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Abstract. Standard Bayesian inference can behave suboptimally if the
model is wrong. We present a modification of Bayesian inference which
continues to achieve good rates with wrong models. Our method adapts
the Bayesian learning rate to the data, picking the rate minimizing the
cumulative loss of sequential prediction by posterior randomization. Our
results can also be used to adapt the learning rate in a PAC-Bayesian
context. The results are based on an extension of an inequality due to
T. Zhang and others to dependent random variables.

1 Introduction

Problem 1: Bayes when the Model is Wrong Standard Bayesian inference may fail
if the probability model P under consideration is “wrong yet useful”. Grünwald
and Langford (2007) (GL from now on) exhibit cases in which the posterior never
concentrates, putting substantial weight on many “bad” distributions even in the
limit of infinite sample size. As a result, predictions based on the posterior remain
suboptimal forever. This problem can be addressed by equipping Bayes with a
learning rate η as in (Zhang, 2006a). Standard Bayesian inference corresponds
to η = 1; for small enough η, Bayesian inference will become well-behaved again
and its predictions will become optimal in the limit. However, picking η too small
may lead to an unnecessarily slow convergence rate. The appropriate choice for
η depends on the true distribution, which is unknown, and it is unclear how
to estimate it from data: GL show that marginalizing out η (as a Bayesian
would prefer) does not solve the problem, and picking the η that maximizes the
Bayesian marginal likelihood of the data Zn = Z1, . . . , Zn does not help either
(see also Example 3, Example 4 and Figure 1, this paper’s essential picture).

Problem 2: PAC-Bayesian Learning Rates In statistical learning theory, one
consider models Θ of predictors defined relative to some loss function loss,
e.g. Θ may be a set of classifiers and loss may be the 0/1-loss. In relative
PAC-Bayesian bounds (Audibert, 2004, Zhang, 2006b, Catoni, 2007) one proves
frequentist convergence bounds of randomized predictors which depend on some
user-specified “prior” distribution over Θ. The bounds are typically optimized
by setting the randomized predictor equal to a pseudo-Bayesian posterior at
some optimal learning rate η, which once again depends on the unknown true
distribution. Algorithms for estimating η from the data have been proposed for
special settings (Audibert, 2004), but so far, a general approach has been lacking.



The Safe Bayesian We address both problems at once by picking the η̂ that max-
imizes the “sequentially randomized” Bayesian marginal log-likelihood, which
for priors with finite support can be reinterpreted as the η̂ minimizing the
cumulative loss of the Hedge(η) algorithm (Freund and Schapire, 1997). We
then predict by the Cesàro average of the Bayesian posteriors at η̂. We extend
this safe Bayesian algorithm to the statistical learning case by defining pseudo-
probabilities pθ(y | x) ∝ e−loss(y,θ(x)) in the usual manner.

In our first result, Theorem 1, we show that for all η smaller than some
“critical” ηcrit, we can expect a small mixability gap, a notion reminiscent of
Vovk’s (1990, 2001) fundamental concept of mixability for individual sequence
prediction. In our context a small mixability gap means that the expected cu-
mulative log-loss one obtains by randomizing according to the posterior is close
to the cumulative log-loss one obtains by mixing the posterior. If the posterior
concentrates, then the mixability gap is small, and we may think of the η̂ in-
ferred by our algorithm as estimating the largest rate at which the posterior
does concentrate. Our main result, Theorem 2 shows that, broadly speaking,
the convergence rates achieved by the safe Bayesian algorithm are optimal for
the underlying, unknown true distribution in several settings. Specifically, if the
model is correct or convex, we perform essentially as well as standard Bayesian
inference, which in this case is among the best methods available. Yet when the
model is incorrect, in the setting of Grünwald and Langford (2007), unlike stan-
dard Bayes, the safe Bayesian posterior does learn to predict optimally, i.e. as
well as the single distribution in the model that predicts best.

In Section 2 we introduce notation, concepts and present the safe Bayesian
algorithm. Since the algorithm can be applied in a wide variety of contexts
(standard Bayes, statistical learning, Hedge-like) this section is, unfortunately,
long. In Section 3 we introduce ηcrit, which allows us to give a second, detailed
introduction to the results that are to follow. Section 4 gives our first result,
relating randomized (“Gibbs”) to standard Bayesian prediction and gives, in
Figure 1, a crucial picture. Section 5 gives our main result, Theorem 2, showing
that the Safe Bayesian algorithm performs comparably to an algorithm that
knows the critical learning rate in advance. In Section 6 we compare our results
to Grünwald (2011) who already provided a procedure that adapts to ηcrit in
a much more restricted setting. In Section 7 we prove Theorem 1 and 2. The
latter is built upon Theorem 3, an extension of a PAC-Bayesian style inequality
which is of independent interest, and proven in Appendix A.

2 Preliminaries; The Algorithm

Statistical Setting We first present our algorithm in the statistical setting, and
then show how it can be adjusted to decision-theoretic settings. Consider a
“model” P = {pθ | θ ∈ Θ} of densities on a space Z relative to some fixed
measure µ. The densities may be, but are not necessarily, probability densi-
ties or mass functions: we only require that for all z ∈ Z, pθ(z) ≥ 0, and∫
Z pθdµ < ∞. We extend pθ to sequences zn = z1, . . . , zn of n outcomes by



pθ(zn) =
∏n
i=1 pθ(zi). There are no restrictions on the structure of Θ; thus P

may very well be a ‘nonparametric’ set such as, say, the set of all Gaussian mix-
tures on Z with a countable number of components. Often we are interested in
estimating a conditional probability density. In that case, Z = X ×Y, and pθ(z)
abbreviates pθ(y | x), the conditional density of y given x, and our requirement
becomes that for all x ∈ X ,

∫
Y pθ(y | x)dµx < ∞ for some underlying measure

µx. The abbreviation z ≡ y | x is unusual, but in our case harmless, and greatly
simplifies notation.

An estimator is a function ν̆ :
⋃∞
n=1Zn → Θ where the function evaluated

at zn is denoted ν̆| zn. If Zn has a distribution P ∗, ν̆ becomes a random variable
and we omit the argument ‘| Zn’ if it is clear from the context. A randomized
estimator is a function W̆ :

⋃∞
n=1Zn → dist(Θ), where dist(Θ) is the set of all

distributions on Θ. We write W̆ | Zn for the estimate for data Zn. Following
Zhang (2006a,b), for any prior Π with density π relative to some underlying
measure ρ, we define the generalized Bayesian posterior, denoted as Π | Zn, η,
as the distribution on Θ with density

π(θ | zn, η) :=
pηθ(zn)π(θ)∫

Θ
pηθ(zn)π(θ)ρ(dθ)

=
pηθ(zn)π(θ)

Eθ∼Π [pηθ(zn)]
. (1)

We can think of the generalized Bayesian posterior as a randomized estimator.
For a randomized estimator W̆ and a sample Zn, we define the corresponding
(randomized) Cesàro-averaged estimator as ces(W̆ ;Zn) := n−1

∑n
i=1 W̆ | Zi. We

are now ready to present the safe Bayesian algorithm.

