
Today: Universal Models/Codes

1. normalized maximum likelihood code for 

countably infinite models (Chapter 7)

2. Bayesian marginal likelihood codes for 

countably infinite models (Chapter 8)

3. The amazing Jeffreys prior

– Alternative for Laplace’s rule of

succession

4. Questions/Feedback

Note: quite a lot of homework this time!



Universal Codes

• ℒ: set of code (length function)s available to 
encode data 𝑥𝑛 = (𝑥1, … , 𝑥𝑛)

• Suppose we think that one of the code(length 
function)s in ℒ allows for substantial 
compression of 𝑥𝑛

• GOAL (for now):  encode 𝑥𝑛 using minimum 
number of bits!



Universal Codes

• Simply encoding 𝑥𝑛 using the ෠𝐿 ∈ ℒ
that minimizes code length                               

does not work (encoding cannot be decoded)

• But there exist codes 𝐿 which, for any 

sequence 𝑥𝑛 are ‘almost’ as good as 

inf
𝐿∈ℒ

𝐿 𝑥𝑛

• These  are called universal codes for ℒ



Regret Universal Model

Regret of distribution ҧ𝑝 on data 𝑥𝑛 relative to 

model ℳ = { 𝑝𝜃: 𝜃 ∈ Θ} is given by: 



Minimax Optimal Regret

is achieved for Normalized Maximum Likelihood 

(NML) distribution (Shtarkov 1987): 



is achieved for Normalized Maximum Likelihood 

(NML) distribution (Shtarkov 1987): 

For all 𝑥𝑛, regret given by 

(equalizer strategy) 



How do the three Universal Codes 

Compare for finite model, 𝚯 = 𝑲?

• 2-part: worst-case regret bounded by log𝐾

• Bayes: worst-case regret (usually strictly) smaller

• NML: worst-case regret given by parametric 

complexity   

• even (usually strictly) smaller



Parametric Complexity/

Minimax Regret, regular models

Finite ℳ :

Countably infinite, “INECCSI” (≈ compact) Θ0

dimensional contribution

to complexity/minimax regret

“geometric” contribution

to complexity/minimax regret



Geometric Interpretation

Bernoulli vs. Crazy Bernoulli embedded in 

First-Order Markov



Regret of Bayes universal model



Regret of Bayes universal model

• convergence uniform for all 𝑥𝑛 with ෠𝜃 𝑥𝑛 ∈ Θineccsi ⊂ Θ
if prior continuous and bounded away from 0 on Θineccsi

• within 𝑂 1 of NML: for all ‘reasonable’ priors, Bayes 

gives universal model

• It can be better or worse than NML: luckiness



Regret of Bayes universal model

• convergence uniform for all 𝑥𝑛 with ෠𝜃 𝑥𝑛 ∈ Θineccsi ⊂ Θ
if prior continuous and bounded away from 0 on Θineccsi

• within 𝑂 1 of NML: for all ‘reasonable’ priors, Bayes 

gives universal model

• It can be better or worse than NML: luckiness

• but can it be made to mimic NML? 



The Amazing Jeffreys’ Prior

• In 1946, Sir Harold Jeffreys (who discovered 

that the interior of the earth is fluid) proposed 

what is now called Jeffreys’ prior, 

• …to be used “when real prior knowledge is 

lacking” 



Regret of Bayes-Jeffreys

• within 𝑂 1 of NML: for all ‘reasonable’ priors, Bayes 

gives universal model

• But if we plug in Jeffreys’ prior, within 𝑜 1 .

• With Jeffreys prior, asymptotically Bayes and NML 

coincide!



More on Jeffreys’ Prior 

•

• often easier to compute than ҧ𝑝nml

• …has been advocated as prior for model 

selection in the Bayesian literature – makes 

MDL and Bayes “consistent”



Jeffreys’ Prior vs Luckiness



More on Jeffreys’ Prior 

• Jeffreys’ introduced his prior for different reasons

• Important Reason: invariance to 

reparameterization parameter space

• in uncountable spaces, the notion of ‘uniform’ 

prior depends on choice of parameterization (and 

is hence arbitrary)

• Example: Bernoulli can also be parameterized by 

𝑝𝜃 𝑋 = 1 = 𝜃𝟐 . Uniform density on 𝜃 gives a 

very different distribution on the set of Bernoulli 

distributions than uniform density on 𝜃 in 

standard parameterization   



More on Jeffreys’ Prior 

• Example: Bernoulli can also be parameterized by 

𝑝𝜃 𝑋 = 1 = 𝜃𝟐 . Uniform density on 𝜃 gives a very 

different distribution on the set of Bernoulli 

distributions than uniform density on 𝜃 in standard 

parameterization

• Jeffreys’ prior is parameterization invariant. 

(Hence a better choice for ignorance than Laplace-

Bayes’ choice, which was the uniform prior)



More on Jeffreys’ Prior 

• Jeffreys prior for Bernoulli:

• Jeffreys prior for Gaussian location:

• uniform on Θ0 (space of means)  

(parameter space must be restricted, otherwise prior 

“improper” – i.e. does not integrate)



“Luckiness Again”

• See drawing: for what sequences does 

Jeffreys’ prior lead to smaller regret, for what 

sequences to larger regret?



Geometric Interpretation of 

Jeffreys’ prior

• Jeffreys’ prior is uniform prior on space of 

distributions rather than parameters…

• …when ‘distance’ between distributions is 

measured by

• KL divergence

• ‘distinguishability’



Next Week

• Simple MDL/Bayesian Model Selection:

• again, almost the same!

• Yet another universal code/model: 

“prequential”








