Today: Universal Models/Codes

1. Simple MDL Model Selection
— Three interpretations

2. The Fourth Type of Universal Code/Model:
prequential

— Fourth interpretation simple MDL mod.sel.
3. Questions/Feedback



MDL Model Selection

Select M; minimizing —log ppm(x™ | M;) , i.e. minimizing

—log Pg;(zm) (z") + log Z Pg;(am) (z")
e Xn

Y Y

error (= minus fit) term complexity term (“log |0]|")

» select model that compresses data most, treating all
distributions within model on equal footing;

» selected model detects most (non-spurious) regularity
In data



Simple Refined
MDL Model Selection

« Suppose we are given data x" = (x4, ..., X;,)

* We want to select between models M; and
M, as explanations for the data. MDL tells us
to pick the M; for which the associated
optimal universal model p, (-] M;)
assigns the largest probability to the data:

Mmdr = arg sup pymi(z” | M;)
je{1,2}



MDL Model Selection

Select M; minimizing —log ppm(x™ | M;) , I.e. minimizing

—log Pg;(zm) (z") + log Z Pg;(am) (z")
e Xn

Y Y

error (= minus fit) term complexity term (“log |0]|")

(this is just ‘MDL model selection between two
simple models’; it is not ‘the MDL Principle’)



Four Interpretations
Compression interpretation
Counting/Geometric interpretation
Bayesian interpretation

Predictive interpretation



MDL Model Selection,

Regular Parametric Models
Select M; minimizing —log ppm(x™ | M;) , I.e. minimizing

k
~10g Py (i (@) 4 10G %—I—Iog /@j J/det 1(0)do4o(1)

| N

error (= minus fit) term Generic comglexity term

Geometric,
model specific complexity term




Regular Parametric Models

Select M; minimizing —log ppm(x™ | M;) , I.e. minimizing

k
~10g Py (i (@) 4 10G %—I—Iog /@j J/det 1(0)do4o(1)

| N

error (= minus fit) term Generic comglexity term

Geometric,
model specific complexity term

compare to BIC/"old” MDL (Rissanen 1978):

BIC(j) = —log Pg;(am) (z") + = log —



Bayesian Model Selection

* Recall the Bayesian universal model

PRayes(@"IM;) = | p(a"|0)w(8)do
Y J 9€@j

« Bayesian model selection between M1 and M
tells us to select the M; maximizing
ﬁBayes(an | Mj)w(j)
Zke{O,l}ﬁBayes(l’n | Mp)w(k)

w(y | z") =

» with uniform prior W this is the M ;maximizing
15Bayes(33n | Mj)



MDL vs Bayesian Model Selection,

Regular Parametric Models
MDL: select M; minimizing —log ppm (x™ | M;) =

k
~ 109 pg, () (a")+7 log ;T—I—Iog /@j \/det 1(0)do+o(1)

BAYES: select M; minimizing —log pgayes(x™ | M) =

k _ .
— 1095, (yny (@)t l0g %—Iog w(8;(z"))+log \/det I((z"))+0(1)

« Always within O(1) ; hence, for large enough n, Bayes
and MDL (and BIC) select the same model

* For Jeffreys’ prior even within o(1)



Four Interpretations

Compression interpretation
Counting/Geometric interpretation
Bayesian interpretation

Predictive interpretation



Universal Prediction

Suppose data arrives sequentially in time.

Let M be a set of predictors. There exist prediction
strategies that, for each data sequence that can
possibly be realized, predict essentially as well as the
predictor in M that turns out to be best for that
sequence ‘with hindsight’



On-Line “Probabilistic” Prediction

« Consider sequence (z1,y1), (z2,y2),. ..
whereallz; €¢ X ,y; € Y

» Goal: sequentially predict y;

— given past (x1,y1),...,(%i—1,%i—1)
— using ‘probabilistic prediction’ F; (distribution on )



On-Line Probabilistic Prediction

Consider sequence (z1,y1), (2,92), ...
whereallz; €¢ X ,y; € Y

Goal: sequentially predict y; |,
— given past (z1,y1),.. ., (Ti-1,¥i—1)
— using ‘probabilistic prediction’ ; (distribution on)y )
Example: weather forecaster
Y ={0,1} (0=norain, 1=rain)

gigantic vector indicating humidity,
X = air pressure temperature etc. at
various locations



