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studied by many machine learning theorists and 
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– on-line sequential prediction without stochastics
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Plan of the Talk

Why these 
three?

• I will describe three settings of inductive inference 
studied by many machine learning theorists and 
some statisticians

– on-line sequential prediction without stochastics
– statistical learning with “oracle bounds”

– statistical learning with “empirical bounds”

• In all three settings a particular form of Ockham’s 
razor plays a crucial role. Goals of the talk are 

1. to introduce these settings to philosophers
2. to thereby highlight the importance of this form of 

Ockham’s razor

3. To argue some specific things about Ockham...



Form of Ockham’s Razor

• In all three settings, one gets tight bounds on 
performance of algorithms which involve trade-off 

between error term and codelength or minus log prior

term

• can be interpreted as precise form of Occam’s razor:

– if one uses a “complex” model (many bits needed to encode 
hypothesis) one needs more data before one gets good 
performance (because one has to counter overfitting)

− logW (θ) (always > 0)



Three Extreme Positions

• BAYES: All these prior-dependent methods are 
essentially Bayesian, which is as it should be

• NFL: These and other description-length/prior-based 
notions of Ockham’s razor are essentially arbitrary, 
because you can make any hypothesis arbitrarily 
‘simple’ or ‘complex’ by changing the prior

• MDL/Kolmogorov: By choosing the “right” priors, 
these methods can be made “fully objective”
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Three Extreme Positions

• BAYES: All these prior-dependent methods are 
essentially Bayesian, which is as it should be

• NFL: These and other description-length/prior-based 
notions of Ockham’s razor are essentially arbitrary, 
because you can make any hypothesis arbitrarily 
‘simple’ or ‘complex’ by changing the prior

• MDL/Kolmogorov: By choosing the “right” priors, 
these methods can be made “fully objective”

Settings are game-

theoretic/frequentist

bounds are tight + not nearly 

everything goes!

there is a subjective component but it is to be 

understood as luckiness rather than belief

all three positions are nonsensical
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1. On-Line Sequential Prediction
• no stochastic assumptions

2. Statistical Learning
• i.i.d. assumption (but no “model true”)

• oracle bounds, confidence bounds
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Menu

1. On-Line Sequential Prediction
• no stochastic assumptions

2. Statistical Learning
• i.i.d. assumption (but no “model true”)

• oracle bounds, confidence bounds

3. What do priors have to do with Ockham?
• not Bayesian validation of Ockham 

4. What is the role of subjectivity? Luckiness!



Universal Prediction

• There exist prediction strategies for 

sequentially predicting data that always work 

well (in a relative sense), no matter what 

data are observed
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(note: we know nothing about weather physics ourselves)



Universal Prediction

• Suppose we have two weather forecasters

– Marjon de Hond (NOS, public TV)

– Peter Timofeeff (RTL4, commercial TV)

• On each i (day), Marjon and Peter announce the 

probability that               ,i.e. that it will rain on day

• We would like to combine their predictions in some 
way such that for every sequence                              

we predict almost as well as whoever turns out to be 
the best forecaster for that sequence

– If, with hindsight, Marjon was better, we predict as well as 
Marjon

– If, with hindsight, Peter was better, we predict as well as 
Peter



Universal Prediction

• A prediction strategy     is a function that, at each time point i, 
based on inputs available at time i, outputs a prediction   

(probability distribution for           )       

• Marjon and Peter are prediction strategies 
(using inputs and algorithms that we don’t know)

• Our goal: design prediction strategy       that, at time i,

– uses as inputs only past data and past and current 
predictions of Marjon and Peter, and

– for every sequence                                   predicts almost as 
well as the best forecaster for that sequence

• Surprisingly, there exist strategies that achieve this. 



Logarithmic Loss

• To compare performance of different prediction 
strategies, we need a measure of prediction quality

• In this talk, prediction quality measured by log loss:

• corresponds to two important practical settings:

– data compression, sequential gambling with 

reinvestiment



Universal prediction with log loss

• We would like to combine predictions such that for 
every sequence                              we predict almost 

as well as the best forecaster for that sequence

• It turns out that there exists a universal strategy     

such that, for all

• Losses increase linearly in n so this is very good!



