MDL exercises, ninth handout (due April 27th, 14:00) Consider MDL model selection between $$\mathcal{M}_0 = \{P_{0,\sigma} : \sigma > 0\} \text{ and } \mathcal{M}_1 = \{P_{\delta,\sigma} : \sigma > 0, \delta \in \mathbb{R}\}$$ where $P_{\delta,\sigma}$ is the distribution under which X_1, X_2, \ldots, X_n are i.i.d., each with density given by $$p_{\delta,\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x}{\sigma} - \delta)^2}.$$ 1. [1 point] Show that \mathcal{M}_1 is identical to the family of normal distributions with mean in \mathbb{R} and variance in $\sigma^2 > 0$. That is, if $Q_{\mu,\sigma}$ represents a normal distribution with mean μ and variance σ , show that (i) for every $\sigma > 0$, $\delta \in \mathbb{R}$, there is a $\mu \in \mathbb{R}$ such that $P_{\delta,\sigma} = Q_{\mu,\sigma}$ and (ii), conversely, for every $\sigma > 0$, $\mu \in \mathbb{R}$, there is a $\delta \in \mathbb{R}$ such that $P_{\delta,\sigma} = Q_{\mu,\sigma}$. **Solution:** For every $\sigma > 0, \delta \in \mathbb{R}$, the density of $P_{\delta,\sigma}$ is given by $$p_{\delta,\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x}{\sigma} - \delta\right)^2}$$ $$= \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x - \delta\sigma}{\sigma}\right)^2}$$ where $q_{\sigma\delta,\sigma}$ is the density of the normal distribution $Q_{\sigma\delta,\sigma}$. Similarly we see that for every $\sigma > 0, \mu \in \mathbb{R}$: $Q_{\mu,\sigma} = P_{\mu/\sigma,\sigma}$. We associate Bayesian universal measures \bar{p}_0 with \mathcal{M}_0 and \bar{p}_1 with \mathcal{M}_1 . In both cases, we put the right Haar prior $\pi(\sigma) = 1/\sigma$ on the variance σ . For \bar{p}_1 , we equip δ with some (arbitrary) proper prior density w. Thus, we measure the evidence against \mathcal{M}_0 by $$M(x^n) := \log \frac{\bar{p}_1(x^n)}{\bar{p}_0(x^n)} \tag{1}$$ with $\bar{p}_0(x^n) = \int \sigma^{-1} p_{0,\sigma}(x^n) d\sigma$ and $\bar{p}_1(x^n) = \int_{\sigma > 0, \delta \in \mathbb{R}} \sigma^{-1} w(\delta) p_{\delta,\sigma}(x^n) d\sigma d\delta$. 2. [1 point] Show that $\pi(\sigma) = 1/\sigma$ is improper. **Solution:** $$\begin{split} \int_0^\infty \pi(\sigma) d\sigma &= \int_0^\infty \frac{1}{\sigma} d\sigma \\ &= \lim_{\substack{a \to 0 \\ b \to \infty}} \int_a^b \frac{1}{\sigma} d\sigma \\ &= \lim_{\substack{a \to 0 \\ b \to \infty}} \left[\ln(\sigma) \right]_a^b \\ &= \lim_{\substack{a \to 0 \\ b \to \infty}} \left(\ln(b) - \ln(a) \right) = \infty. \end{split}$$ 3. (i) [1 point] Show that $M(x^n)$ is scale-invariant. That is, show that for every sequence x_1, \ldots, x_n , every c > 0, $$M(x_1, \dots, x_n) = M(x_1/c, \dots, x_n/c)$$ (2) (HINT: re-express the integral over σ in \bar{p}_0 and \bar{p}_1 as an integral over $\sigma' = c\sigma$). ### Solution: For arbitrary x, we see $$p_{\delta,\sigma}(x/c) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x}{c\sigma} - \delta)^2}$$ $$= \frac{c}{\sqrt{2\pi}c\sigma} e^{-\frac{1}{2}(\frac{x}{c\sigma} - \delta)^2}$$ $$= cp_{\delta,c\sigma}(x).$$ Then $$p_{\delta,\sigma}(x_1/c,\ldots,x_n/c) = \prod_{i=1}^n p_{\delta,\sigma}(x_i/c) = c^n \prod_{i=1}^n p_{\delta,c\sigma}(x_i) = c^n p_{\delta,c\sigma}(x^n).$$ So we get $$\begin{split} M(x^n/c) &= \log \frac{\overline{p}_1(x^n/c)}{\overline{p}_0(x^n/c)} \\ &= \log \frac{\int_{\sigma>0,\delta\in\mathbb{R}} \sigma^{-1}w(\delta)p_{\delta,\sigma}(x^n/c)d\sigma d\delta}{\int_{\sigma>0,\delta\in\mathbb{R}} \sigma^{-1}w(\delta)p_{0,\sigma}(x^n/c)d\sigma d\delta} \\ &= \log \frac{\int_{\sigma>0,\delta\in\mathbb{R}} \sigma^{-1}w(\delta)c^np_{\delta,c\sigma}(x^n)d\sigma d\delta}{\int_{\sigma>0,\delta\in\mathbb{R}} \sigma^{-1}w(\delta)c^np_{0,c\sigma}(x^n)d\sigma d\delta} \\ &= \log \frac{1/c\int_{\sigma>0,\delta\in\mathbb{R}} \sigma^{-1}w(\delta)p_{0,c\sigma}(x^n)d\sigma