Algorithm 1: The Safe Bayesian Algorithm. In the DTOL and statistical
learning interpretation, log-loss in the fifth-to-last line is replaced by the
loss of interest `Π|zi−1,η(zi). The definition of κmax is explained below (8).

Input: data z1, . . . , zn, model {pθ | θ ∈ Θ}, prior Π on Θ.
Output: Distribution on Θ.
κmax := dlog2(2

√
n lnV )e with V as in (3),

Sn := {1, 2−1, 2−2, 2−3, . . . , 2−κmax} ;
for all η ∈ Sn do

sη := 0 ;
for i = 1 . . . n do

Compute generalized Bayes posterior Π(· | zi−1, η) with learning rate η;
Calculate “posterior expected loss” of predicting actual next outcome:
r := Eθ∼Π|zi−1,η [− ln pθ(zi)] [= `Π|zi−1,η(zi)] ; set sη := sη + r;

end

end
Choose η̂ = arg minη∈Sn{sη} (if min achieved for several η ∈ Sn, pick largest) ;

Output distribution W̆safe | Zn := ces(Π | η̂;Zn) = n−1 Pn
i=1Π(· | zi, η̂).

The algorithm implements a particular randomized estimator: it picks the η̂
for which the cumulative log-loss of sequentially predicting by randomizing ac-
cording to the posterior (“Gibbs sampling”) is minimized (this is different from



standard Bayesian prediction, which mixes rather than randomizes). It then
outputs the corresponding Cesàro estimator. The use of randomization makes η̂
very different from a standard ‘empirical Bayes’ estimate — see Example 4.

DTOL Setting We consider a variation of the original decision-theoretic online
(DTOL) setting (Freund and Schapire, 1997) along the lines of (Zhang, 2006a).
Let A be a set of actions, where each a ∈ A is identified by its loss `a : Z → R.
Thus the loss of action a on outcome z is `a(z). We let Θ ⊂ A be a subset
of actions whose losses `θ(zi) can be observed at each time point i. As in the
original DTOL setting, the learner may not have access to zi−1 directly. We
assume that the learner is allowed to randomize, i.e. for any distribution W in
A, all z ∈ Z we define

`W (z) := Ea∼W [`a(z)], (2)

and we assume that for each such W , the learner is allowed to play an action
aW ∈ A with, for all z ∈ Z, `aW (z) ≤ `W (z). This is achieved either automati-
cally (e.g. with convex loss functions defined on convex A, such that for each W
an aW trivially exists) or by definition; e.g. in the PAC-Bayesian literature, it is
usually assumed that the learner is allowed to play a randomized action W and
is satisfied by evaluating its performance ‘on average’ (Catoni, 2007).

To apply our algorithm in the DTOL setting, we define pseudo-probabilities
pa(z) := exp(−`a(z)) in the usual manner, for each a ∈ A, so that − ln pa(z) =
`a(z), as already indicated in the fifth-to-last-line in Algorithm 1. Readers fa-
miliar with the Hedge-algorithm (Freund and Schapire, 1997, Chaudhuri et al.,
2009) will notice that the safe Bayesian algorithm really just runs Hedge at dif-
ferent learning rates η, picking the η̂ that minimizes cumulative loss with hind-
sight, and then makes a Cesàro-averaged prediction of the n previous Hedge
predictions with this loss. Note however that, while the algorithm employs an
on-line learning method, our aim is to prove bounds on its batch behaviour after
observing zn (Theorem 2).

Statistical Learning Setting A special case of the decision-theoretic setting is
standard statistical learning in which Z = X ×Y, each θ is a function θ : X → Y ′
and `θ = loss(Y, θ(X)) where loss : Y ×Y ′ → R is some loss function, e.g. the
0/1-loss in the classification setting with Y = Y ′ = {0, 1}, and loss : Y × Y →
{0, 1} given by loss(y, ŷ) := |y − ŷ|.

Condition on P/Θ Throughout this paper we assume the model P satisfies the
following condition. Let

U(P) := supz∈Z supp,p′∈P
p(z)
p′(z) and V = V (P) = 2U(P). (3)

If P is clear from the context we write V rather than V (P) (the reason for
distinguishing between V and U is just for notational convenience in stating
our results later; it is due to the factor 2 in (4) below). We always assume
that the ratio in (3) is well-defined for all z ∈ Z and that 1 < V < ∞. We
may think of U(P) as the maximum ratio between the density of z (or y | x)



assigned by different p ∈ P. In the DTOL setting with bounded loss functions
like 0/1-loss, this condition is automatically satisfied with V ≤ exp(Lmax) with
Lmax = supz∈Z,θ,θ′∈Θ(`θ(z) − `θ′(z)). Yet in general density estimation and
unbounded loss settings, this is currently a serious restriction on our results.

3 The Critical ηcrit — Extended Introduction

From now on, we assume the random variables Z and Z1, Z2, . . . , Z
n to be i.i.d. ∼

P ∗, i.e. each outcome Zi has the same distribution as Z. We denote expectation
under P ∗ by E∗. Let P be the learner’s model. Let D(P‖q) denote the KL
divergence between a distribution P and a distribution with density q (possibly
defective, i.e.

∫
Z q(z)dµ 6= 1). In Appendix A we show that that the set of

best-approximating densities,

Q := {q : infp∈P D(P ∗‖p) = D(P ∗‖q) , U(P ∪ {q}) ≤ 2U(P)}, (4)

is not empty, although it may not be contained in P but only in its (appropriately
defined) closure (U is as in (3)).

Our Goal We focus on the statistical setting; for the DTOL setting, see Example
2 below. In case P is a standard probability model (all densities integrate to 1)
and infp∈P D(P ∗‖p) is nonzero, we say that the model P is misspecified (or
simply: “wrong”). Our goal is to show that even in this case, the safe Bayesian
algorithm outputs an estimator W̆safe that “converges” quickly to Q, in a sense
we now make precise. For any two (conditional) densities p and p′, we define the
generalized KL (Kullback-Leibler) divergence (already introduced in the original
Kullback and Leibler (1951)!) relative to P ∗ as

D∗(p′‖p) := E∗Z [− ln p(Z) + ln p′(Z)] = D(P ∗‖p)−D(P ∗‖p′). (5)

Note that, for a best-approximating q as in (4), D∗(q‖p) ≥ 0 for all p ∈ P.
Theorem 2 below shows that for some q ∈ Q, Eθ∼W̆safe|Zn [D∗(q‖pθ)] converges
to 0 in expectation as n → ∞ at certain rates. Since trivially, for all q, q′ ∈ Q,
all p ∈ P, D∗(q‖p) = D∗(q′‖p), this means that such convergence takes place
simultaneously for all q ∈ Q. Hence, from now on, for ease of exposition, we fix
a particular such q and present all results in terms of that q. Since D∗(q‖pθ) ≥ 0
for all θ ∈ Θ, this convergence implies that, at large n, W̆safe puts nearly all
its mass on Θ with small D∗(q‖pθ); in this sense, Theorem 2 shows that W̆safe

concentrates. To make this precise, we must first define the critical learning rate.