Universal prediction with log loss

• Let       be a countable set  and let                    be  
“probabilistic” predictors, identified with distributions on    

• Examples:

– is a finite set of weather forecasters

– represents set of all Markov chains of each order with 
rational-valued parameters

– represents all polynomials of each degree with rational-
valued coefficients, turned into distributions by the Gauss device

• GOAL: given                   , construct a new predictor 

predicting future data ‘essentially as well’ as any of the
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• One possibility is to act Bayesian:

1. Put some prior       on 

2. Predict with Bayesian predictive distribution



A Bayesian Strategy

• One possibility is to act Bayesian:

1. Put some prior       on 

2. Predict with Bayesian predictive distribution

is Bayes posterior!
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• For all sequences of each length n, regret of Bayes
bounded by constant depending on   , not on n



Bayes is very good universal predictor

• For all n,     , all    :

• For all sequences of each length n, regret of Bayes
bounded by constant depending on   , not on n

• For “nonmixable” loss functions like 0/1-loss and 
absolute loss, need to change this a little (Vovk!)

• But first we’ll say something about Luckiness and 
Ockham



First Glimpse of Luckiness

• For all n,     , all    :

if nonuniform: “luckiness term”
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• If the best     turns out be one on which you had put 
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- good (bound on) performance

• If you had put low prior on all good    you have bad luck

• yet bound holds for all data, irrespective of your luck



First Glimpse of Luckiness

• For all n,     , all    :

• If the best     turns out be one on which you had put 
high prior, then you are lucky on the data
- good (bound on) performance

• If you had put low prior on all good    you have bad luck

• yet bound holds for all data, irrespective of your luck

you can put high prior on    if you believe that it’s likely to lead to 

good predictions (much weaker than: if it is ‘true’), 
but also if... (see later)



Ockham

• For all n,     , all    :

• Term also implies a form of Ockham’s Razor:      
entities should not be multiplied beyond necessity

The more     I consider, the more data I need before the 
bound becomes good

– We are not considering complexity of individual 
here – just of the collective! 

Complexity term
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• This is clear for uniform prior on finite

e.g.

data compression interpretation easy 



Ockham

• The more     I consider, the more data I need

• This is clear for uniform prior on finite

• But it still holds for nonuniform prior:

no matter what prior     you use, at most a fraction of         

. ‘s  can be additionally compressed by    bits or more: 

e.g.

data compression interpretation easy 



Uncountable “Models”

• If     parametric and elements interrelated (say, all 
Markov chains of order             ) we can discretize in a 

clever way and put uniform prior on discretized 

elements, to get, once again, uniform bounds: for all 

can be computed !

θ ∈ Θ, n, yn,



Uncountable “Models”

• If     parametric and elements interrelated (say, all 
Markov chains of order             ) we can discretize in a 

clever way and put uniform prior on discretized 

elements, to get, once again, uniform bounds: for all 

• this is worst-case optimal regret

• can in fact get around discretization, though

θ ∈ Θ, n, yn,



Uncountable “Models”

• We can now put a meta-prior on k and get, uniformly for 

all

• Similar things can be done with “nonparametric” models 

– the regret relative to     now depends on smoothness 

properties of   ,e.g. how often is its density differentiable 

θ ∈ Θ = ∪∞k=1Θk, n, y
n,

θ
θ



Ockham+Luckiness

• Ockham+Luckiness Principle: given a large structured ‘model’     
you can (repeatedly!) single out a small, less complex subset   

and construct a meta-prior such that 

• Rationale:

– If you’re lucky, you’ll do much better than with the 
original prior on the large model 

– If you’re not lucky, you will hardly do worse than with 
the original prior on the large model  



Ockham+Luckiness

• Ockham+Luckiness Principle: given a large structured ‘model’     
you can (repeatedly!) single out a small, less complex subset   

and construct a meta-prior such that 

• Rationale:

– If you’re lucky, you’ll do much better than with the 
original prior on the large model 

– If you’re not lucky, you will hardly do worse than with 
the original prior on the large model  

logn

2 logn



Ockham+Luckiness

Luckiness-Ockham Principle has

• Subjective Component: you can decide on the “simple 

subset” yourself. Also within the simple subset, you 
don’t have to use a uniform prior

• Objective Component:

1. Some things simply cannot be arranged by fiddling with 
the prior (e.g.) “make all second degree polynomials 
simpler than all first-degree polynomials”. The set of 
second degree polynomials is inherently more complex!

