Today: Universal Models/Codes

- 1. Simple MDL Model Selection
 - Three interpretations
- 2. The Fourth Type of Universal Code/Model: prequential
 - Fourth interpretation simple MDL mod.sel.
- 3. Questions/Feedback

MDL Model Selection

Select \mathcal{M}_j minimizing $-\log \bar{p}_{nml}(x^n \mid \mathcal{M}_j)$, i.e. minimizing

$$-\log p_{\widehat{\theta}_{j}(x^{n})}(x^{n}) + \log \sum_{\substack{x^{n} \in \mathcal{X}^{n} \\ | \mathbf{f} | \\ \mathbf{f}$$

- select model that compresses data most, treating all distributions within model on equal footing;
- selected model detects most (non-spurious) regularity in data

- Suppose we are given data $x^n = (x_1, ..., x_n)$
- We want to select between models \mathcal{M}_1 and \mathcal{M}_2 as explanations for the data. MDL tells us to pick the \mathcal{M}_i for which the associated optimal universal model $\bar{p}_{nml}(\cdot | \mathcal{M}_i)$ assigns the largest probability to the data:

$$\mathcal{M}_{\mathrm{mdl}} = \arg \sup_{j \in \{1,2\}} \bar{p}_{\mathrm{nml}}(x^n \mid \mathcal{M}_j)$$

MDL Model Selection

Select \mathcal{M}_j minimizing $-\log \bar{p}_{nml}(x^n \mid \mathcal{M}_j)$, i.e. minimizing

$$-\log p_{\hat{\theta}_{j}(x^{n})}(x^{n}) + \log \sum_{\substack{x^{n} \in \mathcal{X}^{n} \\ \uparrow}} p_{\hat{\theta}_{j}(x^{n})}(x^{n})}$$

$$\uparrow$$
error (= minus fit) term complexity term ("log | Θ |")

(this is just 'MDL model selection between two simple models'; it is not 'the MDL Principle')

Four Interpretations

- Compression interpretation
- Counting/Geometric interpretation
- Bayesian interpretation
- Predictive interpretation

MDL Model Selection, Regular Parametric Models

Select \mathcal{M}_j minimizing $-\log \bar{p}_{nml}(x^n \mid \mathcal{M}_j)$, i.e. minimizing

Regular Parametric Models

Select \mathcal{M}_j minimizing $-\log \bar{p}_{nml}(x^n \mid \mathcal{M}_j)$, i.e. minimizing

compare to BIC/"old" MDL (Rissanen 1978):

$$BIC(j) = -\log p_{\widehat{\theta}_j(x^n)}(x^n) + \frac{k}{2}\log \frac{n}{2\pi}$$

Bayesian Model Selection

- Recall the Bayesian universal model $\bar{p}_{Bayes}(x^n | \mathcal{M}_j) = \int_{\theta \in \Theta_j} p(x^n | \theta) w(\theta) d\theta$
- Bayesian model selection between \mathcal{M}_1 and \mathcal{M}_2 tells us to select the \mathcal{M}_i maximizing

$$w(j \mid x^n) = \frac{\bar{p}_{\mathsf{Bayes}}(x^n \mid \mathcal{M}_j)w(j)}{\sum_{k \in \{0,1\}} \bar{p}_{\mathsf{Bayes}}(x^n \mid \mathcal{M}_k)w(k)}$$

- with uniform prior W this is the \mathcal{M}_j maximizing $\bar{p}_{\mathsf{Bayes}}(x^n \,|\, \mathcal{M}_j)$

MDL vs Bayesian Model Selection, Regular Parametric Models

MDL: select \mathcal{M}_j minimizing $-\log \bar{p}_{nml}(x^n \mid \mathcal{M}_j) =$

$$-\log p_{\widehat{\theta}_j(x^n)}(x^n) + \frac{k}{2}\log \frac{n}{2\pi} + \log \int_{\Theta_j} \sqrt{\det I(\theta)} d\theta + o(1)$$

BAYES: select \mathcal{M}_j minimizing $-\log p_{\text{Bayes}}(x^n \mid \mathcal{M}_j) =$

 $-\log p_{\widehat{\theta}_{j}(x^{n})}(x^{n}) + \frac{k}{2}\log \frac{n}{2\pi} - \log w(\widehat{\theta}_{j}(x^{n})) + \log \sqrt{\det I(\widehat{\theta}(x^{n}))} + o(1)$

- Always within O(1); hence, for large enough n, Bayes and MDL (and BIC) select the same model
- For Jeffreys' prior even within o(1)