The Critical Learning Rate In the well-specified case, in which P ∗ has density
p∗ and we must have q = p∗ ∈ Q, we trivially have that, for η = 1, for all p ∈ P:

Aη(q‖p) := E∗Z

[(
p(Z)
q(Z)

)η]
≤ 1, (6)



as is seen by writing out the expectation in full and substituting q by p∗. Classical
theorems on two-part MDL inference for the well-specified case (Barron and
Cover, 1991, Zhang, 2006a, Grünwald, 2007) invariably make use of (6) at some
point in the proofs; so do classical results on Bayesian consistency (Doob, 1949),
in which (6) is used to establish that {p(Zn)/q(Zn)}n=1,2... is a martingale. It
can be shown (Li, 1999, Kleijn and van der Vaart, 2006) that (6) still holds for
η = 1 if P is convex (Figure 1 in Section 4 will make clear that convexity plays
a role here). This is the fundamental reason why standard MDL and Bayesian
convergence bounds still hold in that setting. If (6) does not hold for η = 1 then
MDL and Bayes may not converge — see Example 3 below. Luckily, for many
types of P, one can still show that (6) holds for some η < 1. In that case, the
standard MDL and Bayesian convergence proofs still go through if the standard
posterior is replaced by the η-generalized posterior, leading to results like (11)
below. Thus it makes sense to define the critical exponent ηcrit as the largest
value of η such that, for all p ∈ P, (6) holds. It is useful to extend the idea
slightly so that, for u ≥ 0, ηcrit(u) is the “critical exponent with slack u/n”;
ηcrit(0) is just the critical value as defined before:

ηcrit(u) := sup
{
η ≤ 1 : for all p ∈ P, ln E∗Z

[(
p(Z)
q(Z)

)η]
≤ u

n

}
. (7)

This definition implicitly depends on q and n. Clearly ηcrit(u) is increasing in
u. By differentiation to η as in (Grünwald, 2011) it follows that also for all

0 < η ≤ ηcrit(u), all p ∈ P, ln E∗Z
[(

p(Z)
q(Z)

)η]
≤ u

n . In case Q is not a singleton,
we define ηcrit(u) as (7) for the q ∈ Q that maximizes it for the given u.

How small can ηcrit become? Let V be as in (3). (Grünwald, 2011, Lemma
1) shows that, for all P ∗,P, all 0 ≤ u ≤ n,

ηcrit(u) ≥ ηmin(u), where ηmin(u) := 1
2 lnV

√
u
n . (8)

To get good bounds on the behaviour of the Safe Bayesian algorithm as in
Theorem 2 we need to be able to use an η close to ηcrit(u) for a value of u ≥ 0
that optimizes the bound in Theorem 2. It can be seen that restricting u to be
≥ 1 does not seriously affect the bound, which explains why, in the definition
of Sn in the safe Bayesian algorithm, we could safely restrict ourselves to η no
smaller than O(1/(2 lnV

√
n)). In favourable cases though, ηcrit(u) will be larger

than ηmin(u). We shall now see that this leads to faster convergence rates.

Existing Results that we will Extend We define the generalized Bayesian marginal
distribution as pBayes(zn | η) := Eθ∼Π [pηθ(Zn)] and the predictive distribution
as pBayes(zi | zi−1, η) := pBayes(zi | η)/pBayes(zi−1 | η). For η = 1, these are the
standard Bayesian marginal/predictive distributions. By the familiar Bayesian
telescoping using (1), pBayes can be written as product of the generalized poste-
rior predictive distributions:

pBayes(zn | η) =
∏n
i=1

pBayes(z
i|η)

pBayes(zi−1|η) =
∏n
i=1 Eθ∼Π|Zi−1,η [pηθ(zi)] . (9)



We also define the Bayesian redundancy as

bayes-redn(η) := 1
ηE∗Zn

[
− ln pBayes(Z

n|η)
qη(Zn)

]
= 1

ηE∗Zn
[∑n

i=1− ln pBayes(Zi|Zi−1η)
qη(Zi)

]
(10)

For η = 1, the Bayes redundancy is the expected codelength difference between
coding (log-loss prediction) by the code induced by pBayes | η and coding by
the code induced by q. This quantity is indeed called the (relative) “redun-
dancy” of the Bayesian mixture code in information theory, see e.g. (Takeuchi
and Barron, 1998). We can also give a precise codelength interpretation for
η < 1 via the ‘entropification’ construction as in Grünwald (2011), but because
of space constraints will not do so here. We now informally summarize a cen-
tral result in MDL and PAC-Bayesian inference in terms of bayes-red: for all
0 < η < ηcrit(u), for some constant Cη depending on η, we have

E∗ZnEθ∼Π|Zn,η [D∗(q‖pθ)] ≤ Cη
n · bayes-redn(η) +Ru, (11)

where Ru is a remainder term that becomes negligible for small enough u ≥ 0.
In the remainder of this informal section, we assume that we have chosen u small
enough and ignore this term, as well as other precise conditions needed for (11) to
hold (Ru will return in the formal statement of our results). (11) is the generic
formulation of the result. Variations of (11) are presented by, among others,
Zhang (2006a,b), Barron and Cover (1991), Li (1999), Audibert (2004), Catoni
(2007). The importance of (11) is that in practical settings bayes-redn(η) grows
sublinearly and then (11) implies that (a) the generalized posterior concentrates
and (b) leads to asymptotically optimal approximations to q in KL divergence.

Example 1. [MDL formulation] A simple rewriting of the redundancy as in
Zhang (2006b) shows that

bayes-redn(η) = E∗Zn
[

E
θ∼Π|Zn,η

[
− ln

pθ(Zn)
q(Zn)

]
+

1
η
D( (Π | Zn, η) ‖ (Π | η) )

]
(12)

where D(W‖V ) =
∫
w(θ) log(w(θ)/v(θ))ρ(dθ) denotes standard KL divergence

between distributions with densities W and V respectively. To verify (12), simply
replace D by its definition and simplify. If Π has countable support Θ′ ⊂ Θ then,
irrespective of model correctness, using that for all θ0, all zn, pBayes(zn | η) =∑
π(θ)pηθ(zn) ≥ π(θ0)pηθ0(zn), we have the familiar

bayes-redn(η) ≤ E∗Zn
[
minθ∈Θ′

{
− ln pθ(Zn)

q(Zn) + − lnπ(θ)
η

} ]
. (13)

If q = pθ̃ for some θ̃ ∈ Θ′, this becomes bayes-redn(η) ≤ − lnπ(θ̃)/η, showing
that then prediction by pBayes stays within O(1) of the best-approximating q.