2. Some things can be done but are objectively stupid, like 
discretizing      such that                   regret bound not tight



Ockham+Luckiness

Luckiness-Ockham Principle has

• Subjective Component: you can decide on the “simple 

subset” yourself. Also within the simple subset, you 
don’t have to use a uniform prior

• Objective Component:

1. Some things simply cannot be arranged by fiddling with 
the prior (e.g.) “make all second degree polynomials 
simpler than all first-degree polynomials”. The set of 
second degree polynomials is inherently more complex!

2. Some things can be done but are objectively stupid, like 
discretizing      such that                   regret bound not tight



Menu

1. On-Line Sequential Prediction
• no stochastic assumptions

• still need to go beyond log-loss

2. Statistical Learning
• i.i.d. assumption (but no “model true”)

• oracle bounds, confidence bounds



General Loss Functions

• Let                                           be arbitrary loss fn.

• “Expert” (hypothesis)    is a prediction strategy, i.e. for 

each        , it outputs  an action

• Define  

• Examples: 

– Log-loss:      is set of distr. on                                      

– 0/1-loss (“rain” or “no rain”)

loss : Y ×A → [0,∞]

loss(yn, θ) :=
n∑

i=1

loss(yi, θ | y
i−1)

i, yi θ | yi
θ

A = Y = {0,1}

A Y, loss(y, pθ) = − log pθ(y)

loss(y, a) = |y − a|



Generalized Bayesian Posterior

• Define “generalized posterior” as 

• With           and log-loss, this is just standard posterior 

Wη(θ | y
i) =

W(θ)e−ηloss(yi,θ)

∑
θ′∈ΘW(θ′)e−ηloss(yi,θ′)

loss(yn, θ) :=
n∑

i=1

loss(yi, θ | y
i−1)

η = 1

Vovk ’90, Audibert ’04, Zhang ’06, Hjorth & Walker,. G. ‘11



Aggregating Algorithm/Hedge

• Both algorithms work like this: 

1. fix “appropriate”      

2. For each         ,  calculate generalized posterior    
and predict           using some fixed 

function f ,    

η

Vovk ’90, Freund & Shapire ‘98

i, yi

Wη(θ | y
i) yi+1

âi+1 := f(Wη(θ | y
i))

UPSHOT: the algorithm is not Bayes any more, 
but the bounds still involve priors!



Regret Bounds for AA/Hedge:

• We have for all :

≤






− logW(θ) for log-loss
1
η · − logW (θ) for η-mixable loss functions

C ·
√
− logW (θ) for other bounded losses, e.g.0/1∗

n, yn, θ

regret(yn,AA, θ) :=

loss(yn,AA)− loss(yn, θ)
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Priors remain there even though 
we have different loss fn! 
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• We have for all :

≤






− logW(θ) for log-loss
1
η · − logW (θ) for η-mixable loss functions

C ·
√
− logW (θ) for other bounded losses, e.g.0/1∗

n, yn, θ

regret(yn,AA, θ) :=

loss(yn,AA)− loss(yn, θ)

no stochastic assumptions whatsoever!



Regret Bounds for AA/Hedge:

• We have for all :

≤






− logW(θ) for log-loss
1
η · − logW (θ) for η-mixable loss functions

C ·
√
− logW (θ) for other bounded losses, e.g.0/1∗

n, yn, θ

regret(yn,AA, θ) :=

loss(yn,AA)− loss(yn, θ)

These bounds are (in appropriate sense) 

optimal up to constant factors (Vovk 2001) 



Apply to Statistical Learning Theory

• Let                        ,   

• Let       be countable set of predictors

.    is prior on 

• Example: classification: 0/1 loss,     are classifiers

– Spam filtering, object recognition, ...                         

Si = (Xi, Yi) S1, S2, . . . i.i.d. ∼ P ∗

Θ : X → AΘ
ΘW

Vapnik 1998, many others!