Four Interpretations

- Compression interpretation
- Counting/Geometric interpretation
- Bayesian interpretation
- Predictive interpretation

- Suppose data arrives sequentially in time.
- Let \mathcal{M} be a set of predictors. There exist prediction strategies that, for each data sequence that can possibly be realized, predict essentially as well as the predictor in \mathcal{M} that turns out to be best for that sequence 'with hindsight'

On-Line "Probabilistic" Prediction

- Consider sequence $(x_1, y_1), (x_2, y_2), \ldots$ where all $x_i \in \mathcal{X}$, $y_i \in \mathcal{Y}$
- Goal: sequentially predict y_i ,
 - given past $(x_1, y_1), \ldots, (x_{i-1}, y_{i-1})$
 - using 'probabilistic prediction' P_i (distribution on \mathcal{Y})

On-Line Probabilistic Prediction

- Consider sequence $(x_1, y_1), (x_2, y_2), \ldots$ where all $x_i \in \mathcal{X}$, $y_i \in \mathcal{Y}$
- Goal: sequentially predict y_i ,
 - given past $(x_1, y_1), \ldots, (x_{i-1}, y_{i-1})$
 - using 'probabilistic prediction' P_i (distribution on \mathcal{Y})
- Example: weather forecaster

 $\mathcal{Y} = \{0,1\}$ (0 = no rain, 1 = rain)

gigantic vector indicating humidity, air pressure temperature etc. at various locations

Prediction Strategies

 prediction strategy S is function mapping, for all i, histories (x1, y1), ..., (xi-1, yi-1) to distributions for i -th outcome

 $S: \cup_{n=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^n \to \text{set of distributions on } \mathcal{Y}$

- Weather forecasting example:
 - Prediction strategy is simply the prediction algorithm used by the weather forecaster, hopefully designed by meteorologists
 - Prediction for y_i will depend on data observed on previous days $(x_{i-1}, y_{i-1}), (x_{i-2}, y_{i-2}), \dots$

- Suppose we have two weather forecasters
 - Marjon de Hond (Dutch public TV)
 - Peter Timofeeff (Dutch commercial TV)
- On each i (day), Marjon and Peter announce the probability that $y_{i+1} = 1$, i.e. that it will rain on day i + 1

- Suppose we have two weather forecasters
 - Marjon de Hond
 - Peter Timofeeff
- On each i (day), Marjon and Peter announce the probability that $y_{i+1} = 1$, i.e. that it will rain on day i + 1
- We would like to combine their predictions in some way such that for every sequence y₁,..., y_n ∈ {0,1}ⁿ we predict almost as well as whoever turns out to be the best forecaster for that sequence

- We would like to combine predictions such that for every sequence $y_1, \ldots, y_n \in \{0, 1\}^n$ we predict almost as well as the best forecaster for that sequence
- Surprisingly, there exist prediction strategies that achieve this. These are called **universal**

- "universal" is really a misnomer

- To formalize this idea, we need to define how we measure prediction quality
 - i.e., what do we mean by "the best forecaster"

Logarithmic Loss

- To compare performance of different prediction strategies, we need a measure of prediction quality
- A standard quality measure is the log loss:

$$loss(y, P) := -\log_2 P(y)$$

$$loss(y_1 \dots, y_n, S) := \sum_{i=1}^n loss(y_i, S(y_1, \dots, y_{i-1}))$$

- Why log-loss? Because...
 - ...it's mathematically convenient
 - ...it makes universal prediction equivalent to universal coding
 - ...it has a gambling interpretation
 - ... it's the only local proper scoring rule

Universal prediction with log loss

- We would like to combine predictions such that for every sequence $y_1, \ldots, y_n \in \{0, 1\}^n$ we predict almost as well as the best forecaster for that sequence
- It turns out that there exists a universal strategy \bar{S} such that, for all $n, y_1, \dots, y_n \in \{0, 1\}^n$

 $loss(y_1...,y_n, \bar{\mathbf{S}}) \leq$

 $\min\{loss(y_1..., y_n, S_{Marjon}), loss(y_1..., y_n, S_{Peter})\} + 1.$

Universal prediction with log loss

- We would like to combine predictions such that for every sequence $y_1, \ldots, y_n \in \{0, 1\}^n$ we predict almost as well as the best forecaster for that sequence
- It turns out that there exists a universal strategy \bar{S} such that, for all $n, y_1, \dots, y_n \in \{0, 1\}^n$

 $loss(y_1..., y_n, \overline{S}) \leq min\{loss(y_1..., y_n, S_{Marjon}), loss(y_1..., y_n, S_{Peter})\}+1.$

