
MDL exercises, tenth handout
(due May 11th, 14:00) (there are 3 pages)

1. [Bad Optional Continuation, with p-values] Consider a standard p-
value based null hypothesis test. According to the null hypothesis H0 =
{P0}, the data X1, X2, . . . are i.i.d. normally distributed with mean 0 and
variance 1. According to the alternative, H1 = {Pµ : µ ∈ R, µ 6= 0} they
are i.i.d. normal, with mean µ 6= 0 and variance 1. You take the standard
level of significance α = 0.05. For a test based on n data points, you use
as your test statistic the standard Z-score Zn = (

∑n
i=1Xi)/

√
n. This

has a N(0, 1) distribution under the null hypothesis. You do a two-sided
test, so that the p-value based on observing a particular value zn for the
Z-score is given by p(zn) := P0(|Zn| ≥ |zn|). We write p̄n for the random
variable corresponding to p, i.e. if Zn = zn then p̄n = p(zn). Note that
we deal with a strict p-value, i.e. for 0 ≤ α ≤ 1, P0(p̄n ≤ α) = α.

a) You first perform a hypothesis test based on n = 50 data points.
Suppose that the null is true. What is the probability that you reject
the null? (this probability is called the Type-I error)

b) Now suppose that in practice you observe, after 50 data points, a p-
value of p̄50 = 0.10. Not enough to reject, but promising! So you ask
your boss if there is money and time for additional analysis. Your
boss says yes, so you gather an additional 50 data points. You then
analyze the data as if you had originally planned to observe 100 data
points, i.e. you calculate the p-value p(z100) and reject if this p-value
is ≤ 0.05. Explain why this approach is problematic (you may use the
statement that you are asked to prove in the next question in your
answer to this question).

c) Suppose you follow the following protocol: if, after 50 data points,
the resulting p-value p(z50) is no greater than α = 0.05, you reject the
null. If it is larger than 0.1, you accept the null and you stop. If it is
between 0.05 and 0.10, you gather an additional 50 data points. You
then re-calculate the p-value p(z100). If p(z100) is smaller than 0.05,
you reject the null after all, otherwise you accept the null and you
stop.
Suppose that the null hypothesis is true. Show that with this proto-
col α′, the actual probability of rejection under P0, is at least 0.056.
(HINT: use the fact that for all n, p̄n ≤ 0.1 iff |zn| ≥ 1.64).

d) Consider the situation of question a) again. After observing p(z50) =
0.08 with 50 data points you would really like to continue with 50
more data points. In light of the answer of the previous question, you
decide that this may be a good idea after all, as long as you report as



your employed significance level α′ instead of α. Explain why this is
not a good solution to the problem.

e) Consider the following exaggerated version of the previous ‘optional
continuation’ protocol: you start with n = 50 data points. If p̄n ≤ 0.05
you reject the null and you stop. Otherwise, you observe an additional
data point Xn+1; if p̄n+1 ≤ 0.05, you reject the null and you stop.
Otherwise, you observe an additional point Xn+2. If p̄n+2 ≤ 0.05,
you reject the null and you stop. Otherwise you continue, observe
Xn+3, reject if . . ., and so on. Suppose that the null hypothesis is
true. Show that with this procedure, you will then almost surely stop
at some finite n and reject the null (HINT: use the ‘law of the iterated
logarithm’).

2. [Good Optional Continuation, with S-Values] Now consider the
following statistic for the problem above, whose definition depends on a
choice for a prior density w on µ:

Sn,w(X1, . . . , Xn) :=

∫
µ∈R pµ(Xn)w(µ)dµ

p0(Xn)
,

where pµ is the density of X1, . . . , Xm under Pµ, and Pµ is as in the
previous exercise.

a) Show that, for arbitrary prior density w and arbitrary n, Sn,w(Xn) is
an S-value.

b) Consider the protocol of Exercise 1c). According to S-value theory,
we can safely (in terms of Type-I error) output as evidence in this
protocol

S′(X100) :=

{
S50,w(X50) if we stop at n = 50

S50,w(X50) · S50,w(X51, . . . , X100) if we stop at n = 100

Show (i) that S′(X100) is an S-value and (ii) explain why this implies
that P0(S′(X100) ≥ 1/α) ≤ α. (HINT for (i): let τ ∈ {50, 100} be
the random variable indicating at what time we stop. Let 1τ=j be the
indicator function which takes value 1 if τ = j and 0 otherwise. Use
that:

EP0 [S′(X100)] = EP0 [1τ=50S
′(X100) + 1τ=100S

′(X100)].

)

3. One possible interpretation of an S-value is as ‘an inverse p-value equiped
with a prior over how extreme it is’. For simplicity we only consider this
interpretation in a special case in which the outcome space X = N0 is
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countable and that there is just one outcome. Let p(x) be a p-value for
some given null distribution P0, and let p̄ be the corresponding random
variable, i.e. if X = x then p̄ := p(x). Since X is countable, we do not
require p to be strict, i.e. we have, for 0 ≤ α ≤ 1, P0(p̄ ≤ α) ≤ α,
with the rightmost inequality being strict for some α. For concreteness,
you can think of the case that the null distribution P0 expresses that X
is distributed according to a Poisson distribution with given mean value
parameter µ0, and p(x) := P0(X ≥ x); but your derivation should hold
for general p-values on countable X .

a) Take an arbitrary probability mass function π on the values that p̄ can
take. Show that S(p̄) := π(p̄) · 1/p̄ is an S-value, i.e. EP̄0

[S(p̄)] ≤ 1.

b) Suppose that P0 has infinite support, i.e. there exist infinitely many
x ∈ N such that P0(X = x) > 0. For bonus points, you may show that
for every c > 0, S′(p̄) := c/p̄ is not an S-value, i.e. EP̄0

[S′(p̄)] = ∞.
(This means that we really need to ‘downweight’ 1/p̄ for small p̄ to
make it an S-value). (HINT: first consider the case where P0 is a
distribution such that p̄ ∈ {1, 1/2, 1/4, 1/8, . . .}) (NOTE: this bonus
exercise is not so easy so don’t spend too much time on it).
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