MDL exercises, eleventh handout (final obligatory homework exercises) (due May 18th, 14:00)

- 1. Let f(x) be a density function on $[0, \infty)$ with fixed mean $1/\lambda$. Define $g(x) = \lambda e^{-\lambda x}$, the density function of the exponential distribution on the same domain and with the same mean. Show that H(f) is maximized by choosing f = g, by evaluating $0 \le D(f||g)$.
- 2. Jensen's inequality states that $E[f(X)] \ge f(E[X])$ for conve^x f. Use this inequality to find (a) a lower bound on the entropy H(P) for a distribution P on a finite sample space, and (b) an upper bound on this entropy (Hint: for the upper bound, rewrite the entropy as $-\sum_{x} P(x)(f(1/P(x)))$) with $f \equiv -\log$). Compare this upper bound to the entropy for the uniform distribution on that sample space and for a nonuniform distribution on that space. In which case is the bound tighter?
- 3. For two distributions P_0 and P_1 defined on the same space \mathcal{X} with $P_0 \neq P_1$, let P_{α} be the α mixture between P_0 and P_1 , i.e. $P_{\alpha}(x) = (1 \alpha)P_0(x) + \alpha P_1(x)$. Show that the entropy $H(P_{\alpha})$ is strictly concave as a function of $\alpha \in [0, 1]$.
- 4. Consider the following three families of distributions. For each of these models, prove that they are an exponential family. HINT: you can show that a family is an exponential family by rewriting it in the exponential form $\frac{1}{Z(\beta)}e^{\beta\phi(x)}r(x)$ for some function $\phi(x)$.
 - a) The set of all distributions on $\{0,1\}$ with mean $E[X] = \theta$, for all $0 \le \theta \le 1$ (How is this set of distributions called?).
 - b) The set of all normal distributions with a variance of one, for all means $\mu \in \mathbb{R}$.
 - c) The set of power law distributions, also known as the *Pareto family*: $P_{\theta}(n) = n^{-\theta} / \sum_{n=1}^{\infty} n^{-\theta}$ for $n \in \{1, 2, ...\}$ and $\theta > 1$.
- 5. This question refers back to questions 4(a)-4(b).
 - a) Is the distribution corresponding to θ in question 4(a) the maximum entropy distribution among all distributions on $\{0, 1\}$ with mean $E[X] = \theta$? Why (not)?
 - b) Is the distribution corresponding to mean μ in question 4(b) the maximum entropy distribution among *all* distributions on \mathbb{R} with mean μ ? Why (not)?