• Losses increase linearly in n so this is very good! $loss(y_1..., y_n, S) := \sum_{i=1}^n loss(y_i, S(y_1, ..., y_{i-1}))$

On-Line Probabilistic Prediction

- Consider sequence y_1, y_2, \cdots , all $y_i \in \mathcal{Y}$
- Goal: sequentially predict y_i given past y_1, \ldots, y_{i-1} using a 'probabilistic prediction' P_i (distribution on \mathcal{Y})
- prediction strategy S is function mapping, for all i, 'histories' y_1, \dots, y_{i-1} to distributions for i -th outcome

 $S:\cup_{n=1}^{\infty}\mathcal{Y}^n\to \text{set of distributions on }\mathcal{Y}$

prediction strategy = distribution

 If we think that Y₁,..., Y_n ~ P (not necessarily i.i.d !) then we should predict Y_i using the conditional distribution

$$P(\cdot \mid y^{i-1}) := P(Y_i = \cdot \mid Y_1 = y_1, \dots, Y_{i-1} = y_{i-1})$$

• Conversely, every prediction strategy S may be thought of as a distribution on (Y_1, \ldots, Y_n) , by defining:

$$P(\cdot \mid y^{i-1}) := S(y^{i-1})$$
$$P(y_1, \dots, y_n) := \prod_{i=1}^n P(y_i \mid y^{i-1})$$

prediction strategy = distribution

 If we think that Y₁,..., Y_n ~ P (not necessarily i.i.d !) then we should predict Y_i using the conditional distribution

$$P(\cdot \mid y^{i-1}) := P(Y_i = \cdot \mid Y_1 = y_1, \dots, Y_{i-1} = y_{i-1})$$

• Conversely, every prediction strategy S may be thought of as a distribution on (Y_1, \ldots, Y_n) , by defining: $P(\cdot \mid y^{i-1}) := S(y^{i-1})$ $P(y_1, \ldots, y_n) := \prod_{i=1}^n P(y_i \mid y^{i-1})$

Log loss & likelihood

• For every "prediction strategy" P, all n,

$$\sum_{i=1}^{n} \log(y_i, P(\cdot \mid y^{i-1})) = \sum_{i=1}^{n} -\log P(y_i \mid y^{i-1}) = -\log P(y_1, \dots, y_n)$$

$$\sum_{i=1}^{n} -\log P(y_i \mid y^{i-1}) = -\log \prod_{i=1}^{n} P(y_i \mid y^{i-1}) = -\log \prod \frac{P(y_i)}{P(y^{i-1})} = -\log P(y_1, \dots, y_n)$$

Log loss & likelihood

• For every "prediction strategy" P, all n,

 $\sum_{i=1}^{n} \operatorname{loss}(y_i, P(\cdot \mid y^{i-1})) = \sum_{i=1}^{n} -\log P(y_i \mid y^{i-1}) = -\log P(y_1, \dots, y_n)$

Accumulated log loss = minus log likelihood Dawid '84, Rissanen '84

- Let *M* = {*P*₁, *P*₂, ...} be a for now, finite or countable set of predictors (identified with probability distributions on *y*[∞])
- GOAL: given \mathcal{M} , construct a new predictor predicting data 'essentially as well' as any of the $P_{\theta} \in \mathcal{M}$

A Bayesian Strategy

- One possibility is to act Bayesian:
 - 1. Put some prior W on (parameter space of) \mathcal{M}
 - 2. Define Bayesian marginal distribution

$$P_{\mathsf{Bayes}}(y_1,\ldots,y_n) := \sum_{\theta=1}^{\infty} P_{\theta}(y_1,\ldots,y_n) W(\theta)$$

3. Predict with Bayesian (posterior) predictive distribution

$$P_{\mathsf{Bayes}}(y_{i+1} \mid y_1, \dots, y_i) = \frac{P_{\mathsf{Bayes}}(y_1, \dots, y_{i+1})}{P_{\mathsf{Bayes}}(y_1, \dots, y_i)}$$

Evaluating Bayes

• For arbitrary strategies P :

 $\sum_{i=1}^{n} loss(y_i, P(\cdot \mid y^{i-1})) = \sum_{i=1}^{n} - \log P(y_i \mid y^{i-1}) = -\log P(y_1, \dots, y_n)$

Evaluating Bayes

• For arbitrary strategies P :

$$\sum_{i=1}^{n} \operatorname{loss}(y_i, P(\cdot \mid y^{i-1})) = \sum_{i=1}^{n} -\log P(y_i \mid y^{i-1}) = -\log P(y_1, \dots, y_n)$$

