
MDL exercises, eleventh handout (final obligatory homework exercises)
(due May 18th, 14:00)

1. [1 point] Let f(x) be a density function on [0,∞) with fixed mean 1/λ.
Define g(x) = λe−λx, the density function of the exponential distribu-
tion on the same domain and with the same mean. Show that H(f) is
maximized by choosing f = g, by evaluating 0 ≤ D(f‖g).

Solution:

D(f‖g) ln 2 =

∫ ∞
0

(x) ln

(
f(x)

g(x)

)
dx

= −
∫ ∞
0

f(x) ln g(x)dx+

∫ ∞
0

f(x) ln f(x)dx

= −Ef [ln g(X)]−H(f)

= −Ef [lnλ− λX]−H(f)

= − lnλ− λEf [X]−H(f)

= − lnλ− λEg[X]−H(f)

= −Eg[ln g(X)]−H(f)

= H(g)−H(f),

where we used that Ef [X] = 1/λ = Eg[X]. By nonnegativity of the
Kullback-Leibler divergence, we see

D(f‖g) ln 2 ≥ 0⇒ H(g)−H(f) ≥ 0,

so indeed H(f) is maximized by choosing f = g.

2. Jensen’s inequality states that E[f(X)] ≥ f(E[X]) for convex f . Use this
inequality to find (a) [1 point] a lower bound on the entropy H(P ) for
a distribution P on a finite sample space, and (b) [1 point] an upper
bound on this entropy (Hint: for the upper bound, rewrite the entropy
as −

∑
x P (x)(f(1/P (x))) with f ≡ − log). Compare this upper bound

to the entropy for the uniform distribution on that sample space and
for a nonuniform distribution on that space. In which case is the bound
tighter?

Solution:

Let us denote X for the sample space. Then we have

H(P ) = −
∑
x∈X

P (x) logP (x)

= EP [− logP (X)]

≥ − log (E[P (X)])

= − log

(∑
x∈X

P (x)2

)



and

H(P ) = −
∑
x∈X

P (x) logP (x)

= −
∑
x∈X

P (x) · − log

(
1

P (x)

)
= −E

[
− log

(
1

P (X)

)]
≤ log

(
E

[
1

P (X)

])
= log

(∑
x∈X

P (x)
1

P (x)

)
= log(|X |).

Since the uniform distribution on X is a maximizer of the entropy, the
bound is tighter for the uniform distribution. In fact, we have equality
in this case:

H(U) = −
∑
x∈X

U(x) log(U(x))

=
∑
x∈X

1

|X |
log (|X |)

=
1

|X |
log (|X |)

∑
x∈X

1

= log (|X |) .

3. [1 point] For two distributions P0 and P1 defined on the same space
X with P0 6= P1, let Pα be the α- mixture between P0 and P1, i.e.
Pα(x) = (1−α)P0(x) +αP1(x). Show that the entropy H(Pα) is strictly
concave as a function of α ∈ [0, 1].

Solution:

The most straightforward way is to do this by twice differentiating to α.
There is however a shorter way: fix an arbitrary distribution Q on X and
consider the function

fQ(α) := EPα [− logQ(X)] = (1−α)EP0 [− logQ(X)]+αEP1 [− logQ(X)].

Obviously fQ(α) is linear in α for each Q. Now fix 0 < α′ < 1. Then
fPα′ (α) is obviously a linear function of α ∈ [0, 1] with fPα′ (α

′) = H(Pα′).
Also, for all α ∈ [0, 1], H(Pα) ≤ fPα′ (α), becauseH(P ) = minall QEP [− logQ(X)].

Hence, for all 0 < α′ < 1 the entropy lies underneath its tangent at α′;
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but this means it must be a concave function (make a drawing). Where
we use that fPα′ (α) is the tangent of α 7→ H(Pα) at α′, because it is a
linear function that touches the curve.

4. Consider the following three families of distributions. For each of these
models, prove that they are an exponential family. HINT: you can show
that a family is an exponential family by rewriting it in the exponential
form 1

Z(β)e
βφ(x)r(x) for some function φ(x).

a) [1 point] The set of all distributions on {0, 1} with mean E[X] = θ,
for all 0 ≤ θ ≤ 1 (How is this set of distributions called?).

Solution:

This is the set of Bernoulli distributions. Let us denote this distribu-
tion by Pθ. We know that for x ∈ {0, 1}, we can write it as

Pθ(x) = θx(1− θ)1−x

= (1− θ)
(

θ

1− θ

)x
= (1− θ)eln(

θ
1−θ )x.

So we let β = ln
(

θ
1−θ

)
, Z(β) = 1

1−θ = 1 + eβ, φ(x) = x and r(x) = 1.

So this is indeed an exponential family.

b) [1 point] The set of all normal distributions with a variance of one,
for all means µ ∈ R.

Solution:

Let f be the density function of an arbitrary normal distribution with
variance one and mean µ ∈ R. Then we have for x ∈ R

f(x) =
1√
2π
e
−(x−µ)2

2 .

We group all terms that have dependency only on x together, similarly
for µ, and all terms that have dependency on both:

f(x) =
1√
2π
e
−(x−µ)2

2

=
1√
2π
e
−x2−µ2+2xµ

2

=
1√
2π
e−

x2

2 eµxe−
µ2

2 .

So we let β = µ, r(x) = e−
x2

2 , φ(x) = x and Z(β) =
√

2πeµ
2/2 =√

2πeβ
2/2 and see that this is indeed an exponential family.
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c) [1 point] The set of power law distributions, also known as the Pareto
family : Pθ(n) = n−θ/

∑∞
n=1 n

−θ for n ∈ {1, 2, . . .} and θ > 1.

Solution:

We see

n−θ =
1

nθ
=

1

(elnn)θ
= e−θ lnn.

So we let β = θ, φ(n) = − lnn, r(n) = 1 and Z(β) simply as the
normalizing term

∞∑
n=1

eβφ(x).

So it indeed is an exponential family.

5. This question refers back to questions 4(a)-4(b).

a) [1 point] Is the distribution corresponding to θ in question 4(a) the
maximum entropy distribution among all distributions on {0, 1} with
mean E[X] = θ? Why (not)?

Solution:

It is the maximum entropy distribution, because it is the only distri-
bution on {0, 1} with mean θ. Let X be a random variable on {0, 1}
with mean θ. Then we see

E[X] = 0 · P(X = 0) + 1 · P(X = 1) = P(X = 1).

Since any distribution on {0, 1} is fully determined by the probability
it gives to either 1 or 0, we see that the distribution is uniquely defined
by its mean. There is, therefore, only one distribution on {0, 1} with
mean θ.

b) [1 point] Is the distribution corresponding to mean µ in question 4(b)
the maximum entropy distribution among all distributions on R with
mean µ? Why (not)?

Solution:

No it is not, the entropy increases with the variance, so for every µ
we have N [µ, 2] with higher entropy.
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