MDL exercises, eleventh handout (final obligatory homework exercises)
(due May 18th, 14:00)

1. [1 point] Let f(z) be a density function on [0, c0) with fixed mean 1/A\.
Define g(z) = Ae™*, the density function of the exponential distribu-
tion on the same domain and with the same mean. Show that H(f) is
maximized by choosing f = g, by evaluating 0 < D(f||g).

Solution:
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where we used that E;[X] = 1/A = E,[X]. By nonnegativity of the
Kullback-Leibler divergence, we see

D(f|lg)In2> 0= H(g) — H(f) >0,
so indeed H(f) is maximized by choosing f = g.

2. Jensen’s inequality states that E[f(X)] > f(E[X]) for conve® f. Use this
inequality to find (a) [1 point] a lower bound on the entropy H(P) for
a distribution P on a finite sample space, and (b) [1 point] an upper
bound on this entropy (Hint: for the upper bound, rewrite the entropy
as —y  P(z)(f(1/P(x))) with f = —log). Compare this upper bound
to the entropy for the uniform distribution on that sample space and
for a nonuniform distribution on that space. In which case is the bound
tighter?
Solution:

Let us denote X for the sample space. Then we have
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and
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Since the uniform distribution on X is a maximizer of the entropy, the
bound is tighter for the uniform distribution. In fact, we have equality
in this case:
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3. [1 point] For two distributions Py and P; defined on the same space
X with Py # Py, let P, be the a- mixture between Py and P, i.e.
Py(x) = (1 — a)Py(x) + aPy(z). Show that the entropy H(P,) is strictly
concave as a function of « € [0, 1].

Solution:

The most straightforward way is to do this by twice differentiating to a.
There is however a shorter way: fix an arbitrary distribution @) on X and
consider the function

fola) = Ep,[-log Q(X)] = (1-a)Ep [~ log Q(X)]+aEp - log Q(X)].

Obviously fg(a) is linear in « for each Q. Now fix 0 < o/ < 1. Then
fp,, (@) is obviously a linear function of a € [0, 1] with fp ,(a/) = H(Py).
Also, foralla € [0,1], H(Py) < fp_, (), because H(P) = mingy o) Ep[—log Q(X)].
Hence, for all 0 < o/ < 1 the entropy lies underneath its tangent at o’;



but this means it must be a concave function (make a drawing). Where
we use that fp () is the tangent of o +— H(P,) at o/, because it is a
linear function that touches the curve.

. Consider the following three families of distributions. For each of these
models, prove that they are an exponential family. HINT: you can show
that a family is an exponential family by rewriting it in the exponential
form ﬁﬁ)eﬁ‘ﬁ(“")r(:ﬂ) for some function ¢(x).

a)

[1 point] The set of all distributions on {0,1} with mean F[X] =6,
for all 0 < 0 <1 (How is this set of distributions called?).

Solution:

This is the set of Bernoulli distributions. Let us denote this distribu-
tion by Py. We know that for x € {0,1}, we can write it as

Py(z) = 0%(1—0)' "
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So we let 8 =1In (%), Z(B) =15 =1+¢€", ¢(z) =z and r(z) = 1.
So this is indeed an exponential family.

[1 point] The set of all normal distributions with a variance of one,
for all means p € R.

Solution:

Let f be the density function of an arbitrary normal distribution with
variance one and mean p € R. Then we have for z € R
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We group all terms that have dependency only on z together, similarly
for u, and all terms that have dependency on both:
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So we let B = p, r(z) = e 7, ¢(z) = z and Z(8) = 2met’/2 =
V271eP?/2 and see that this is indeed an exponential family.



c)

[1 point] The set of power law distributions, also known as the Pareto
family: Py(n) =n=0/35 n7% forn e {1,2,...} and 0 > 1.
Solution:

We see )
-0 il — —Glnn'
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So we let 8 = 60,¢(n) = —lnn, r(n) = 1 and Z(B) simply as the
normalizing term
Ze/ﬂb(x).
n=1

So it indeed is an exponential family.

5. This question refers back to questions 4(a)-4(b).

2)

[1 point] Is the distribution corresponding to # in question 4(a) the
maximum entropy distribution among all distributions on {0, 1} with
mean E[X] =607 Why (not)?

Solution:

It is the maximum entropy distribution, because it is the only distri-
bution on {0,1} with mean 6. Let X be a random variable on {0,1}
with mean 6. Then we see

E[X]=0-P(X=0)+1-P(X =1)=P(X = 1).

Since any distribution on {0, 1} is fully determined by the probability
it gives to either 1 or 0, we see that the distribution is uniquely defined
by its mean. There is, therefore, only one distribution on {0,1} with
mean 6.

[1 point] Is the distribution corresponding to mean p in question 4(b)
the maximum entropy distribution among all distributions on R with
mean p? Why (not)?

Solution:

No it is not, the entropy increases with the variance, so for every p
we have N[y, 2] with higher entropy.