Example 2. [Statistical Learning] Now z = (x, y), `θ(z) = loss(y, θ(x)), we
define risk(θ) to be the expected loss of θ, i.e. risk(θ) := E∗Z [`θ(Z)], extended
to risk(W ) as in (2). Let riskemp(W ) = n−1

∑n
i=1 `W (Zi) be the empirical



risk of distribution W . Let θ̃ be any optimal action within Θ, i.e. risk(θ̃) =
minθ∈Θ risk(θ). Then using `θ = − ln pθ, (12) can be further rewritten as

1
nbayes-redn(η) = E∗Zn [riskemp(Π | Zn, η)]− risk(θ̃) + η−1E∗Zn [D(·‖·)]

and (11) now expresses that , with R := E∗Zn [riskemp(Π | Zn, η)]− risk(θ̃),

E∗Zn [risk(Π | Zn, η)]− risk(θ̃) ≤ C ·R+ C
nηE∗Zn [D( (Π | Zn, η) ‖ (Π | η) )],

a familiar equation from the PAC-Bayesian literature: the relative risk is bounded
by the empirical risk difference plus a KL-divergence penalty term. Analogous
results hold in probability rather than in expectation (in many of the PAC-
Bayesian literature, only in-probability results are given; Zhang (2006a, 2006b)
gives both in-probability and in-expectation results).

The bounds that can be obtained via (11) are often minimax optimal. For
example, if the model is correct then ηcrit(0) = 1, so we can take u = 0. For
that case Barron and Cover (1991) already showed that with appropriate choices
of prior bayes-redn(1), (or rather its upper bound (13)) is so small that (11)
leads to the optimal convergence rates in a number of nonparametric settings;
Zhang (2006a) extends this to parametric models P. If we consider 0/1-loss
and a countable set of classifiers Θ, then, as is well-known, the worst-case risk
obtainable by any procedure is O((− lnπ(θ̃)/n)1/2) and as shown by Grünwald
(2011), this is indeed the bound we get from (11) if u is chosen appropriately.
Many other examples can be found in (Zhang, 2006a,b).

The key point for us is that (11) only holds for η < ηcrit(u); but ηcrit(u)
depends on the true distribution and it is not clear how to find it. Our Theorem 1
combined with Theorem 2 imply via Corollary 1 that the safe Bayesian algorithm
W̆safe performs at least as well as the Bayesian posterior randomized estimator
Π | η with η = ηcrit(u)/4. Since bayes-redn(η)/n has a bounded nonnegative
derivative (as is straightforward to show), this leads to bounds that are within
a constant factor of the best bound that can be obtained for any η ≤ ηcrit(u).

In fact, Theorem 2 only shows that W̆safe satisfies (11) plus an additional
penalty mix-gapn, which measures how much is lost in terms of cumulative
log-loss by randomizing rather than mixing. Theorem 1 below shows that, for
η ≤ ηcrit(u)/2, this extra penalty is sufficiently small to get the desired bound.

4 First Result: Randomizing vs. Mixing

Define the Gibbs redundancy as

gibbs-redn(η) = E∗Zn
[∑n

i=1 Eθ∼Π|Zi−1,η

[
− ln pθ(Zi)

q(Zi)

]]
.

and note that, by Jensen’s inequality and (10), we always have
bayes-redn(η) ≤ gibbs-redn(η). The following theorem shows that, if η is
sufficiently subcritical, then the reverse essentially holds as well:



Theorem 1. Let ηcrit(u) be defined as in (7). For 0 < η ≤ ηcrit/2, we have:

gibbs-redn(η) ≤ C2ηbayes-redn(η) + (C2η − 1)uη , (14)

for a constant Cη ≤ 2 + 2η lnV (so C2η ≤ 2 + 4ηV ) with V as in (3).

The theorem thus expresses that, in terms of log-loss, if η ≤ ηcrit(u)/2 then se-
quential prediction by posterior randomization is not much worse in expectation
than sequential prediction by the standard Bayes predictive distribution, i.e. by
mixing rather than randomizing. To explore this further, we define the mixability
gap of a randomized estimator W̆ as

mix-gapn(η, W̆ ) := E∗Zn
[∑n

i=1 Eθ∼W̆ |Zi−1 [− ln pθ(Zi)] + 1
η ln pBayes(Zn | η)

]
The mixability gap for the Bayesian posterior can be rewritten as:

mix-gap(η, (Π|η) ) = gibbs-redn(η)− bayes-redn(η) ≥ 0. (15)

In the information-theoretic interpretation, mix-gapn is the expected amount of
additional bits (additional log-loss), normalized relative to η, incurred by predict-
ing by randomizing according to the posterior rather than by pBayes, which first
mixes using the posterior and then predicts using the resulting distribution. With
these definitions, (14) can be rewritten as (mix-gapn(η,Π | η)+bayes-redn(η))
≤ C2η(bayes-redn(η) + (C2η − 1)u/η, i.e.

mix-gapn(η,Π | η) ≤ (C2η − 1)
(
bayes-redn(η) + u

η

)
. (16)

Hence, for η ≤ ηcrit(u)/2, the excess loss of randomizing rather than mixing is
of the same order as the excess loss of mixing rather than predicting with q.

Example 3. [Bayesian misspecification] For simplicity considerΠ with count-
able support. As shown by Grünwald and Langford (2007), if the model is in-
correct, in some cases with ηcrit(0)� 1, the standard Bayesian posterior (based
on η = 1) puts, P ∗-almost surely, nearly all of its mass on a set of ‘bad’ distri-
butions p′, all with arbitrarily large D∗(q‖p′) at all large n. Yet (13) shows that
the redundancy, and hence the cumulative log-loss risk of standard Bayesian
prediction (with η = 1) must still be small (see Example 5); this is possible
because Bayes then mixes various ‘bad’ but very different p′ ∈ P into a sin-
gle ‘good’ predictive distribution pBayes(Zi | Zi−1, η) 6∈ P; see Figure 1. If this
happens1 for many i between 1 and n, then by definition mix-gapn(η,Π | η)
becomes extremely large. Theorem 1 shows that, if we set η ≤ ηcrit(u)/2, then
this will not happen: the posterior Π | Zn, η will concentrate in the sense that if
we sample from it, we will tend to draw a distribution p with D∗(q‖p) close to
0, for all q ∈ Q. Even if Q is nonsingleton this is fundamentally different from
choosing η = 1 � ηcrit(0)/2, in which case the posterior puts almost all of its
mass on distributions p′ with D∗(q‖p′) large for all q ∈ Q. Example 5 explains
why posterior concentration is so important.
1 In the GL examples, the set of distributions over which the posterior mixes changes

with sample size i, but they always remain ‘bad’, yet the resulting predictive distri-
bution always remains ‘good’, i.e. D∗(q‖pBayes(Zi | Zi−1, η)) remains small.