Prediction Strategies

« prediction strategy S is function mapping, for all i,
histories (z1,y1),--.,(zi—1,¥;—1) to distributions for
i -th outcome

S U1 (X x Y)" — set of distributions on Y

« Weather forecasting example:

— Prediction strategy is simply the prediction
algorithm used by the weather forecaster,
hopefully designed by meteorologists

— Prediction for y; will depend on data
observed on previous days (zi-1,vi-1), (xi—2,9i-2), . .-



Universal Prediction

« Suppose we have two weather forecasters
— Marjon de Hond (Dutch public TV)
— Peter Timofeeff (Dutch commercial TV)

« On each i (day), Marjon and Peter announce the
probability that y;+1 = 1,i.e. that it will rain on dayi + 1



« Suppose we have two weather forecasters
— Marjon de Hond
— Peter Timofeeff

 On each i(day), Marjon and Peter announce the
probability that ;51 = 1 ,i.e. that it will rain on dayi + 1

 We would like to combine their predictions in some
way such that for every sequence y1,...,yn € {0,1}"
we predict almost as well as whoever turns out to be
the best forecaster for that sequence



Universal Prediction

« We would like to combine predictions such that for

every sequence vi,---,yn € {0,1}" we predict almost
as well as the best forecaster for that sequence

« Surprisingly, there exist prediction strategies that
achieve this. These are called universal

— “universal” is really a misnomer

« To formalize this idea, we need to define how we
measure prediction quality

— i.e., what do we mean by “the best forecaster”



Logarithmic Loss

« To compare performance of different prediction
strategies, we need a measure of prediction quality

« Astandard gquality measure is the log loss:

loss(y, P) := —logs P(y)
n
lOSS(yl « ey Yn, S) = Z loss(yia S(yla < ayi—l))
1=1

« Why log-loss? Because...

« ...it's mathematically convenient

 ...it makes universal prediction equivalent to universal
coding

« ...it has a gambling interpretation

« ...it'stheonlylocal proper scoring rule



Universal prediction with log loss

« We would like to combine predictions such that for

every sequence yi,---,yn € {0,1}" we predict almost
as well as the best forecaster for that sequence

It turns out that there exists a universal strategy S
such that, for all n,y1,...,yn € {0,1}"

0SS(y1 - - -5 Yn;S) <
min{loss(y1 - .., Yn, SMarjon);10SS(y1 - - -, Yn, Speter) } +1.



Universal prediction with log loss

« We would like to combine predictions such that for

every sequence vi,---,yn € {0,1}" we predict almost
as well as the best forecaster for that sequence

|t turns out that there exists a universal strategy S
such that, for all n,y1,...,yn € {0,1}"

|OSS(y1 e e Yny g) é
min{loss(y1 - - -, Yn, SMarjon)s10SS(y1 - - -, Yn, Speter) }+1.

* Losses increase linearly in n so this is very good!
n

loss(y1...,yn,S) 1= > loss(y;, S(y1,- -, ¥i—1))
1 =1



On-Line Probabilistic Prediction

« Consider sequence ¥1,¥2,--- ,ally; €Y

* (Goal: sequentially predict y; given past y1,...,Y;—1
using a ‘probabilistic prediction’ P; (distribution on V)

« prediction strategy S is function mapping, for all i,
‘histories’ Y1, - - -, ¥i—1 to distributions for i -th
outcome

S U 21 V" — set of distributions on Y



prediction strategy = distribution

« Ifwe think that Y1,...,Yn ~ P (not necessarily i.i.d !)
then we should predict Y; using the conditional
distribution

Py =PYi=-|Yi=y1,---,Yii1 = wi_1)

« Conversely, every prediction strategy S may be
thought of as a distribution on (Y1, ..., Y»), by defining:

PGy =8@E1)

n .
P(y1,-- - yn) = [[ PQyi | v 1)
i=1



prediction strategy = distribution

« Ifwe think that Y1,...,Yn ~ P (not necessarily i.i.d !)
then we should predict Y; using the conditional
distribution

Py =PYi=-|Yi=y1,---,Yii1 = wi_1)

« Conversely, every prediction strategy S may be
thought of as a distribution on (Y1, ..., Y»), by defining:

P(- |y 1) =S

n .
P(y1,---yn) = [] P(yi | v 1)
L

1



n

2.