Θ

loss(y, θ(x)) = |y − θ(x)|

risk(θ) = EX,Y∼P ∗[loss(Y, θ(X))] = P ∗(Y �= θ(X))



Generalized MAP/2-Part MDL

• The Generalized   -MAP/MDL estimator is defined as

(for log-loss and            this is standard MAP) 

θ̈η := arg min
θ∈Θ

η ·
n∑

i=1

loss(yi, θ(xi))− logW (θ)

η

η = 1

penalized empirical risk minimization; 
ridge regression

error term complexity term



Oracle Risk Bounds, 2-Part Estimate

• “risk” is expected loss: 

• “excess risk” is concept analogous to “regret”

excess-risk(P ∗, θ̈η, n) :=

ESn∼P ∗
[
risk(P ∗, θ̈η|Sn)− risk(P ∗, θopt)

]

θopt = arg min
θ∈Θ

EX,Y∼P ∗[loss(Y, θ(X))]

risk(P ∗, θ) = EX,Y∼P ∗[loss(Y, θ(X))]

Additional expcted loss incurred by the learned

predictor compared to the best predictor



Oracle Risk Bounds, 2-Part Estimate

• We have for all , for all                       :

≤






C
η ·

− logW (θopt)
n for η-mixable loss functions

C ·

√
− logW (θopt)

n for other bounded losses, e.g.0/1∗

P ∗

excess-risk(P ∗, θ̈η, n)

0 < η < ηcrit



log-loss        density estimation

• Suppose model correct, i.e. contains “true”       , i.e. 

• Then log-loss is 1-mixable, and excess-risk is KL 
divergence

≤
C

η
·
− logW(θopt)

n
for η-mixable losses

P ∗

excess-risk(P ∗, θ̈η, n)

η = 1

= ESn∼P ∗
[
KL(θopt‖θ̈η|Sn)

]

Pθopt
(Y |X) = P ∗(Y | X)



Oracle Risk Bound, Randomized Est.

• Problem: in practice we may have large, 
nonparametric model, so we cannot assumeW (θopt) > 0



Oracle Risk Bound, Randomized Est.

• Problem: in practice we may have large, 
nonparametric model, so we cannot assume

• If, instead of doing “generalized MAP”, we randomize 
according to the posterior, then we get for all , 

W (θopt) > 0

P ∗

≤






C
η ·

comp
n for η-mixable loss functions

C ·
√

comp
n for other bounded losses, e.g.0/1∗

excess-risk(P ∗,Wη | Z
n) :=

comp = inf
ε≥0

{ ε − logW (θ : excess-risk(P ∗, θ) ≤ ε) }

η < ηcrit



Oracle Risk Bound, Randomized Est.

• Problem: in practice we may have large, 
nonparametric model, so we cannot assume

• If, instead of doing “generalized MAP”, we randomize 
according to the posterior, then we get for all , 

W (θopt) > 0

P ∗

≤






C
η ·

comp
n for η-mixable loss functions

C ·
√

comp
n for other bounded losses, e.g.0/1∗

excess-risk(P ∗,Wη | Z
n) :=

These bounds are often* minimax optimal

(Barron ’98,  Audibert/Tsybakov ’04, Zhang ‘06)

η < ηcrit



Confidence Risk Bound

• Problem: previous bounds say that generalized Bayes 

method learns ‘as fast as possible’, but involve an 

unknown quantity (    )

– We would like to have a confidence bound for our predictions 
for actual, given data that does not depend on unknown 
quantities

P ∗



Confidence Risk Bound

• Problem: previous bounds say that generalized Bayes 

method learns ‘as fast as possible’, but involve an 

unknown quantity (    )

– We would like to have a confidence bound for our predictions 
for actual, given data that does not depend on unknown 
quantities

• Provided by McAllester’s PAC-Bayes generalization 
bounds: for all                           , with prob. at least   

:
P ∗,K > 0, η > 0

risk(P ∗, θ̈η) ≤
1

n

n∑

i=1

loss(Yi, θ̈η(Xi))

1− e−K

+

√
− logW (θ̈η) +K

n

P ∗



Taking Stock

• Complexity-Regularizing Priors appear in

– nonstochastic worst-case regret bounds

(game-theoretic analysis)

– oracle risk bounds w.r.t. general loss functions

(frequentist analysis)

– oracle confidence bounds wrt general loss fns 
(frequentist analysis)

• So “priors” may be pretty fundamental!

– analysis was never Bayesian though
(cf. Complete Class Thm.) 