Fig. 1. Mixing vs. Randomizing: a mixture (e.g. the Bayes predictive distribution)
that puts substantial mass on the two endpoints of the line segment, is closer to p∗

than q, the best approximation of p∗ within P. This can only happen if q is not in the
convex hull of P. The picture is an idealization: in the GL examples the posterior mixes
not just two but many ‘bad’ (i.e., far from p∗) distributions, P is not 2-dimensional
parametric and the geometry is not Euclidean but determined by the KL divergence.

5 Main Result and Its Applications

We have seen that the learner would like to infer a η̂ from the data that works
at least as well as the unknown ηcrit(u)/2. The following theorem shows that
the safe Bayesian algorithm achieves this. Let Sn be defined as in Algorithm 1,
and let {W̆η} for η ∈ Sn represent a set of randomized estimators for Θ, one
for each η. We let η̂ be the “maximum likelihood” estimate of η, i.e. η̂ | Zn =
arg minη∈Sn

∑n
i=1 Eθ∼W |Zi−1,η [− ln pθ(Zi)].

Theorem 2. Let C2η be as in Theorem 1. For η ∈ Sn with η ≤ ηcrit(u)/2, we
have:

E∗ZnEθ∼ces(W̆η̂|Zn ;Zn) [D∗(q‖pθ)] ≤
C2η
n E∗Zn

[
n∑
i=1

Eθ∼W̆η|Zi−1

[
− ln pθ(Zi)

q(Zi)

]
+ u+O(ln lnn)

η

]
=

C2η
n

(
mix-gapn(η, W̆η) + bayes-redn(η) + u+O(ln lnn)

η

)
.

(17)

The theorem works for any W̆η, but to get good bounds the mixability gap of
W̆η must be small. Theorem 1 tells us that it will be small if we use W̆η | Zn :=
(Π | Zn, η), i.e. we randomize according to the posterior. If we plug this choice
into (17) and rewrite the right-hand side using Theorem 1 (see (16)) and the fact
that bayes-redn(η) is decreasing in η and ηcrit(u) ≥ ηmin(u) as in (8), then:

Corollary 1. The Safe Bayesian algorithm satisfies, for η ≤ ηcrit(u)/4:

E∗ZnE∗
θ∼W̆safe|Zn

[D∗(q‖pθ)] ≤
C2

2η
n

(
bayes-redn(η) + u+O(ln lnn)

η

)
. (18)

Note that C2η has become C2
2η. We got rid of the requirement that η ∈ Sn by

using that bayes-redn(η) is decreasing in η, so that (18) must hold for every η
smaller than the largest ηmax ∈ Sn with ηmax ≤ ηcrit(u)/2. Note that ηmax may
be arbitrarily close to ηcrit(u)/4 rather than ηcrit(u)/2.



While the bound is thus in terms of η ≤ ηcrit(u)/4, it is conceivable that the
algorithm chooses a larger η̂, possibly even with η̂ � ηcrit(u). Thus, to be fully
precise, we cannot claim that we “learn” the optimal learning rate, but only that
we learn to behave as well as if we would know the optimal learning rate. The
second line of (17) indicates that the randomized η-posterior in Algorithm 1
may in principle be replaced by other estimators that approximate pBayes | η
reasonably well, such as e.g. the Bayesian MAP estimator with prior w(θ)1/η.

Example 4. [Safe vs. Empirical Bayes] The Safe Bayesian algorithm chooses η̂
that minimizes a cumulative log-loss and hence maximizes a likelihood2. Indeed,
if we interchanged expectation and logarithm in the definition of r in Algorithm
1, then we would mix rather than randomize and by (9), η̂ would become the
empirical Bayes estimate of η. Now for η > ηcrit(u), we may be in the situation of
Figure 1 where our Bayesian predictive distribution achieves small cumulative
log loss by mixing, at many sample sizes, bad distributions into a good one.
Empirical Bayes will tend to pick such an unwanted η, and indeed, it was already
shown in GL that it does not solve the Bayesian inconsistencies noted there.
Similarly, a Bayesian may want to treat η as a nuisance parameter and integrate
it out, but this approach fails for the same reason. Intuitively, by randomizing
rather than mixing, the safe Bayesian estimator is guarded from picking such
an overly large η, whereas by Theorem 1, it is guarded from picking an η much
smaller than ηcrit(u).

Example 5. [Bayesian Misspecification, Cont.] The examples considered by
GL are based on P ∗ and countable P such that 0 < ηcrit(0) � 1 and a prior
π(q) > 0 on the best-approximating q. Using (13), Corollary 1 thus bounds the
convergence rate of W̆safe as O((ln lnn)/n), only a factor ln lnn worse compared
to (11), which is the best known bound when ηcrit(0) is known in advance. Thus,
the inconsistency for η = 1 goes away. Now one may wonder why one should not
just, given sample Zn, directly use the standard Bayes predictive distribution
pBayes(Zn+1 | Zn, η) with η = 1 to make predictions about Zn+1? By (10) and
(13), the cumulative expected log-loss risk of this procedure should be bounded
by − lnπ(q), indicating a risk smaller than O(1/n) at most n. If one is only inter-
ested in log-loss, this can indeed be done, and there is indeed no good reason to
take η < 1. But in many other cases, there is a very good reason to take a smaller
η̂ so that Corollary 1 holds. We list three such reasons below, numbered as (I)-
(III). Note first that the corollary implies that, for large enough n, the posterior
is concentrated (see above Example 1), and the phenomenon of Figure 1 cannot
occur (Ex. 3). Now first, (I), for ‘nonmixable’ loss functions (Vovk, 1990) one
cannot mix the predictors θ in a Bayesian way. For example, the examples of GL
also have an interpretation in terms of 0/1-loss: they show that, in the statistical
learning setting with pθ(y | x) ∝ exp(−loss(y, θ(x))), predicting according to
the MAP, Gibbs or Bayes classifier based on the posterior Π | Zn, η for η = 1

2 In fact, η̂ maximizes a “prequential” likelihood, and the algorithm (not its analysis) is
a prime instance of Dawid’s (1984) prequential approach to statistics, which inspired
this work throughout.