• Moreover, for Bayes strategy P_{Bayes} , for all n, y^n , all θ_0 :

$$\sum_{i=1}^{n} \operatorname{loss}(y_i, P_{\mathsf{Bayes}}(\cdot \mid y^{i-1})) = -\log P_{\mathsf{Bayes}}(y_1, \dots, y_n)$$
$$= -\log \sum_{\theta=1}^{\infty} P_{\theta}(y_1, \dots, y_n) W(\theta) \le -\log P_{\theta_0}(y_1, \dots, y_n) - \log W(\theta_0)$$

linear increase in n

constant in n

Bayesian strategy is universal

- For all n, y^n , all θ : $\sum_{i=1}^n loss(y_i, P_{\text{Bayes}}(\cdot \mid y^{i-1})) \leq -log P_{\theta}(y_1, \dots, y_n) + C_{\theta} = \sum_{i=1}^n loss(y_i, P_{\theta}(\cdot \mid y^{i-1})) + C_{\theta}$
- For all sequences of each length n, total loss of Bayes strategy bounded by constant depending on θ , not on n (Marjon vs. Peter: $w(\theta) = \frac{1}{2}, C_{\theta} = -\log w(\theta) = 1$)

Prequential Interpretation of Universal "Coding"

- In the prequential view, the regret obtained by p̄ on sequence xⁿ is just the difference between the cumulative prediction error (as measured by logloss) made by sequentially predicting with p̄ and sequentially predicting using p_θ with θ = θ̂(xⁿ), the θ ∈ Θ that is 'prediction-optimal with hindsight'
- $-\log \bar{p}_{Bayes}(x^n) = \sum_{i=1..n} loss(x_i; \bar{p}_{Bayes}(\cdot|x^{i-1}))$ (predict by smoothed maximum likelihood) but also

$$-\log \bar{p}_{\mathrm{nml}}(x^n) = \sum_{i=1..n} \operatorname{loss}(x_i; \bar{p}_{\mathrm{nml}}(\cdot | x^{i-1}))$$

- Suppose we are given data $x^n = (x_1, ..., x_n)$
- We want to select between models \mathcal{M}_1 and \mathcal{M}_2 as explanations for the data. MDL tells us to pick the \mathcal{M}_i for which the associated optimal universal model $p_{nml}(\cdot | \mathcal{M}_i)$ assigns the largest probability to the data:

$$\mathcal{M}_{\mathsf{mdl}} = \arg \sup_{j \in \{1,2\}} p_{\mathsf{nml}}(x^n \mid \mathcal{M}_j)$$

- Suppose we are given data $x^n = (x_1, ..., x_n)$
- We want to select between models \mathcal{M}_1 and \mathcal{M}_2 as explanations for the data. MDL tells us to pick the \mathcal{M}_i for which the associated optimal universal model $\bar{p}_{nml}(\cdot | \mathcal{M}_i)$ assigns the largest probability to the data:

$$\mathcal{M}_{\text{mdl}} = \arg \sup_{j \in \{1,2\}} \bar{p}_{\text{nml}}(x^n \mid \mathcal{M}_j)$$

- Suppose we are given data $x^n = (x_1, ..., x_n)$
- We want to select between models \mathcal{M}_1 and \mathcal{M}_2 as explanations for the data. MDL tells us to pick the \mathcal{M}_i for which the associated optimal universal model $\bar{p}_{nml}(\cdot | \mathcal{M}_i)$ assigns the largest probability to the data:

$$\mathcal{M}_{\mathrm{mdl}} = \arg \sup_{j \in \{1,2\}} \bar{p}_{\mathrm{nml}}(x^n \mid \mathcal{M}_j)$$

- Suppose we are given data $x^n = (x_1, ..., x_n)$
- We want to select between models \mathcal{M}_1 and \mathcal{M}_2 as explanations for the data. MDL tells us to pick the \mathcal{M}_i for which the associated optimal universal model $p_{nml}(\cdot | \mathcal{M}_i)$ assigns the largest probability to the data:

$$\mathcal{M}_{\mathsf{mdI}} = \arg \sup_{j \in \{1,2\}} p_{\mathsf{nmI}}(x^n \mid \mathcal{M}_j)$$

MDL Model Selection

Select \mathcal{M}_j minimizing $-\log \bar{p}_{nml}(x^n \mid \mathcal{M}_j)$, i.e. minimizing

$$-\log p_{\hat{\theta}_{j}(x^{n})}(x^{n}) + \log \sum_{\substack{x^{n} \in \mathcal{X}^{n} \\ \uparrow}} p_{\hat{\theta}_{j}(x^{n})}(x^{n})}$$

$$\uparrow$$
error (= minus fit) term complexity term ("log | Θ |")