d\delta}{1/c\int_{\sigma>0,\delta\in\mathbb{R}} \sigma^{-1}w(\delta)p_{\delta,c\sigma}(x^n)d\sigma d\delta} \\ &= \log \frac{1/c\int_{\sigma>0,\delta\in\mathbb{R}} \sigma^{-1}w(\delta)p_{0,c\sigma}(x^n)d\sigma d\delta}{1/c\int_{\sigma>0,\delta\in\mathbb{R}} \sigma^{-1}w(\delta)p_{\delta,\sigma'}(x^n)d\sigma' d\delta} \\ &= \log \frac{\int_{\sigma'>0,\delta\in\mathbb{R}} \sigma'^{-1}w(\delta)p_{\delta,\sigma'}(x^n)d\sigma' d\delta}{\int_{\sigma'>0,\delta\in\mathbb{R}} \sigma'^{-1}w(\delta)p_{0,\sigma'}(x^n)d\sigma' d\delta} \\ &= M(x^n), \end{split}$$ where we substituted $\sigma' = c\sigma$. (ii) **[1 point]** Define $Z^n = (X_1/|X_1|, X_2/|X_1|, \dots, X_n/|X_1|)$. Use (2) to show that, for arbitrary $X_1 \neq 0, X_2, \dots, X_n$, $$M(X_1,\ldots,X_n)=M(Z_1,\ldots,Z_n).$$ ### Solution: For any realisation (x_1, \ldots, x_n) of X^n , it follows from (i) that $$M(x_1,...,x_n) = M(x_1/|x_1|,x_2/|x_1|,...,x_n/|x_1|).$$ From this, it immediately follows that $M(X_1, \ldots, X_n) = M(Z_1, \ldots, Z_n)$. 4. Fix $\sigma > 0$. Let $X_1, X_2, \ldots, X_n \sim$ i.i.d. $P_{\delta,\sigma}$. Let $X_i' = X_i/\sigma$. (i) Show that, for all $\delta \in \mathbb{R}$, the distribution of X_1', \ldots, X_n' is now i.i.d. $N(\delta, 1)$. (ii) Use (i) to show that, for each fixed δ , the distribution of Z^n is the same under $P_{\delta,\sigma}$, for all $\sigma > 0$ [for question 5. see back side!]. ## Solution: (i) Consider the cumulative distribution of X'_i for arbitrary $a \in \mathbb{R}$: $$F'_i(a) = \mathbb{P}[X'_i \le a] = \mathbb{P}[X_i / \sigma \le a]$$ = $\mathbb{P}[X_i \le \sigma a]$. Now, let us denote p'_i for the density of X'_i : $$p_i'(x) = \frac{dF_i'(x)}{dx}$$ $$= \frac{d}{dx} \mathbb{P}[X_i \le \sigma x]$$ $$= \frac{d}{d(\sigma x)} \mathbb{P}[X_i \le \sigma x] \frac{d}{dx} \sigma x$$ $$= p_{\delta,\sigma}(\sigma x) \sigma$$ $$= \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{\sigma x}{\sigma} - \delta)^2} \sigma$$ $$= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x - \delta)^2},$$ which is indeed the density of $N(\delta, 1)$. (ii) By (i), the distribution of $(X')^n$ is independent of σ . Then the distribution of $(Z')^n = (X_1'/|X_1'|, X_2'/|X_1'|, \dots, X_n'/|X_n'|)$ is also independent of σ . Note that since $\sigma > 0$, $$Z'_{i} = \frac{X'_{i}}{|X'_{i}|} = \frac{X_{i}/\sigma}{|X_{i}|/\sigma} = \frac{X_{i}}{|X_{i}|} = Z_{i}.$$ So we conclude that the distribution of Z^n is independent of σ . As a consequence of (4)(ii), we can refer to the distribution P'_{δ} on Z^n without specifying the variance (the distribution does not depend on the variance of the X^n). Let p'_{δ} be the density of P'_{δ} . We can now write $$M(X_1, \dots, X_n) = \frac{\int_{\delta} w(\delta) p'_{\delta}(Z_1, \dots, Z_n) d\delta}{p'_{0}(Z_1, \dots, Z_n)}$$ where Z^n corresponds to X^n as above. 5. [1 point] Explain the following statement: even though the Bayesian universal measures in (1) are based on improper priors, and therefore do not really define probability distributions, $-\log \bar{p}_0(X^n) - [-\log \bar{p}_1(X^n)]$ can be interpreted as a real codelength difference between two codes. #### Solution: As stated, $$M(X_1, \dots, X_n) = -\log \overline{p}_0(X^n) - [-\log \overline{p}_1(X^n)]$$ is equal to $$M(Z_1, ..., Z_n) = -\log p'_0(Z_1, ..., Z_n) - \left[-\log p'_1(Z_1, ..., Z_n) \right],$$ where $p'_1(Z_1,\ldots,Z_n)=\int_{\delta}w(\delta)p'_{\delta}(Z_1,\ldots,Z_n)d\delta$. Here p'_0 and p'_{δ} are probability distributions and $w(\delta)$ is a proper prior, so $M(Z_1,\ldots,Z_n)$ is the actual codelength difference between p'_1 and p'_0 . Note that these are codelengths for coding Z_1,\ldots,Z_n (independent of σ), while the original problem was stated for X_1,\ldots,X_n .