lead to predictions that never come close to L̃ = infθ∈Θ risk(θ). Yet Corollary
1 implies (see Example 2) that prediction based on W̆safe does converge to L̃
at rate O((ln lnn)/n). But now, in contrast to the log-loss case, predicting with
pBayes | η for η = 1 is not an option, since — as explained at length by GL07
— its predictions, which are mixtures over pθ as above, are mixtures of expo-
nentiated rather than randomized classifiers and hence do not correspond to
feasible actions; rather, they are pseudo-predictions in the sense of Vovk (2001).
In that case, prediction by W̆safe, i.e. using the learning rate η̂, is presumably
the best one can do. Second, (II), even in a standard Bayesian setting where a
standard probability model is used rather than the pseudo-probabilities above,
one is often interested in a loss function different from log-loss. If the model is
chosen with the desired loss function in mind and the posterior is concentrated,
one can expect good behaviour with respect to that loss function as well; if the
posterior is not concentrated, one can only expect good behaviour in terms of
log-loss. We briefly illustrate this for 0/1-loss. Classification models {pθ | θ ∈ Θ}
are models of conditional distributions, such as, e.g., logistic regression models,
that are designed in such a way that, for all θ, if pθ has small expected log loss,
then the classifier induced by pθ also is guaranteed to have small expected logis-
tic loss, which, under some further conditions, implies a small 0/1-loss (Bartlett
et al., 2006) — the logistic loss being a ‘proxy’ for 0/1-loss. However, as shown
in detail by (Grünwald and Langford, 2007, Example 1), even if a mixture of
such pθ has much smaller expected log-loss than its constituents, as in Figure 1
, the expected 0/1-loss of the Bayes classifier corresponding to the mixture may
actually be much worse in terms of 0/1-loss. Thus, using standard Bayesian in-
ference, we may up with predictions that are good in terms of log-loss but bad
in terms of the loss of interest.

Finally, (III), the primary goal in many statistical analyses is not sequential
prediction but rather coming up with an insightful, comprehensible model that
is not too far detached from the truth. In that case one would prefer a posterior
pointing to a single, not-too-bad model over a very good mixture of very bad
models. For example, Yang (2007) and others use Bayesian inference to learn
phylogenetic trees in biology using a stochastic models for DNA mutations. what
use would a mixture of bad trees be to a biologist, even if it predicts DNA
sequences well in terms of log-loss?

Example 6. [Probabilistic Setting with Correct or Convex Model P]
Corollary 1 implies that safe Bayesian estimation behaves essentially as well
as standard Bayesian estimation if the model is correct, i.e. infp∈P D(P ∗‖p) =
D(P ∗‖q) = 0 and q = p∗. Then ηcrit(0) = 1 and we can take u = 0 and
C2

2η/η = C2
2/1 ≤ (2 + 4 lnV )2 in (18). Zhang (2006a) obtains the same risk

bound as (18) for Π | η for any η < 1, the only difference being that the
factor C2

2/1 on the right is replaced by something smaller, and that there is no
O(ln lnn/ηn) term. The extra factor incurred by W̆safe may be the inevitable
price to pay for not knowing in advance that our model was, in fact, correct,
using a procedure that still leads to good results if it is incorrect.



6 Related Work

Grünwald (2011) already proposed an adjustment to 2-part MDL and Bayesian
MAP approaches to deal with misspecified (wrong) models. The learning rate
was determined in a completely different manner, roughly by measuring how
much one can additionally compress the data using a code based on the convex
hull of P rather than P. The resulting procedure is computationally much more
demanding than the Safe Bayesian algorithm. Also, it can only be applied to
countable P — a severe restriction — whereas the Safe Bayesian algorithm can
be applied to arbitrary P. Finally, the bounds in Grünwald (2011) —although
qualitatively similar to the ones presented here — have much larger constant
factors (O(V ) instead of O(lnV ) with V as in (3) above). On the other hand,
the safe Bayesian algorithm has two awkward properties that are absent from
the procedure of Grünwald (2011): it is dependent on the order of the data, and
it requires Cesàro-averaging. Whether the Cesàro-average is really needed is one
of the main questions for future research.

Other related work includes van Erven et al. (2011), who use the mixability
gap in a worst-case setting to get a version of the Hedge algorithm that in some
cases picks a higher learning rate than standard Hedge and thereby achieves a
smaller regret.

Finally, in this short paper we did not mention at all how our work relates to
the pioneering Audibert (2004), who proposed a method for learning the learning
rate in the special case of PAC-Bayesian classification. Audibert showed that,
with his approach, one can achieve fast rates under a variation of the Tsybakov
(1999, 2004) margin condition. The same holds for the Safe Bayesian algorithm,
as we will show in the full paper.
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7 Proofs

Proof of Theorem 1 Apply Lemma 1 below, with G = Θ, ν(θ) := θ and for
all zi ∈ Zi, fν(θ)(zi | zi−1) := pθ(zi)/q(zi), noting that the Lemma applies for
η ≤ ηcrit(u)/2. Rewriting the left-hand side using the definition of gibbs-red,
the statement is seen to imply Theorem 1.
To prepare for Lemma 1, let Z,Z1, Z2, . . . Zn be i.i.d. random variables relative
to a probability triple (Ω,Σ, P ∗). Let G be a set and, for each ν ∈ G, let fν(· |
·) : Z×

⋃n−1
i=0 Zi → R+ be a measurable function such that for i ≤ n, P ∗(fν(Zi |

Zi−1) > 0) = 1. The notation fν(Zi | Zi−1) is suggestive of our applications, in
which fν represents a ratio of conditional densities. Define fν(Zn) :=

∏n
i=1 f(Zi |

Zi−1). Let Π be a prior distribution on G and let Π | Zi, η be the generalized
posterior defined as in (1), with pηθ replaced by fην .



Lemma 1. Let Cη = 2 + 2η lnV and suppose for all zn ∈ Zn, fν(zi | zi−1) ∈
[1/V, V ]. For all η > 0 such that for all ν ∈ G, ln E∗Z [f2η

ν (Z)] ≤ u/n, we have:

E∗Zn
[∑n−1

i=0 Eν∼Π|Zi,η[− ln fν(Zi+1 | Zi)]
]
≤

C2η
η E∗Zn [− ln Eν∼Πf

η
ν (Zn)] + C2η−1

η u.
(19)

Proof.

E∗Zn
[∑n−1

i=0 Eν∼Π|Zi [− ln fν(Zi+1 | Zi)]
]

=

η−1
∑n−1
i=0 E∗ZiEν∼Π|Zi

[
E∗
Z̄i+1

[− ln fην (Z̄i+1 | Zi)]
]
≤(a)

η−1
∑n−1
i=0 E∗Zi

[
C2η

(
− ln E∗

Z̄i+1
Eν∼Π|Zi [fην (Z̄i+1 | Zi)]

)
+ (C2η − 1)

(
u
n

)]
≤(b)

η−1
∑n−1
i=0 E∗ZiE

∗
Zi+1

[
C2η

(
− ln Eν∼Π|Zi [fην (Zi+1 | Zi)]

)
+ (C2η − 1)

(
u
n

)]
=

C2η
η E∗Zn

[∑n−1
i=0 − ln Eν∼Π|Zi [fην (Zi+1 | Zi)]

]
+ C2η−1

η u =(c)

C2η
η E∗Zn [− ln Eν∼Πf

η
ν (Zn)] + C2η−1

η u.