Did I deliver? 
Three Extreme Positions, Revisited

• BAYES: All these prior-dependent methods are 
essentially Bayesian, which is as it should be

• NFL: These and other description-length/prior-based 
notions of Ockham’s razor are essentially arbitrary, 
because you can make any hypothesis arbitrarily 
‘simple’ or ‘complex’ by changing the prior

• MDL/Kolmogorov: By choosing the “right” priors, 
these methods can be made “fully objective”

“all three positions are nonsensical”



Did I deliver? 
Three Extreme Positions, Revisited

• BAYES: “All these prior-dependent methods are 
essentially Bayesian, which is as it should be”
– no: algorithms were not Bayesian (yet similar)

purely Bayesian algorithms may fail dramatically in 
such cases (G. and Langford, 2007) 

– You may assign small prior to certain    because 
you think they are not likely to predict well...

– But also because they may not be useful!
– bounds hold irrespective of prior assumptions

• If you’re lucky, prior is well aligned with data, and bound 
is strong. But bound holds whether you are lucky or not! 
There’s no such thing in Bayesian inference

θ



Did I deliver? 
Three Extreme Positions, Revisited

Note though that I’m certainly not anti-Bayes. 

It’s just that I think that there exist interesting settings of 

inductive inference  in which Bayes is not the whole story

Similarly I’m not strictly instrumentalist – sometimes one 
wants to be realist, and it is also interesting to study 

Occam in that setting 



Did I deliver? 
Three Extreme Positions, Revisited

• NFL: These and other description-length/prior-based 
notions of Ockham’s razor are essentially arbitrary, 
because you can make any hypothesis arbitrarily 
‘simple’ or ‘complex’ by changing the prior

– NO NO NO . You cannot make the set of second-
degree polynomials simpler than the set of first-
degree polynomials by fiddling with the prior, 
unless you use a prior which can be “uniformly 
beaten” by another prior

– And relatedly, nowhere do we make the (false) 
assumption that “the truth is likely to have a 
short description”



Did I deliver? 
Three Extreme Positions, Revisited

• MDL/Kolmogorov: By choosing the “right” priors, 
these methods can be made “fully objective”

– No: a subjective element is inherent. Which 
“simple” subset do you prefer? There are many 

– For many parametric models “minimax optimal 
priors” (eg Jeffreys’ prior)  for a given loss function 
do not exist

• You are forced to give a preference to a subset of the 
parameters



I didn’t tell you about...

• Nonparametric Bayes inconsistency and 

Ockham (rel. to Diaconis-Freedman results)

• Ockham in cross-validation (really: 

prequential validation)



Luckiness

• Idea of combining luckiness with complexity is all 
over the place in modern statistics, though not always 

(I admit) with complexity determined in terms of priors

• Prime Example: Adaptive Estimation

• Difference between luckiness and belief-priors... 

where are the philosophers???

• One of the first mentions on a related idea was by 

Kiefer, in the context of ‘conditionalist frequentist 
inference’



Some Lucky References

Explicit Luckiness in Statistics and Machine Learning: 

• J. Kiefer, Conditional Confidence Statements and Confidence 
Estimators, JASA, 72(360), 1977. First occurrence (?) of "lucky"

• J. Shawe-Taylor, P. Bartlett, R. Williamson, and M. Anthony. 
Structural risk minimization over data-dependent hierarchies. 
IEEE Transacticions on  Information Theory 44(5),1998

• R. Herbrich and R. Williamson. Algorithmic Luckiness, Journal 
of Machine Learning Research 3 (2002)

Luckiness + Ockham:

• Ch. 17 of my book, “The Minimum Description Length Principle” 

• S. de Rooij and G. . Luckiness and Regret in Minimum 
Description Length Inference. Handbook of the Philosophy of 
Science, Vol. 7: Philosophy of Statistics (eds. P.Bandyopadhyay 
and M. Forster). Elsevier  2011



• “Statistics is too complex to be codified    
in terms of a simple prescription that is 
a panacea for all settings” 
Jack Kiefer (father of “luckiness” ideas) in:

The Foundations of Statistics: Are There Any?
(Synthese, 1977)

• That still holds today. Nevertheless I firmly believe, 
and hope to have shown, that some useful 
unifications are possible based on bits and priors 

• Thank you!


