Today: Universal Models/Codes

- 1. normalized maximum likelihood code for countably infinite models (Chapter 7)
- 2. Bayesian marginal likelihood codes for countably infinite models (Chapter 8)
- 3. The amazing Jeffreys prior
 - Alternative for Laplace's rule of succession
- 4. Questions/Feedback

Note: quite a lot of homework this time!

Universal Codes

- \mathcal{L} : set of code (length function)s available to encode data $x^n = (x_1, \dots, x_n)$
- Suppose we think that one of the code(length function)s in \mathcal{L} allows for substantial compression of x^n
- GOAL (for now): encode xⁿ using minimum number of bits!

Universal Codes

- But there exist codes *L* which, for any sequence x^n are 'almost' as good as $\inf_{L \in \mathcal{L}} L(x^n)$
- These are called **universal codes** for \mathcal{L}

Regret Universal Model

Regret of distribution \bar{p} on data x^n relative to model $\mathcal{M} = \{ p_{\theta} : \theta \in \Theta \}$ is given by:

$$-\log \overline{p}(x^n) - (-\log p_{\widehat{\theta}(x^n)}(x^n))$$

Minimax Optimal Regret

$$\inf_{\bar{p}} \sup_{x^n \in \mathcal{X}^n} \left\{ -\log \bar{p}(x^n) - (-\log p_{\widehat{\theta}(x^n)}(x^n)) \right\}$$

is achieved for Normalized Maximum Likelihood (NML) distribution (Shtarkov 1987):

$$\bar{p}_{\mathsf{nml}}(x^n) = \frac{p_{\hat{\theta}(x^n)}(x^n)}{\sum_{y^n \in \mathcal{X}^n} p_{\hat{\theta}(y^n)}(y^n)}$$

$$\inf_{\overline{p}} \sup_{x^n \in \mathcal{X}^n} \left\{ -\log \overline{p}(x^n) - (-\log p_{\widehat{\theta}(x^n)}(x^n)) \right\}$$

is achieved for Normalized Maximum Likelihood (NML) distribution (Shtarkov 1987):

$$\bar{p}_{\mathsf{nml}}(x^n) = \frac{p_{\hat{\theta}(x^n)}(x^n)}{\sum_{y^n \in \mathcal{X}^n} p_{\hat{\theta}(y^n)}(y^n)}$$

For all x^n , regret given by

 $-\log \bar{p}_{\mathsf{nml}}(x^n) - \left[-\log p_{\hat{\theta}(x^n)}(x^n)\right] = \log \sum_{y^n \in \mathcal{X}^n} p_{\hat{\theta}(y^n)}(y^n)$

(equalizer strategy)

How do the three Universal Codes Compare for finite model, $|\Theta| = K$?

- 2-part: worst-case regret bounded by log *K*
- Bayes: worst-case regret (usually strictly) smaller
- NML: worst-case regret given by parametric complexity

$$\operatorname{comp}(\mathcal{M}) = \log \sum_{y^n \in \mathcal{X}^n} p_{\widehat{\theta}(y^n)}(y^n)$$

• even (usually strictly) smaller

Parametric Complexity/ Minimax Regret, regular models

Finite \mathcal{M} :

 $\operatorname{comp}(\mathcal{M}) = \log\left(|\Theta| - \text{``total amount of confusion''}\right)$

Countably infinite, "INECCSI" (\approx compact) Θ_0

$$\operatorname{comp}(\mathcal{M}) = \frac{k}{2} \log \frac{n}{2\pi} + \log \int_{\Theta_0} \sqrt{\det I(\theta)} + o(1)$$

$$f$$
"geometric" contribution
to complexity/minimax regret

dimensional contribution to complexity/minimax regret

Geometric Interpretation

Bernoulli vs. Crazy Bernoulli embedded in First-Order Markov

Regret of Bayes universal model

$$\bar{p}_{\mathsf{Bayes}}(x^n) := \int_{\Theta} p_{\theta}(x^n) w(\theta) d\theta$$

$$-\log \bar{p}_{\mathsf{Bayes}}(x^n) = -\log p_{\hat{\theta}(x^n)}(x^n) + \frac{k}{2}\log \frac{n}{2\pi} -\log w(\hat{\theta}(x^n)) + \log \sqrt{\det I(\hat{\theta}(x^n))} + o(1)$$

Regret of Bayes universal model

$$\bar{p}_{\mathsf{Bayes}}(x^n) := \int_{\Theta} p_{\theta}(x^n) w(\theta) d\theta$$

$$-\log \bar{p}_{\mathsf{Bayes}}(x^n) = -\log p_{\hat{\theta}(x^n)}(x^n) + \frac{k}{2}\log \frac{n}{2\pi} -\log w(\hat{\theta}(x^n)) + \log \sqrt{\det I(\hat{\theta}(x^n))} + o(1)$$

- convergence uniform for all x^n with $\hat{\theta}(x^n) \in \Theta_{\text{ineccsi}} \subset \Theta$ if prior continuous and bounded away from 0 on Θ_{ineccsi}
- within O(1) of NML: for all 'reasonable' priors, Bayes gives universal model
- It can be better or worse than NML: **luckiness**

Regret of Bayes universal model

$$\bar{p}_{\mathsf{Bayes}}(x^n) := \int_{\Theta} p_{\theta}(x^n) w(\theta) d\theta$$

$$-\log \bar{p}_{\mathsf{Bayes}}(x^n) = -\log p_{\hat{\theta}(x^n)}(x^n) + \frac{k}{2}\log \frac{n}{2\pi} -\log w(\hat{\theta}(x^n)) + \log \sqrt{\det I(\hat{\theta}(x^n))} + o(1)$$

- convergence uniform for all x^n with $\hat{\theta}(x^n) \in \Theta_{\text{ineccsi}} \subset \Theta$ if prior continuous and bounded away from 0 on Θ_{ineccsi}
- within O(1) of NML: for all 'reasonable' priors, Bayes gives universal model
- It can be better or worse than NML: luckiness
- but can it be made to mimic NML?