(a) follows from Lemma 2 below, applied with T set to the random vector T =
(ν, Z̄i+1) and g((ν, Z̄i+1)) ≡ fην (Z̄i+1 | Zi). (b) is Jensen’s inequality, and (c) is
the telescoping of the Bayesian predictive distribution as in e.g. (9). All other
equalities are immediate.

Lemma 2. Let T be a random vector taking values in some set T . For all mea-
surable functions g : T → [1/V, V ], all η′ > 0, ε ≥ 0 with ln E[g(T )2η′ ] ≤ ε, all
0 < η ≤ η′: E[− ln g(T )] ≤ C2η

η (− ln E[g(T )η]) + C2η−1
η ε.

This lemma slightly extends a result by Barron and Li (1999). It is proved as
Proposition 5 in Grünwald (2011) (in different context, but the modification to
our setting is immediate).
Proof of Theorem 2 We apply Theorem 3 below in the form (23), with G set to
Sn in Theorem 2, the deterministic estimator ν̆ set to η̂, and with fν̂|Zn (zi | zi−1)
set to exp(Eθ∼W̆η̂|Zn |zi−1 [η ln(pθ(zi)/q(zi))]. Here η is just a fixed exponent and
η̂ is the meta-estimator in Theorem 2 indexing the learning rate at which the
randomized estimator W̆η of Theorem 2 is applied. Plugging these substitutions
into (23) using that Z1, Z2, . . . are i.i.d., we get

E∗Zn
[
n∑
i=1

− 1
η ln E∗

Z̄i

[
fν̂|Zn (Z̄i | Zi−1)

]]
≤

E∗Zn
[
n∑
i=1

Eθ∼Wη̂|Zn |Zi−1

[
− ln pθ(Zi)

q(Zi)

]
+ − lnπ(η̂)

η

]
.

where we also divided both sides by η. We now move the inner expectation on
the left-hand side outside of the logarithm by applying Lemma 2 with T = Z̄i,
gη(Z̄i) = fν̂|Zn (Z̄i | Zi−1), using our assumption 0 < η < ηcrit(u)/2, which gives

E∗Zn
[∑n

i=1 E∗
Z̄i

E∗θ∼Wη̂|Zn |Zi−1

[
− ln pθ(Z̄i)

q(Z̄i)

]]
≤

C2η
η E∗Zn

[∑n
i=1− ln E∗

Z̄i

[
fν̂|Zn (Z̄i | Zi−1)

]
+ u

n

]
.

(20)



Combining the previous two equations, dividing by n and recognizing the inner
expectation in the left hand side of (20) to be equal to E∗

θ∼W̆η̂|Zn |Zi−1D
∗(q‖pθ)

gives
1
nE∗Zn

[∑n
i=1 E∗

θ∼W̆η̂|Zn |Zi−1 [D∗(q‖pW̆θ
)]
]
≤

C2η
n E∗Zn

[∑n
i=1 Eθ∼W̆η̂|Zn |Zi−1

[
− ln pθ(Zi)

q(Zi)

]
+ u−lnπ(η̂|Zn)

η

] (21)

The left side is equal to E∗Zn
[
D∗(q‖pces(W̆η̂|Zn ;Zn))

]
. We now take π to be the

uniform prior on Sn, so that for all η ∈ Sn, − lnπ(η) = ln ‖Sn‖ = ln ‖κmax+1‖ =
O(ln lnn). The result now follows from (21), noting that the right-hand side
increases if we replace η̂ | Zn by η ∈ Sn.

Towards Theorem 3 We extend an inequality which, in various guises and level of
detail, was proven earlier by M. Seeger (2002), D. McAllester (2003), O. Catoni
(2007), J.Y. Audibert (2004) (in the context of PAC-Bayesian inference; see
Zhang (2006b) for references to additional relevant papers by these authors),
and A. Barron (with T. Cover (1991) and with J. Li (1999)), and T. Zhang
(2006a,b) in the context of MDL-type inference. Our version is a direct extension
of Theorem 2.1. of Zhang (2006b). Let Z1, Z2, . . ., P ∗, fν and G be as above
Lemma 1, except that now we do not require Z1, Z2, . . . to be i.i.d. All earlier
guises of Zhang’s result assumed that Z1, . . . , Zn are i.i.d. both according to the
‘true’ P ∗ and according to all ‘densities’ fν(Zi | zi−1), which were not allowed to
depend on zi−1. Our application of the inequality to prove Theorem 2 requires us
to extend it to non-i.i.d. models (represented below by fν(Zi | zi−1) which vary
with zi−1). As a by-product, we also extend it to non-i.i.d. Zi (in principle this
should allow us to extend the in this paper to some non-i.i.d. misspecification
settings as considered by Shalizi (2009)). The result compares the expectation
of Zi | Zi−1 to its actually observed value, and then takes another expectation
over the values that can actually be observed. To ease readability, we denote the
Zi in the inner expectation as Z̄i.

Theorem 3. [Extended Zhang’s Inequality] For arbitrary G, let Π (a “prior”)
be a distribution on G and let W̆ :

⋃
n≥0Zn → G be a randomized estimator.

Then, with D(·‖·) denoting KL divergence, we have:

E∗ZnEν∼W̆ |Zn

[∑n
i=1− ln E∗

Z̄i|Zi−1 [fν(Z̄i | Zi−1)]
]
≤

E∗Zn
[
Eν∼W̆ |Zn

[∑n
i=1− ln fν(Zi | Zi−1)

]
+D( (W̆ |Zn) ‖Π)

]
.

(22)

As a special case, suppose G is countable, π is a probability mass function on G,
and ν̆ is a deterministic estimator. Then

E∗Zn
[∑n

i=1− ln E∗
Z̄i|Zi−1 [fν̆|Zn(Z̄i | Zi−1)]

]
≤

E∗Zn
[∑n

i=1[− ln fν̆|Zn(Zi | Zi−1)]− lnπ(ν̆)
]
.

