0.514</td>
<td>0.527</td>
<td>0.524</td>
<td>0.000</td>
<td>0.160</td>
<td>0.421</td>
</tr>
<tr>
<td>The Battle of the Books</td>
<td>0.278</td>
<td>0.535</td>
<td>0.359</td>
<td>0.330</td>
<td>0.533</td>
<td>0.347</td>
<td>0.462</td>
<td>0.544</td>
<td>0.541</td>
<td>0.160</td>
<td>0.000</td>
<td>0.373</td>
</tr>
<tr>
<td>The Picture of Dorian Gray</td>
<td>0.261</td>
<td>0.415</td>
<td>0.463</td>
<td>0.229</td>
<td>0.447</td>
<td>0.324</td>
<td>0.513</td>
<td>0.380</td>
<td>0.402</td>
<td>0.420</td>
<td>0.373</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Fig. 3. Hierarchical clustering of authors.

Fig. 4. Distance matrix of pairwise NGDs.
each of the 40 training words \(w_1, \ldots, w_{40} \) to 6-dimensional training vectors \(\mathbf{v}_1, \ldots, \mathbf{v}_{40} \). The entry \(v_{j,i} \) of \(\mathbf{v}_j = (v_{j,1}, \ldots, v_{j,6}) \) is defined as

\[
\frac{NGD(w_j, a_i)}{\sum_{j=1}^{40} \sum_{i=1}^{6} NGD(w_j, a_i)}
\]

The training vectors are then used to train an SVM to learn the concept, and then test words may be classified using the same anchors and trained SVM model.

In Fig. 5, we trained using a list of “emergencies” as positive examples, and a list of “almost emergencies” as negative examples. The figure is self-explanatory. The accuracy on the test set is 75 percent. In Fig. 6, the method learns to distinguish prime numbers from nonprime numbers by example. The accuracy on the test set is about 95 percent. This example illustrates several common features of our method that distinguish it from the strictly deductive techniques.

4.5 NGD Translation

Yet, another potential application of the NGD method is in natural language translation. (In the experiment below, we do not use SVMs to obtain our result, but determine correlations instead.) Suppose we are given a system that tries to infer a translation-vocabulary among English and Spanish. Assume that the system has already determined that there are five words that appear in two different matched sentences, but the permutation associating the English and Spanish words is, as yet, undetermined. This setting can arise in real situations, because English and Spanish have different rules for word-ordering. At the outset, we assume a pre-existing vocabulary of eight English words with their matched Spanish translation. Can we infer the correct permutation mapping the unknown words using the pre-existing vocabulary as a basis? We start by forming an NGD matrix using the additional English words of which the translation is known, see Figs. 7 and 8. We label the columns by the translation-known English words and the rows by the translation-unknown English words. The entries of the matrix are the NGDs between the English words labeling the columns and rows. This constitutes the English basis matrix. Next, consider the known Spanish words corresponding to the known English words. Form a new matrix with the known Spanish words labeling the columns in the same order as the known English words. Label the rows of the new matrix by choosing one of the many possible permutations of the unknown Spanish words. For each permutation, form the NGD matrix for the Spanish words and compute the pairwise correlation of this sequence of values to each of the values in the given English word basis matrix. Choose the permutation with the highest positive correlation. If there is no positive correlation, report a failure to extend the vocabulary. In this example, the computer inferred the correct permutation for the testing words, see Fig. 9.

5 SYSTEMATIC COMPARISON WITH WORDNET SEMANTICS

WordNet [33] is a semantic concordance of English. It focuses on the meaning of words by dividing them into categories. We use this as follows: A category we want to learn, the concept, is termed, say, “electrical,” and represents anything that may pertain to electronics. The negative examples are constituted by simply everything else. This category represents a typical expansion of a node in the WordNet hierarchy. In an experiment we ran, the accuracy on the test set is 100 percent: It turns out that “electrical terms” are unambiguous and easy to learn and classify by our method. The information in the WordNet database is entered over the decades by human experts and is precise. The database is an academic venture and is publicly accessible. Hence, it is a good baseline against
which to judge the accuracy of our method in an indirect manner. While we cannot directly compare the semantic distance, the NGD, between objects, we can indirectly judge how accurate it is by using it as a basis for a learning algorithm. In particular, we investigated how well semantic categories as learned using the NGD—SVM approach agree with the corresponding WordNet categories. For details about the structure of WordNet, we refer to the official WordNet documentation available online. We considered 100 randomly selected semantic categories from the WordNet database. For each category, we executed the following sequence: First, the SVM is trained on 50 labeled training samples. The positive examples are randomly drawn from the WordNet database in the category in question. The negative examples are randomly drawn from a dictionary. While the latter examples may be false negatives, we consider the probability negligible. Per experiment we used a total of six anchors, three of which are randomly drawn from the WordNet database category in question, and three of which are drawn from the dictionary. Subsequently, every example is converted to 6-dimensional vectors using NGD. The ith entry of the vector is the NGD between the ith anchor and the example concerned \(\frac{1}{C^2_6} \). The SVM is trained on the resulting labeled vectors. The kernel-width and error-cost parameters are automatically determined using five-fold cross validation. Finally, testing of how well the SVM has learned the classifier is performed using 20 new examples in a balanced ensemble of positive and negative examples obtained in the same way and converted to 6-dimensional vectors using NGD. The ith entry of the vector is the NGD between the ith anchor and the example concerned \(1 \leq i \leq 6\). The SVM is trained on the resulting labeled vectors. The kernel-width and error-cost parameters are automatically determined using five-fold cross validation. Finally, testing of how well the SVM has learned the classifier is performed using 20 new examples in a balanced ensemble of positive and negative examples obtained in the same way and converted to 6-dimensional vectors in the same manner as the training examples. This results in an accuracy score of correctly classified test examples. We ran 100 experiments. The actual data are available in [5]. A histogram of agreement accuracies is shown in Fig. 10. On average, our method turns out to agree well with the WordNet semantic concordance made by human experts. The mean of the accuracies of agreements is 0.8725. The variance is 0.01367, which gives a standard deviation of 0.1169. Thus, it is rare to find agreement less than 75 percent. The total number of Google searches involved in this randomized automatic trial is upper bounded by $100 \times 70 \times 6 \times 3 = 126,000$. A considerable savings resulted from the fact that we can reuse certain Google counts. For every new term, in computing its 6-dimensional vector, the NGD computed with respect to the six anchors requires the counts for the anchors which needs to be computed only once for each experiment, the count of the new term which can be computed once, and the count of the joint occurrence of the new term and each of the six anchors, which has to be computed in each case. Altogether, this gives a total of $6 + 70 + 70 \times 6 = 496$ for every experiment, so 49,600 Google searches for the entire trial.