Log loss & likelihood

* For every “prediction strategy” P, all n,

n
>
=1

1=1

—log P(y; |y~ 1) =

n

oss(yi P(- 1 y'1) = Y

1=1

=1

—log ﬁ P(y; |y 1) =—log[]

—log P(y; | " 1) =

Y

—log P(y1, ..

P(y;)

P(z 1)_

7yn)



Log loss & likelihood

* For every “prediction strategy” P, all n,

n ) n .
> loss(y, P(- |y 1) = Y. —log P(y; | y'~ ) = —log P(y1

Accumulated log loss = minus log likelihood
Dawid ‘84, Rissanen ‘84



Universal Prediction

 Let M = {P1,P>,...} be a for now, finite or countable set
of predictors (identified with probability distributions ony

)

 GOAL: given M, construct a new predictor predicting
data ‘essentially as well’ as any of the Py ¢ M



A Bayesian Strategy

« One possibility is to act Bayesian:
1. Put some prior w on (parameter space of ) M
2. Define Bayesian marginal distribution

0. @)
PBayes(yla R ayn) L= Z PQ(yla x 7yn)W(9)
0=1

3. Predict with Bayesian (posterior) predictive
distribution

PBayes(yla ‘e '}yi-l—l)
PBayes(yla ceey yz’)

PBayes(’yH—l | Y1, .- ay’i) —



Evaluating Bayes

« For arbitrary strategies P :

n

i loss(y;, P |y 1)) = > —log P(y; | ' 1) = —
=1 i=1

-----



Evaluating Bayes

For arbitrary strategies P :

n

n . .
S loss(y;, PC 1y 1) =3 —log P(y; | ¥ 1) = —log P(y1, - .., yn)
Moreover, for Bayes strategy Pgayes,for all n, y™,all 65:

mn
—1
Z l0ss(y;, Peayes(: | ¥'~ 7)) = — 109 Prayes(¥1;- -, Yn)
1=1

®.@]
= —log > Py(y1,-..,yn)W(8) < —log Py (y1,---,yn)—log W(bp)
0=1

linear increase in n | | constantin n |




Bayesian strategy Is universal

« Foralln, y* all 8

'

—1
Z |Oss(yz'aPBayes(' |y ) <
1=1

n .
—10g Pp(y1,-- -, yn)+Cs = > loss(y;, Pa(- | ¥~ 1))+Cy
i—1

* For all sequences of each length n, total loss of Bayes
strategy bounded by constlant depending on 6, not on n
(Marjon vs. Peter:  w(6) = 7,Cy = —logw(d) = 1 )



Prequential Interpretation of
Universal “Coding”

* Inthe pregquential view, the regret obtained by p on
sequence x" Is just the difference between the
cumulative prediction error (as measured by log-
loss) made by sequentially predicting with p and
sequentially predicting using pg with 8 = 8(x™), the
6 € 0 that is ‘prediction-optimal with hindsight’

« —log ﬁBayes(xn) = Yi=1.n10ss(x;; ﬁBayes('lxi_l))
(predict by smoothed maximum likelihood)
but also

— log ﬁnml(xn) — Zi:l..n 1OSS(xl-; ﬁnml(' |xi_1))



Simple Refined
MDL Model Selection

« Suppose we are given data x" = (x4, ..., x,)

 We want to select between models M; and
M, as explanations for the data. MDL tells us
to pick the M; for which the associated
optimal universal model p,1 (| M;)
assigns the largest probability to the data:

Mmdr = arg sup pymi(z” | M;)
je{1,2}
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 We want to select between models M; and
M, as explanations for the data. MDL tells us
to pick the M; for which the associated
optimal universal model p,,1 (| M;)
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je{1,2}
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« Suppose we are given data x" = (x4, ..., X;,)

