
MDL exercises, fifth handout

Solutions

31 March 2020

[1 free point]

1. Let {pθ|θ ∈ Θ}Θ ⊂ R be a smoothly parameterized i.i.d. 1-dimensional model (see page 65
in the book) and let I(θ) denote the Fisher information at θ. You may assume that, in the
exercises below, the order of taking expectations and differentiating can be interchanged, i.e.
the expected value of a derivative is the derivative of the expected value.

(a) [1 point] Show that, for θ, θ′ in the interior of Θ, the KL divergence (relative entropy)
satisfies

D(θ‖θ′) =
1

2
I(θ)(θ − θ′)2 +O((θ − θ′)3). (1)

Solution:

We use the fact that log pγ is infinitely differentiable on Θ, so that we can expand pθ′
around θ:

D(θ‖θ′) = Ez∼pθ [− log pθ′(z) + log pθ(z)]

= Ez∼pθ

[
− log pθ(z) + (θ′ − θ) d

dγ
− log pγ(z)

∣∣∣∣
γ=θ

+
1

2
(θ′ − θ)2 d2

dγ2
− log pγ(z)

∣∣∣∣
γ=θ

+ log pθ(z)

]
+O

(
(θ′ − θ)3

)
= Ez∼pθ

[
(θ′ − θ) d

dθ
− log pθ(z)

∣∣∣∣
θ=θ

+
1

2
(θ′ − θ)2 d2

dθ2
− log pθ(z)

∣∣∣∣
θ=θ

]
+O

(
(θ′ − θ)3

)
= (θ′ − θ) d

dγ
Ez∼pθ [− log pγ(z)]

∣∣∣∣
γ=θ

+ Ez∼pθ

[
1

2
(θ′ − θ)2 d2

dθ2
− log pθ(z)

∣∣∣∣
θ=θ

]
+O

(
(θ′ − θ)3

)
= : (∗).

By the information inequality, the pγ that maximizes the expected likelihood Ez∼pθ [log pγ(z)]

is equal to the distribution that generates the data, i.e. pθ. Therefore, d
dγ
E[log pγ(z)]

∣∣∣
γ=θ

=

0, so we find:

(∗) =
1

2
(θ′ − θ)Ez∼pθ

[
d2

dθ2
− log pθ(z)

∣∣∣∣
θ=θ

]
+O

(
(θ′ − θ)3

)
=

1

2
(θ′ − θ)I(θ) +O

(
(θ′ − θ)3

)
.
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(b) [1.5 points] For a variety of models in their standard parameterizations, including the
Poisson, geometric, normal and Bernoulli families, the following facts hold: (1) I(θ) is a
continuous function of θ; (2) for every parameter θ and every sequence xn = x1, . . . , x

n

such that both θ and the ML estimator θ̂ fall in the interior of Θ, we have:

1

n

(
− log

pθ(x
n)

pθ̂(x
n)

)
= D(θ̂‖θ) (2)

Now suppose that we restrict the model to a subset Θ′ of the interior of Θ where Θ′ is
some finite interval of length A. We discretize Θ′ to a finite set Θ̈ = {θ1, θ2, . . . , θm} of
m parameter values at distance A/

√
n, where m =

√
n+ 1.

Now consider the two-part code that works as follows: the data xn are encoded in two
stages: we first code the θ ∈ Θ̈ that maximizes the probability of the data. Here we use
a uniform code on Θ̈. We then code the data using the Shannon-Fano code based on
the θ we encoded in the first stage.

Assume that we get data such that, for all large n, θ̂ ∈ Θ′. Show, using (1) and (2) that
the number of bits L(xn) we need to encode the data in this way satisfies

− log pθ̂(x
n) < L(xn) ≤ − log pθ̂(x

n) +
1

2
log n+ C

for some constant C independent of n.

Solution:

Firstly, we need log(m) bits to encode the θ ∈ Θ̈ that maximizes the probability of
the data. Then the Shanon-Fano code has codelength − log pθ(x

n), so that the total
codelength is given by

L(xn) = log(m)− log pθ(x
n).

From m =
√
n+ 1 it follows that m > 1 and so log(m) > 0. Therefore

L(xn) = log(m)− log pθ(x
n) > − log pθ(x

n) ≥ − log pθ̂(x
n),

since θ̂ maximizes the probability of the data overall. This concludes the lower bound.

For the upper bound, we substitute (1) in (2) to see

1

n

(
− log

pθ(x
n)

pθ̂(x
n)

)
=

1

2
I(θ̂)(θ̂ − θ)2 +O((θ̂ − θ)3).

Rewriting this gives us

log pθ̂(x
n)− log pθ(x

n) =
n

2
I(θ̂)(θ̂ − θ)2 + nO((θ̂ − θ)3)

⇒ − log pθ(x
n) = − log pθ̂(x

n) +
n

2
I(θ̂)(θ̂ − θ)2 + nO((θ̂ − θ)3).

Now, since θ ∈ Θ̈ maximizes the data in the discretized set and θ̂ ∈ Θ′ maximizes the
data overall, we know |θ − θ̂| ≤ A

2
√
n
. Therefore n(θ̂ − θ)2 is a constant independent of

n. Similarly, nO((θ̂ − θ)3) goes to 0 as n goes to infinity. Therefore, for large values of
n:

− log pθ(x
n) ≤ − log pθ̂(x

n) + C,
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from which it follows that

L(xn) = log(
√
n+ 1)− log pθ(x

n) ≤ 1

2
log n− log pθ̂(x

n) + C.

This concludes the upper bound.

2. Consider the Bernoulli model. Compute the probability that the first two outcomes are
different on the basis of four different universal models/codes:

• [0.5 points] The Bayesian model with uniform prior.