(this is just 'MDL model selection between two simple models'; it is not 'the MDL Principle')

Four Interpretations

- Compression interpretation
- Counting/Geometric interpretation
- Bayesian interpretation
- Predictive interpretation

MDL Model Selection: Prequential Interpretation

Select \mathcal{M}_j minimizing $-\log \bar{p}_{nml}(x^n \mid \mathcal{M}_j)$, i.e. minimizing $\sum_{j=1}^n \text{loss}(x_i; \bar{p}_{nml}(\cdot \mid x^{i-1}, \mathcal{M}_j))$

- i.e. for each model, sequentially predict the data points based on past data using a prediction strategy based on the model. Then, select the model with the smallest cumulative (equivalently, average) loss.
- Viewed in this way, MDL is quite similar to leaveone-out cross validation!

(MDL = "forward" rather than "cross" validation)

Four Interpretations

- Compression interpretation
- Counting/Geometric interpretation
- Bayesian interpretation
- Predictive interpretation

• Now recall that with Bayesian universal model, predictive distr. given by "smoothed ML estimator"

$$\bar{p}_{\mathsf{Bayes}}(x_i \mid x^{i-1}) = \int p_{\theta}(x_i) w(\theta \mid x^n) d\theta$$

- $w(\theta|x^n)$ approximately normal with mean $\hat{\theta}(x^n)$, variance $O(\frac{1}{\sqrt{n}})$. So predictions quite close to what you would get if you would directly predict with ML estimator based on the past!
 - Very visible in Bernoulli model with Jeffreys prior: $\bar{p}_{\text{Bayes}}(x_{n+1} \mid x^n) = \frac{n_1 + 1/2}{n+1}$

$$\bar{p}_{\mathsf{Bayes}}(x_i \mid x^{i-1}) = \int p_{\theta}(x_i) w(\theta \mid x^n) d\theta$$

- $w(\theta|x^n)$ approximately normal with mean $\hat{\theta}(x^n)$, variance $O(\frac{1}{\sqrt{n}})$. So predictions quite close to what you would get if you would directly predict with ML estimator based on the past!
- IDEA: define new distribution

$$\bar{p}_{\text{preq}}(x_i \mid x^{i-1}) \coloneqq p_{\widehat{\theta}(x^{i-1})}(x_i) ;$$

$$\bar{p}_{\text{preq}}(x^n) \coloneqq \prod_{i=1..n} \bar{p}_{\text{preq}}(x_i \mid x^{i-1})$$

IDEA: define new distribution $\bar{p}_{preq}(x_i \mid x^{i-1}) \coloneqq p_{\widehat{\theta}(x^{i-1})}(x_i);$ $\bar{p}_{preq}(x^n) \coloneqq \prod_{i=1..n} \bar{p}_{preq}(x_i \mid x^{i-1})$

This will behave essentially like a universal model

 $\bar{p}_{preq}(x_i \mid x^{i-1}) := p_{\hat{\theta}(x^{i-1})}(x_i) ; \ \bar{p}_{preq}(x^n) := \prod_{i=1}^n \bar{p}_{preq}(x_i \mid x^{i-1})$

Theorem: if $\hat{\theta}$ is 'slightly modified' ML estimator for "regular" k-dim. parametric model $\mathcal{M} = \{ p_{\theta} : \theta \in \Theta \}$, then for all θ in ineccsi subset of Θ , $\mathbf{E}_{X^n \sim P_{\theta}} \left[-\log \bar{p}_{\mathsf{preq}}(X^n) - \left(-\log p_{\hat{\theta}(X^n)}(X^n) \right) \right] = \frac{k}{2} \log n + O(1)$... so the prequential distribution \bar{p}_{preq} is a "O(1)universal model in expectation"

Advantage: often easier to calculate than \bar{p}_{Bayes} – aside: MDL model selection now becomes even more similar to cross-validation!

Disadvantages:

- does **not** achieve individual sequence minimax regret
- -unnatural order dependence
- start-up problem: using the plain ML estimator often does not work, since it can result in infinite loss
 - Solution 1: smooth it (add 'virtual data')
 - [gives same as \bar{p}_{Bayes} for multinomial model, but not for other models]
 - Solution 2: do a 'late start' (ignore data until smallest *n* such that this cannot happen any more)

Today: Universal Models/Codes

- 1. Simple MDL Model Selection
 - Three interpretations
- 2. The Fourth Type of Universal Code/Model: prequential
 - Fourth interpretation simple MDL mod.sel.
- 3. Questions/Feedback