* We want to select between models M; and
M, as explanations for the data. MDL tells us
to pick the M; for which the associated
optimal universal model p, (-] M;)
assigns the largest probability to the data:

Mmdr = arg sup pymi(z” | M;)
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Simple Refined
MDL Model Selection

« Suppose we are given data x" = (x4, ..., X;,)

* We want to select between models M; and
M, as explanations for the data. MDL tells us
to pick the M; for which the associated
optimal universal model p, (-] M;)
assigns the largest probability to the data:

Mmdr = arg sup pymi(z” | M;)
je{1,2}



MDL Model Selection

Select M; minimizing —log ppm(x™ | M;) , i.e. minimizing

—log Pg;(zm) (z") + log Z Pg;(am) (z")
e Xn

Y Y

error (= minus fit) term complexity term (“log |0]|")

(this is just ‘MDL model selection between two
simple models’; it is not ‘the MDL Principle’)



Four Interpretations
Compression interpretation
Counting/Geometric interpretation
Bayesian interpretation

Predictive interpretation



MDL Model Selection:

Prequential Interpretation
Select M; minimizing —log ppm(x™ | M;) , I.e. minimizing

n
. = 1—1
> loss(zg; prmi (- | 277, M)
j=1
 |.e. for each model, sequentially predict the data points
based on past data using a prediction strategy based

on the model. Then, select the model with the smallest
cumulative (equivalently, average) loss.

* Viewed in this way, MDL is quite similar to leave-
one-out cross validation!

(MDL = “forward” rather than “cross” validation)



Four Interpretations
Compression interpretation
Counting/Geometric interpretation
Bayesian interpretation

Predictive interpretation



The Prequential Universal Model

Now recall that with Bayesian universal model,
predictive distr. given by “smoothed ML estimator”

Peayes(@i | #171) = [ pp(a)w(8 | «™)do

w(6|x™) approximately normal with mean 8 (x™),
variance 0(\/%) . So predictions quite close to what
you would get if you would directly predict with ML
estimator based on the past!

« Very visible in Bernoulli model with Jeffreys prior:

_ n M1+ 1/2
pBayes(xn—l—l | T ) = n+ 1




The Prequential Universal Model

Peayes(wi | #171) = [ pp(a)w(@ | «™)do

«  w(6|x™) approximately normal with mean 8(x™),
variance 0(\/%) . S0 predictions quite close to what

you would get if you would directly predict with ML
estimator based on the past!

 |DEA: define new distribution
ﬁpreQ(xi | xi_l) = p@(xi_l)(xi) )

ﬁpreq(xn): = [liz1.n ﬁpreq(xi | xi_l)



The Prequential Universal Model

IDEA: define new distribution
Poreq(%i | x'71) = pg(yi-1) (%) ;

ﬁpreq(xn): = [li=1.n ﬁpreq(xi | xi_l)

This will behave essentially like a universal model



The Prequential Universal Model

T
_ 1N . . | _ 1
ppreq(z; | ') 1= Py(zi-1y(@i) i Porea(z™) := ]] pprea(zi | 2" ")
i=1

Theorem: if 8 is ‘slightly modified’ ML estimator for
“regular” k-dim. parametric model M = {pg: 0 € 0},
then for all 8 in ineccsi subset of O,
Exner, [~ 109 Forea(X™) — (=100 pg( oy (X™))] = > 10g n+0(1)
... s0 the prequential distribution peq is a “O(1)-
universal model in expectation”



Prequential Universal Model

Advantage: often easier to calculate than pg,yes

— aside: MDL model selection now becomes even
more similar to cross-validation!



Prequential Universal Model

Disadvantages:
— does not achieve individual sequence minimax regret
—unnatural order dependence

— start-up problem: using the plain ML estimator often
does not work, since it can result in infinite loss

* Solution 1: smooth it (add ‘virtual data’)

[gives same as pgayes for multinomial model, but not for other
models]

« Solution 2: do a ‘late start’ (ignore data until smallest n such
that this cannot happen any more)



Today: Universal Models/Codes

1. Simple MDL Model Selection
— Three interpretations
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— Fourth interpretation simple MDL mod.sel.
3. Questions/Feedback



