MDL exercises, fifth handout

Solutions

31 March 2020

[1 free point]

1. Let {py|6 € O} © C R be a smoothly parameterized i.i.d. 1-dimensional model (see page 65
in the book) and let I(0) denote the Fisher information at #. You may assume that, in the
exercises below, the order of taking expectations and differentiating can be interchanged, i.e.
the expected value of a derivative is the derivative of the expected value.

(a) [1 point] Show that, for 6,6’ in the interior of ©, the KL divergence (relative entropy)

satisfies )

D(O]16") = 51(0)(6 = 6')* + O((6 — )°). (1)
Solution:
We use the fact that log p, is infinitely differentiable on ©, so that we can expand py
around 6:

D(0)|0") = E.<p, [~ log py (2) + log py(z)]
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By the information inequality, the p, that maximizes the expected likelihood E.,,[log p,(2)]
is equal to the distribution that generates the data, i.e. py. Therefore, %E[log P~ (2)] ‘ =
y=0
0, so we find:
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(b) [1.5 points] For a variety of models in their standard parameterizations, including the
Poisson, geometric, normal and Bernoulli families, the following facts hold: (1) I() is a
continuous function of #; (2) for every parameter 6 and every sequence z" = z1,...,z"
such that both @ and the ML estimator 6 fall in the interior of O, we have:

1 <_1Og pH(w) — D(4]0) (2)

n ps(a™)

Now suppose that we restrict the model to a subset ©" of the interior of © where O is
some finite interval of length A. We discretize ©' to a finite set © = {01,05,...,0,,} of
m parameter values at distance A/+/n, where m = y/n + 1.

Now consider the two-part code that works as follows: the data x™ are encoded in two
stages: we first code the § € © that maximizes the probability of the data. Here we use
a uniform code on ©. We then code the data using the Shannon-Fano code based on
the # we encoded in the first stage.

Assume that we get data such that, for all large n, § € ©’. Show, using (1) and (2) that
the number of bits L(z") we need to encode the data in this way satisfies

1
—logps(a™) < L(z"™) < —log py(z") + 5 logn + C

for some constant C independent of n.

Solution:

Firstly, we need log(m) bits to encode the 6§ € 6 that maximizes the probability of
the data. Then the Shanon-Fano code has codelength — log pg(z™), so that the total
codelength is given by

L(z") = log(m) — log pg(«").
From m = y/n+ 1 it follows that m > 1 and so log(m) > 0. Therefore
L(z") = log(m) — log (") > —logps(z") > —log p,(2"),

since 0 maximizes the probability of the data overall. This concludes the lower bound.

For the upper bound, we substitute (1) in (2) to see

% <_ log gzgzo = %I(é)(é —0) +0((0 — 0)).

Rewriting this gives us

log py(a”) — log po(e™) = ZI(6)(0 — 0)° + nO((6 — 0)°)

N R
= —log py(2") = —logps(a™) + 5[(9)(9 —0)2 +n0((0 — 0)%).

Now, since 6 € © maximizes the data in the discretized set and 0 € ©' maximizes the

data overall, we know |0 — 6| < ﬁﬁ. Therefore n(6 — 0)? is a constant independent of

n. Similarly, nO((6 — 0)3) goes to 0 as n goes to infinity. Therefore, for large values of
n:

—logpy(z") < —logp,(a™) + C,
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from which it follows that

L(z") =log(v/n + 1) —log pp(a") <  logn — log py(a") + C.

N | —

This concludes the upper bound.

2. Consider the Bernoulli model. Compute the probability that the first two outcomes are
different on the basis of four different universal models/codes:

e [0.5 points] The Bayesian model with uniform prior.

Solution:

To avoid confusion, we will denote Py for the Bayesian marginal probability with

uniform prior. We have seen that Py p(2") = m, where n; is the number of ones
in ™. Therefore, the following holds:
P ((0,1)) + Py ((1,0)) =2 1.t
@+n() 6 3

e [0.5 points] The Bayesian model with Jeffrey’s prior .