The Amazing Jeffreys' Prior

 In 1946, Sir Harold Jeffreys (who discovered that the interior of the earth is fluid) proposed what is now called Jeffreys' prior,

$$w(\theta) = \frac{\sqrt{\det I(\theta)}}{\int_{\Theta_0} \sqrt{\det I(\theta)} d\theta}$$

 ...to be used "when real prior knowledge is lacking"

Regret of Bayes-Jeffreys

$$-\log \bar{p}_{\mathsf{Bayes}}(x^n) = -\log p_{\hat{\theta}(x^n)}(x^n) +$$

$$+\frac{k}{2}\log\frac{n}{2\pi}-\log w(\hat{\theta}(x^n))+\log\sqrt{\det I(\hat{\theta}(x^n))}+o(1)$$

- within O(1) of NML: for all 'reasonable' priors, Bayes gives universal model
- But if we plug in Jeffreys' prior, within o(1).
- With Jeffreys prior, asymptotically Bayes and NML coincide!

$$w_{\text{Jeffreys}}(\theta) = rac{\sqrt{\det I(\theta)}}{\int_{\Theta_0} \sqrt{\det I(\theta)} d\theta}$$

•
$$\bar{p}_{\mathsf{B-J}}(x^n) := \int_{\Theta_0} p_{\theta}(x^n) w_{\mathsf{Jeffreys}}(\theta) d\theta$$

- often easier to compute than \bar{p}_{nml}
- ...has been advocated as prior for model selection in the Bayesian literature – makes MDL and Bayes "consistent"

Jeffreys' Prior vs Luckiness

- Jeffreys' introduced his prior for different reasons
- Important Reason: invariance to
 reparameterization parameter space
 - in uncountable spaces, the notion of 'uniform' prior depends on choice of parameterization (and is hence arbitrary)
 - Example: Bernoulli can also be parameterized by $p_{\theta}(X = 1) = \theta^2$. Uniform density on θ gives a very different distribution on the set of Bernoulli distributions than uniform density on θ in standard parameterization

- Example: Bernoulli can also be parameterized by $p_{\theta}(X = 1) = \theta^2$. Uniform density on θ gives a very different distribution on the set of Bernoulli distributions than uniform density on θ in standard parameterization
- Jeffreys' prior is parameterization invariant. (Hence a better choice for ignorance than Laplace-Bayes' choice, which was the uniform prior)

Jeffreys prior for Bernoulli:

$$\bar{p}_{\mathsf{B}-\mathsf{J}}(X_{n+1}=1\mid x^n) = \frac{n_1+1/2}{n+1}$$

- Jeffreys prior for Gaussian location:
 - uniform on Θ_0 (space of means) (parameter space must be restricted, otherwise prior "improper" – i.e. does not integrate)

"Luckiness Again"

 See drawing: for what sequences does Jeffreys' prior lead to smaller regret, for what sequences to larger regret?

Geometric Interpretation of Jeffreys' prior

- Jeffreys' prior is uniform prior on space of distributions rather than parameters...
- ...when 'distance' between distributions is measured by
 - KL divergence
 - 'distinguishability'

Next Week

- Simple MDL/Bayesian Model Selection:
 - again, almost the same!
- Yet another universal code/model: "prequential"

Ø Ø, COUBR PARAMETER SPACE BY E-LULISAOK LEIBLER BALLS METRIC $B(\varepsilon) = \{\Theta': D(O||\Theta') \leq \varepsilon\}$ Not motero $\approx \int \mathcal{O}': \mathbf{W} \neq (\mathcal{O} - \mathcal{O}')^T J(\mathcal{O})(\mathcal{O} - \mathcal{O}') \in \mathcal{E}$ L& ELLIPSOIDS IN PARAMETER SPACE WIEFFREY (A) = LIM HBALLS INTHRAONSE IN A ELO HBALLS " EINPAR E IN PARAMETER SPACE

BALASUBRAMANIAN Pg (GE Bg(E)) Ø, 3.7 -1 10 -1 DISTINGUISHABILITY O, COUER PARAMETER SPACE BY E-KULGAOK LEIBLER BALLS $B(\varepsilon) = \left\{ \Theta' : D(O||\Theta') \le \varepsilon \right\} \quad METRIC$ $O(\varepsilon) = \left\{ \Theta' : D(O||\Theta') \le \varepsilon \right\}$ $\sim \int \Theta' : \mathbf{W} \neq (\Theta - \Theta')^T \mathbf{J}(\Theta)(\Theta - \Theta') \leq \varepsilon$ LA ELLIPSOIDS IN PARAMETER SPACE WJEFFREY (A) = LIM HBALLS INTHRAONSE IN A ELO HBALLS " " EIN PAR E IN PARAMETER SPACE

 $\mathcal{P}(\Theta|\Theta) \approx \frac{1}{2} \left[(\Theta) (\Theta, -\Theta)^2 \right]$ EXAMPLE BERNOULLI I(6) 0.5 0 1 4 0=0.5: D(Gll0+E)~ 4E2. G=0.1: DIUIGIE) = 10 22 =112 NORMAL: [(G) CONSTANT LOCATION $D(\Theta \| G') = \frac{1}{22} (\Theta - G')^2$ "NO CURVATURS" · DISCRETIZE WITH WIDTH of VECO) NEXT VDET I(G) WERK · BATES : YOU USE PRIOR of ICO? · NML : ALSO RELATED TO ILO).