(23)

Theorem 2.1. of Zhang (2006b) is the special case for functions fν that satisfy,
for all i < n, zi ∈ Zi, fν(Zi | zi−1) = gν(Zi) for some fixed gν . The proof is in
Appendix A.
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A Additional Proofs

Existence of Best-Approximating Density (Section 3)

For given P and P ∗, fix an arbitrary p′ ∈ P. There is a 1-to-1 correspon-
dence between P and the set of random variables L := {Lp : p ∈ P}, where
Lp := − log p(Z)/p′(Z), Z ∼ P ∗. By our assumption (3) that U = U(P) < ∞,
these random variables are uniformly bounded by − logU and logU , so by
Prohorov’s theorem (van der Vaart, 1998), the set L is relatively compact in
the topology of weak convergence. This implies that there exists a function
L̃ : Z → [− logU, logU ] such that E∗[L̃] = infp∈P D∗(p′‖p), where we used
the notation of (5). By our assumption that the ratio in (3) is always well-
defined, we have that p′(z) > 0 for all z ∈ Z. Hence there exists a func-
tion q : Z → R+ such that for all z ∈ Z, L̃(z) = − log q(z) + log p′(z). For
this q we have (a) D(P ∗‖q) = infp∈P D(P ∗‖p). By definition of L̃ we must
have supz∈Z{q(z)/p′(z), p′(z)/q(z)} ≤ U . Since, for any p ∈ P we can write
L̃(z) = − log q(z)/p(z) + log p(z)/p′(z) we must also have, (b), U(P ∪ {q}) ≤
2U(P) = V (P). Together, (a) and (b) show that q is a best-approximating den-
sity.

We note that we did not prove that
∫
qdµ < ∞; it is thus conceivable that∫

qdµ =∞ such that q cannot be used to make probabilistic predictions. But this
is of no consequence, since q is only ever used in this paper as a ‘gold standard’
to which other densities p are compared. We never use q itself, neither to make
a prediction nor as a part of a mixture with other p.



Proof of Theorem 3

Without loss of generality, we may assume that Π has density π and, for each
i, zi, W̆ | zi has density w̆(· | zi), where all these densities are with respect to a
common underlying measure. Define, for all ν, the function hν :

⋃n−1
m=0Zm → R+

by

hν(zm) := E∗Zm+1,...,Zn|zm

[ ∏n
i=m+1 fν(Zi | zm, Zm+1, . . . , Zi−1)∏n

i=m+1 E∗
Z̄i|Zi−1 [fν(Z̄i | zm, Zm+1, . . . , Zi−1)]

]
,

with hν(zm) = 0 if the denominator is 0.

Lemma 3. For all ν ∈ G, all m < n, P ∗(hν(Zm) = 1) = 1.

Proof. For m = n− 1, hν(Zm) evaluates to 1 P ∗-almost surely and the result is
obvious. We now show that if the result holds for any 0 < m < n, it also holds
for m − 1, thus proving the result by induction. For convenience we also write
Zij to denote Zj , Zj+1, . . . , Zi.

Suppose then that hν(Zm) = 1, P ∗-a.s. for some m ≥ 1. We can write

hν(Zm−1) = E∗Znm|Zm−1

[ Qn
i=m fν(Zi|Zi−1)Qn

i=m E∗
Z̄i|Zi−1 [fν(Z̄i|Zi−1)]

]
=

E∗
Zm|Zm−1

E∗
Znm+1∼P∗|Zm−1,Zm

 fν(Zm|Zm−1)·
nQ

i=m+1
fν(Zi|Zi−1)

E∗
Z̄m|Zm−1 [fν(Z̄m|Zm−1)·

nQ
i=m+1

E∗
Z̄i|Zi−1 [fν(Z̄i|Zi−1)]

 =

E∗
Zm|Zm−1

 fν(Zm|Zm−1)
E∗
Z̄m|Zm−1 [fν(Z̄m|Zm−1)]

· E∗
Znm+1∼P∗|Zm−1,Zm

 nQ
i=m+1

fν(Zi|Zi−1)

nQ
i=m+1

E∗
Z̄i|Zi−1 [fν(Z̄i|Zi−1)]

 =

E∗Zm|Zm−1

[
fν(Zm|Zm−1)

E∗
Z̄m|Zm−1 [fν(Z̄m|Zm−1)]

· h(Zm)
]

(a)
=

E∗Zm|Zm−1

[
fν(Zm|Zm−1)

E∗
Z̄m|Zm−1 [fν(Z̄m|Zm−1)]

· 1
]

(b)
= 1,

where (a) follows by induction and (b) is immediate.

In particular, note that hν(Z0) (a number rather than a function) is well-defined,
and the lemma implies that hν(Z0) = 1, P ∗-almost surely, so that if we set

Sn,ν :=
∏n
i=1 fν(Zi | Zi−1)∏n

i=1 E∗
Z̄i|Zi−1 [fν(Z̄i | Zi−1)]

we have for all ν ∈ G E∗Zn [Sn,ν ] = hν(Z0) = 1 and hence E∗Zn [Eν∼Π [Sn,ν ]] = 1
for any prior Π, in particular the one we chose. The result follows immediately



upon noting (with D abbreviating D( W̆ |Zn ‖Π))

E∗
Zn

E
ν∼W̆ |Zn

[
n∑
i=1

− ln E∗
Z̄i|Zi−1

[fν(Z̄i | Zi−1)]−
[
n∑
i=1

[− ln fν(Zi | Zi−1)] +D

]]
=

E∗
Zn

E
ν∼W̆ |Zn

[
− ln w̆(ν|Zn)

π(ν) −
n∑
i=1

ln E∗
Z̄i|Zi−1

[fν(Z̄i | Zi−1)] +
n∑
i=1

ln fν(Zi | Zi−1)
]

=

E∗ZnEν∼W̆ |Zn

[
ln
(

π(ν)
w̆(ν|Zn) ·

Qn
i=1 fν(Zi|Zi−1)Qn

i=1 E∗
Z̄i|Zi−1 [fν(Z̄i|Zi−1)]

)]
≤

E∗Zn
[
ln Eν∼W̆ |Zn

[
π(ν)

w̆(ν|Zn) ·
Qn
i=1 fν(Zi|Zi−1)Qn

i=1 E∗
Z̄i|Zi−1 [fν(Z̄i|Zi−1)]

]]
=

E∗Zn [ln Eν∼Π [Sn,ν ]] ≤ ln E∗ZnEν∼Π [Sn,ν ] = ln 1 = 0,

where the equalities are just rearranging and the inequalities are both Jensen’s.
This proves (22). To show that (23) is a special case, suppose that G is countable,
Π has mass function π and W̆ represents the deterministic estimator ν̆, i.e. for
all zn ∈ Zn, W̆ | zn has mass function w̆(ν | zn) with w̆((ν̆| zn) | zn) = 1. Then
all expectations of fν(· | ·) over ν ∼ W̆ | Zn can be replaced by fν̂(· | ·). (23)
now follows because

D( (W̆ |zn) ‖Π) =
∑
ν

w̆(ν | zn) log
w̆(ν | zn)
π(ν)

= − log π( (ν̆ | zn) ).

The result is proven.