Solution:
Let us denote Py ; for the Bayesian marginal probability with Jeffrey’s prior. Using

the variation of Laplace’s rule of succesion that holds for this universal model:
ny + %
n+1’

PM,J(Xn—i—l = 1|Xn = l‘n) =
we see:

Prr,s((0,1)) + P s((1,0))
= PM7J(X1 = ]_|X0 = O)PMJ(XO = 0) + PM7J(X1 = 0|X0 = 1)PM7J(X0 = ]_)
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e [0.5 points] The NML model for sample size 2.

Solution:

We use that the maximum likelihood estimator for a given sequence of data is given by
0(x") = 2t and that py(z") = 0™ (1 — 0)"™™, to see:

0((0,0)) = 0 = Py ((0,0)) = 1
0((1,1)) = 1= Py ((1,1) = 1
m@mpﬁmm»zéi%mmmm»:%@wmmpzi



Then the probability of the first two outcomes being different is:

Pyar'(1,0)) + Pyar((0,1))
B0, ((0, 1)) + Py((1,0),((1,0))
B0 ((0, 1)) = Fy(1,00y (1, 0)) + Fy0,00y (0, 0)) + Fy(,1), (1, 1))
__atg 1
I
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e [0.5 points] Similarly as above, we have

Pé((o,o,o))((ov 0,0))
Pé((1,171))((1a 1,1))

By(1,0,00((1,0,0))

1
1

2

(5
€

Py0.1,0)((0,1,0)) = Fy901)((0,0,1)) =

Wl Wl

Pé((1,1,0))((1a 1, O)) = Pé((1,0,1))((1> 0, 1)) = Pé((0,1,1))((0a L 1)) =

)
)y

Then the probability of the first two outcomes being different is:

PNML((lv Oa O)) + PNML((Oa 17 0)) + PNML((17 07 1)) + PNML((Oa 17 1)) = 25{1—;—25()2)2 = %

3. [2 points] Recall that the NML code is defined such that it has a constant regret of
log > . P(x™0(x™)). With ng and ny defined as usual, show that in the case of the Bernoulli

model this is equal to:
n ni N no
¢ > ()
znexn

Solution:

We know that 0(z") = ™ and Fp(a") = 6™ (1 —6)"™™, so that

oy (™ np\mmng\mon—ng\"
P = (5) (=3 = (5) ( " ) ’

using that, by definition, ng = n — ny, summing and taking the log, we see:

log Z Py(any(z") = log Z (%) 1 (%)no.

zneXxn neXxm

4. Suppose that we model data with a uniform distribution on the real numbers between 0 and
6> 0.

(a) [1 point] Given outcomes xy,...,x,, what is the maximum likelihood value for 67

Solution:



The likelihood of the data is given by
p(xy, ... xn):ﬁl]l[xi<9]: 1 n1[9>maxxi].
Y 10 - 0 i

it is then clear that the maximum is somewhere in the interval [max; z;,00). On this
interval, the log-likelihood of the data is

1
logp(z1,...,2,) = nlog (§> .
Differentiating wrt 0, we see:

d
—logp(xy,...,2,) = ——.
Since the derivative is negative, the likelihood is a decreasing function for § > max; z;.
Therefore, the maximum likelihood estimator is given by

0 = max x;.
7

[0.5 points] Explain why a formula like (1) cannot be proven for the uniform distribu-
tions on [0, A]. In what way then is the model of uniform distributions crucially different
from the Bernoulli and the normal family?

Solution:
As we saw above, the model of uniform distributions is not smoothly parameterized.

[1 point] Show that (2) does hold for the uniform model.

Solution:
Let 6 and 2™ = xy,...,2", such that § > max; x (so that pg(z™) > 0). Then:

D(0]18) = By, [~ log po(z) + log pj(2)]

1
= EZNpé [— log — + log 5]