Solution:

To avoid confusion, we will denote PM,U for the Bayesian marginal probability with
uniform prior. We have seen that PM,U(xn) = 1

(n+1)( nn1)
, where n1 is the number of ones

in xn. Therefore, the following holds:

PM((0, 1)) + PM((1, 0)) = 2 · 1

(2 + 1)
(
2
1

) = 2 · 1

6
=

1

3
.

• [0.5 points] The Bayesian model with Jeffrey’s prior .

Solution:

Let us denote PM,J for the Bayesian marginal probability with Jeffrey’s prior. Using
the variation of Laplace’s rule of succesion that holds for this universal model:

PM,J(Xn+1 = 1|Xn = xn) =
n1 + 1

2

n+ 1
,

we see:

PM,J((0, 1)) + PM,J((1, 0))

= PM,J(X1 = 1|X0 = 0)PM,J(X0 = 0) + PM,J(X1 = 0|X0 = 1)PM,J(X0 = 1)

=
1

4

1

2
+ (1− 3

4
)
1

2

=
1

4
.

• [0.5 points] The NML model for sample size 2.

Solution:

We use that the maximum likelihood estimator for a given sequence of data is given by
θ̂(xn) = n1

n
and that pθ(x

n) = θn1(1− θ)n−n1 , to see:

θ̂((0, 0)) = 0⇒ Pθ̂((0,0))((0, 0)) = 1

θ̂((1, 1)) = 1⇒ Pθ̂((1,1))((1, 1)) = 1

θ̂((1, 0)) = θ̂((0, 1)) =
1

2
⇒ Pθ̂((0,1))((0, 1)) = Pθ̂((1,0))((1, 0)) =

1

4
.
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Then the probability of the first two outcomes being different is:

PNML
((1, 0)) + PNML((0, 1))

=
Pθ̂((0,1))((0, 1)) + Pθ̂((1,0))((1, 0))

Pθ̂((0,1))((0, 1)) = Pθ̂((1,0))((1, 0)) + Pθ̂((0,0))((0, 0)) + Pθ̂((1,1))((1, 1))

=
1
4

+ 1
4

1
4

+ 1
4

+ 1 + 1
=

1

5
.

• [0.5 points] Similarly as above, we have

Pθ̂((0,0,0))((0, 0, 0)) = 1

Pθ̂((1,1,1))((1, 1, 1)) = 1

Pθ̂((1,0,0))((1, 0, 0)) = Pθ̂((0,1,0))((0, 1, 0)) = Pθ̂((0,0,1))((0, 0, 1)) =
1

3

(
2

3

)2

Pθ̂((1,1,0))((1, 1, 0)) = Pθ̂((1,0,1))((1, 0, 1)) = Pθ̂((0,1,1))((0, 1, 1)) =
1

3

(
2

3

)2

.

Then the probability of the first two outcomes being different is:

PNML((1, 0, 0)) + PNML((0, 1, 0)) + PNML((1, 0, 1)) + PNML((0, 1, 1)) =
4 · 1

3

(
2
3

)2
2 + 6 · 1

3

(
2
3

)2 =
8

39
.

3. [2 points] Recall that the NML code is defined such that it has a constant regret of
log
∑

xn P (xn|θ̂(xn)). With n0 and n1 defined as usual, show that in the case of the Bernoulli
model this is equal to:

log
∑
xn∈Xn

(n1

n

)n1
(n0

n

)n0

.

Solution:

We know that θ̂(xn) = n1

n
and Pθ(x

n) = θn1(1− θ)n−n1 , so that

Pθ̂(xn)(x
n) =

(n1

n

)n1
(

1− n1

n

)n−n1

=
(n1

n

)n1
(
n− n1

n

)n−n1

,

using that, by definition, n0 = n− n1, summing and taking the log, we see:

log
∑
xn∈Xn

Pθ̂(xn)(x
n) = log

∑
xn∈Xn

(n1

n

)n1
(n0

n

)n0

.

4. Suppose that we model data with a uniform distribution on the real numbers between 0 and
θ > 0.

(a) [1 point] Given outcomes x1, . . . , xn, what is the maximum likelihood value for θ?

Solution:
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The likelihood of the data is given by

p(x1, . . . , xn) =
n∏
i=1

1

θ
1[xi ≤ θ] =

(
1

θ

)n
1[θ > max

i
xi].

it is then clear that the maximum is somewhere in the interval [maxi xi,∞). On this
interval, the log-likelihood of the data is

log p(x1, . . . , xn) = n log

(
1

θ

)
.

Differentiating wrt θ, we see:

d

dθ
log p(x1, . . . , xn) = −n

θ
.

Since the derivative is negative, the likelihood is a decreasing function for θ ≥ maxi xi.
Therefore, the maximum likelihood estimator is given by

θ̂ = max
i
xi.

(b) [0.5 points] Explain why a formula like (1) cannot be proven for the uniform distribu-
tions on [0, θ]. In what way then is the model of uniform distributions crucially different
from the Bernoulli and the normal family?

Solution:

As we saw above, the model of uniform distributions is not smoothly parameterized.

(c) [1 point] Show that (2) does hold for the uniform model.

Solution:

Let θ and xn = x1, . . . , x
n, such that θ ≥ maxi x (so that pθ(x

n) > 0). Then:

D(θ̂‖θ) = Ez∼pθ̂ [− log pθ(z) + log pθ̂(z)]

= Ez∼pθ̂

[
− log

1

θ
+ log

1

θ̂

]

= − log

 (1θ)(
1

θ̂

)


= − 1

n
log

 (1θ)n(
1

θ̂

)n


= − 1

n
log

(
pθ(x

n)

pθ̂(x
n)

)
.
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