Today: Universal Models/Codes

1. normalized maximum likelihood code for
countably infinite models (Chapter 7)

2. Bayesian marginal likelihood codes for
countably infinite models (Chapter 8)

3. The amazing Jeffreys prior

— Alternative for Laplace’s rule of
succession

4. Questions/Feedback
Note: quite a lot of homework this time!



Universal Codes

« L. set of code (length function)s available to
encode data x" = (x4, ..., X,)

« Suppose we think that one of the code(length
function)s in £ allows for substantial
compression of x"

« GOAL (for now): encode x™ using minimum
number of bits!



Universal Codes

» Simply encoding x™ using the L € £
that minimizes code length
does not work (encoding cannot be decoded)

« But there exist codes L which, for any
sequence x™ are ‘almost’ as good as

- n
et t ™)

e These are called universal codes for L



Regret Universal Model

Regret of distribution p on data x" relative to
model M = {pg: 6 € B} is given by:

—log p(a") — (=109 Py ny(z™))



Minimax Optimal Regret

inf s —logp(x™) — (—log ps, (2"
nf sup - {~10g5(a") — (=109 py(,ny (="))}

IS achieved for Normalized Maximum Likelihood
(NML) distribution (Shtarkov 1987):

Pg(zn) (z™)
2_yne X Pg(ym) (y™)

ﬁnml(xn) —



inf s —logp(x™) — (—log ps, (2"
nf sup - {~10g5(a") — (=109 py(,ny (="))}

IS achieved for Normalized Maximum Likelihood
(NML) distribution (Shtarkov 1987):

Pg(zn) (z™)

2_yne X Pg(ym) (y™)
For all x™, regret given by

ﬁnml(xn) —

— 109 pnmi(z")—[—log pé(agn)(xn)] = log Z Pgyn) (")
ynexn

(equalizer strategy)



How do the three Universal Codes
Compare for finite model, |@] = K?

« 2-part: worst-case regret bounded by log K
« Bayes: worst-case regret (usually strictly) smaller

 NML: worst-case regret given by parametric
complexity

comp(M) =109 > pyr,my(y™)

« even (usually strictly) smaller



Parametric Complexity/
Minimax Regret, regular models

Finite M :

comp(M) = log (|| — “total amount of confusion™)

Countably infinite, “INECCSI” (= compact) 0,

k
comp(M) = Elog%—l—log /@ \/detI(G)—l—o(l)
A 0

“geometric” contribution
to complexity/minimax regret

dimensional contribution
to complexity/minimax regret




Geometric Interpretation

Bernoulli vs. Crazy Bernoulli embedded in
First-Order Markov



Regret of Bayes universal model
Peayes(a") = [_ po(a™)w(6)do
— |log ﬁBayes(a?n) — —log pg(xn)(mn)—l—

+§ 0g _— ~log w(f(z™))+log \/det I(A(x"))+o(1)




Regret of Bayes universal model

Peayes(a") = [_ po(a™)w(6)do
— log ﬁBayes(wn) = —log pg(w”)(mn)_l_
+§ 0g _— ~log w(f(z™))+log \/det I(A(x"))+o(1)
7
- convergence uniform for all x™ with 8(x™) € Oipeccsi  ©
If prior continuous and bounded away from 0 on Ojpeccsi

« within 0(1) of NML.: for all ‘reasonable’ priors, Bayes
gives universal model

. It can be better or worse than NML: luCKIness



Regret of Bayes universal model

Peayes(a") = [_ po(a™)w(6)do

+§ 0g _— ~log w(f(z™))+log \/det I(A(x"))+o(1)

- convergence uniform for all x™ with 8(x™) € Oipeccsi  ©
If prior continuous and bounded away from 0 on O;peccsi

« within 0(1) of NML.: for all ‘reasonable’ priors, Bayes
gives universal model

* |t can be better or worse than NML: luckiness
 but can it be made to mimic NML?




The Amazing Jeffreys’ Prior

* 1In 1946, Sir Harold Jeffreys (who discovered
that the interior of the earth is fluid) proposed

what is now called Jeffreys’ prior,

\/det 1(6)
Jo, \/det 1(8)do

w(0) =

e ...to be used “when real prior knowledge is
lacking”



Regret of Bayes-Jeffreys

—log ﬁBayes(xn) — —log pg(mn)(ﬂ?n)-l-

s by o ST 40

« within 0(1) of NML.: for all ‘reasonable’ priors, Bayes
gives universal model

« But if we plug in Jeffreys’ prior, within o(1).
« With Jeffreys prior, asymptotically Bayes and NML
coincide!
\/det 1(0)

Jo, \/det 1(6)do

wJeffreys(Q) —




More on Jeffreys’ Prior

Pe-s(@") = [ po(a™w ettreys(6)d0
0

often easier to compute than p,m;
...has been advocated as prior for model

selection in the Bayesian literature — makes
MDL and Bayes “consistent”



Jeffreys’ Prior vs Luckiness



More on Jeffreys’ Prior

« Jeffreys’ introduced his prior for different reasons

* Important Reason: invariance to
reparameterization parameter space

In uncountable spaces, the notion of ‘uniform’
prior depends on choice of parameterization (and
IS hence arbitrary)

Example: Bernoulli can also be parameterized by
pe(X = 1) = 6% . Uniform density on 6 gives a
very different distribution on the set of Bernoulli
distributions than uniform density on 6 In
standard parameterization



More on Jeffreys’ Prior

« Example: Bernoulli can also be parameterized by
pe(X = 1) = 6% . Uniform density on 8 gives a very
different distribution on the set of Bernoulli
distributions than uniform density on 6 in standard
parameterization

« Jeffreys’ prior is parameterization invariant.
(Hence a better choice for ignorance than Laplace-
Bayes’ choice, which was the uniform prior)



More on Jeffreys’ Prior

« Jeffreys prior for Bernoulli:
niy+1/2
n—+1

p-J(Xpp1=12") =

« Jeffreys prior for Gaussian location:
« uniform on 0, (space of means)

(parameter space must be restricted, otherwise prior
“improper” — i.e. does not integrate)



“Luckiness Again”

« See drawing: for what sequences does
Jeffreys’ prior lead to smaller regret, for what
sequences to larger regret?



Geometric Interpretation of
Jeffreys’ prior

« Jeffreys’ prior is uniform prior on space of
distributions rather than parameters...

 ...when ‘distance’ between distributions is
measured by

« KL divergence
« ‘distinguishability’



Next Week

« Simple MDL/Bayesian Model Selection:
* again, almost the same!

 Yet another universal code/model:
“prequential”
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