
MDL exercises, second handout
(due February 25)

1. Combinatorics and Fixed Length Codes.

a) Show that the number of binary strings of length n with k zeroes is
(n
k

)
.

b) How many bits does it take to code a binary sequence of length n with k zeroes with
a uniform code (assuming both n and k are known to the decoder)?

2. Maximum likelihood.

a) The Bernoulli probability of a sequence with n0 zeroes and n1 ones is θn1(1 − θ)n0 .
Compute the maximum likelihood estimator for the parameter, that is the value of θ
that maximizes this probability.

b) The numbers x1, . . . , xn are sampled from an exponential distribution, which has den-
sity function f(x) = λe−λx. Compute the maximum likelihood value for λ.

c) Suppose that we model data with a uniform distribution on the real numbers between
a and b. Given outcomes x1, . . . , xn, what are the maximum likelihood values for a
and b?

3. Context Free Grammars

(a) Consider the Context Free Grammar (CFG) described in Section 1 of the handout.
Consider data D consisting of the single sentence The statistician avoids the

model. Compute the code lengths of this data given the grammar on top of page (3),
as well as given the promiscuous, and the ad-hoc grammars, using the code described
in the handout. Use the following grammar for D:

D → SD | ε

Use the diamond to separate sentences or end the data only if necessary.

(b) Again calculate L(D|H) given the grammar on top of page 3 of the handout, but
now for the sentence The statistician avoids the big complex model.

(c) Again calculate L(D|H) given the grammar on top of page 3 of the handout given
both sentences, but now with a grammar which is slightly modified: “Adjectives”
in the second rule is replaced by “Adjective”, and the fourth rule (starting with
“Adjectives”) is removed.

4. This question can only give you bonus points. But do try to come up with a good answer!
Somebody claims that the code L(H) for encoding hypotheses given in the handout makes
no sense: each production rule is encoded as a sequence of bitstrings indicating (non-)
terminal symbols, but it is nowhere specified which of these bitstrings corresponds to
which word in natural language (e.g. prefers might be encoded as 00101, but how can
the decoder know this?). Explain why this is not a real problem.

1