It is conceivable that other scores instead of the NGD used in the construction of 6-dimensional vectors work competitively. Yet, something simple like “the number of words used in common in their dictionary definition” (Google indexes dictionaries too) is begging the question and unlikely to be successful. In [26], the NCD approach, compression of the literal objects, was compared with a number of alternative approaches like the euclidean distance between frequency vectors of blocks. The alternatives gave results that were completely unacceptable. In the current setting, we can conceive of Euclidean vectors of word frequencies in the set of pages corresponding to the search term. Apart from the fact that Google does not support automatical analysis of all pages reported for a search term, it would be computationally infeasible to analyze the millions of pages involved. Thus, a competitive nontrivial alternative to compare the present technique against is an interesting open question.

6 CONCLUSION

A comparison can be made with the Cyc project [22]. Cyc, a project of the commercial venture Cycorp, tries to create artificial common sense. Cyc’s knowledge base consists of hundreds of microtheories and hundreds of thousands of terms, as well as over a million handcrafted assertions written in a formal language called CycL [30]. CycL is an enhanced variety of first-order predicate logic.
This knowledge base was created over the course of decades by paid human experts. It is therefore of extremely high quality. Google, on the other hand, is almost completely unstructured, and offers only a primitive query capability that is not nearly flexible enough to represent formal deduction. But, what it lacks in expressiveness, Google makes up for in size; Google has already indexed more than eight billion pages and shows no signs of slowing down.

APPENDIX

RELATION TO LSA

The basic assumption of Latent Semantic Analysis is that “the cognitive similarity between any two words is reflected in the way they co-occur in small subsamples of the language.” In particular, this is implemented by constructing a matrix with rows labeled by the d documents involved, and the columns labeled by the a attributes (words and phrases). The entries are the number of times the column attribute occurs in the row document. The entries are then processed by taking the logarithm of the entry and dividing it by the number of documents the attribute occurred in, or some other normalizing function. This results in a sparse but high-dimensional matrix A. A main feature of LSA is to reduce the dimensionality of the matrix by projecting it into an adequate subspace of lower dimension using singular value decomposition $A = UDV^T$, where U and V are orthogonal matrices and D is a diagonal matrix. The diagonal elements $\lambda_1, \ldots, \lambda_p (p = \min(d, a))$ satisfy $\lambda_1 \geq \cdots \geq \lambda_p$, and the closest matrix A_k of dimension $k < \text{rank}(A)$ in terms of the so-called Frobenius norm is obtained by setting $\lambda_i = 0$ for $i > k$. Using A_k corresponds to using the most important dimensions. Each attribute is now taken to correspond to a column vector in A_k, and the similarity between two attributes is usually taken to be the cosine between their two vectors. To compare LSA to our proposed method, the documents could be the Web pages and the entries in matrix A are the frequencies of occurrence in Web pages and identify the columns in matrix A above into a vector and appears to defeat the LSA process altogether. Summarizing, the basic idea of our method is similar to that of LSA in spirit. What is novel is that we can do it with selected terms over a very large document collection, whereas LSA involves matrix operations over a closed collection of limited size, and, hence, is not possible to apply in the Web context.

ACKNOWLEDGMENTS

The authors thank the referees and others for comments on presentation. The material of this paper was presented in part at the IEEE ITSOC Information Theory Workshop 2005 on Coding and Complexity, 29th August through 1st September, 2005, Rotorua, New Zealand, and the IEEE International Symposium on Information Theory, Seattle, Washington, August 2006. Rudi L. Cilibrasi was supported in part by the Netherlands BSIK/BRICKS project and by NWO project 612.55.002. Paul M.B. Vitányi’s work was done in part while the author was on sabbatical leave at National ICT of Australia, Sydney Laboratory at UNSW. He is affiliated with the Centre for Mathematics and Computer Science (Centrum voor Wiskunde en Informatica) and the University of Amsterdam, both in Amsterdam, the Netherlands. He was supported in part by the EU Project RESQ IST-2001-37559, the ESF QiT Programme, the EU NoE PASCAL, and the Netherlands BSIK/BRICKS project.

REFERENCES

