
TODAY

1. Null Hypothesis Testing / p-values

2. Simple Refined MDL with Simple 𝐻0 as Null 

Hypothesis Testing

• MDL provides always-valid p-values

3. Financial Interpretation of MDL with Simple 𝐻0 -

Kelly Gambling

4. What about Composite 𝐻0? 

[Most of this not in book – these slides are reference 

material]



Null Hypothesis Testing

• Let 𝐻0 = 𝑃𝜃 𝜃 ∈ Θ0} represent the null hypothesis

• For simplicity, today we assume data 𝑋1, 𝑋2, … are 

i.i.d. under all 𝑃 ∈ 𝐻0 .

• Let 𝐻1= 𝑃𝜃 𝜃 ∈ Θ1} represent alternative hypothesis

• Example: testing whether a coin is fair

Under 𝑃𝜃 , data are i.i.d. Bernoulli 𝜃

Θ0 =
1

2
, Θ1 = 0,1 ∖

1

2

Standard test would measure frequency of 1s
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Null Hypothesis Testing

• Let 𝐻0 = 𝑃𝜃 𝜃 ∈ Θ0} represent the null hypothesis

• Let 𝐻1= 𝑃𝜃 𝜃 ∈ Θ1} represent alternative hypothesis

• Example: t-test (most used test world-wide)

𝐻0: 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 0, 𝜎2 vs. 

𝐻1 : 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 𝜇, 𝜎2 for some 𝜇 ≠ 0

𝜎2 unknown (‘nuisance’) parameter 

𝐻0 = 𝑃𝜎 𝜎 ∈ 0,∞ }

𝐻1 = 𝑃𝜎,𝜇 𝜎 ∈ 0,∞ , 𝜇 ∈ ℝ ∖ 0 }



Null Hypothesis Testing
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Composite 𝐻0



Standard Method: 

p-value, significance

• Let 𝐻0 = 𝑃𝜃 𝜃 ∈ Θ0} represent the null hypothesis

• A (“nonstrict”) p-value is a random variable (!) such 

that, for all 𝜃 ∈ Θ0 , 



Coin Tossing Example, 𝒏 = 𝟕𝟎𝟎

According to 𝐻0 ∶

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

300 310 320 330 340 350 360 370 380 390 400



• We now do an experiment and we observe T=380.     

The p-value is the probability that we would get 

this value, or an even smaller one

• ≈ total probability mass right from black line. We find, 

for T = 380, that p = 0.02
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• We determine (before experiment!) a significance 

level  and we ‘reject’ the null hypothesis iff

• This gives a Type-I Error Probability bound 𝜶

• If we follow this decision rule consistently 

throughout our lives, then in long run we reject 

the null while it is correct at most 5% of the time 
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Significance Testing

• The Significance Test against 𝐻0 at level 𝛼 based on 

p-value 𝑝 is defined as the test which rejects 𝐻0 if  

𝑝 = 𝑝 𝑋𝑛 ≤ 𝛼

• Thus a level 𝛼 – test has Type-I Error Bound of 0.05



Simple Refined MDL and 

Hypothesis Testing 

Given 𝐻0 = 𝑝𝜃 𝜃 ∈ Θ0} vs 𝐻1 = 𝑝𝜃 𝜃 ∈ Θ1} :

Evidence in favour of 𝐻1 measured by 

where                          represents universal     

distribution relative to 𝐻𝑗 e.g.

or  



Simple Refined MDL, simple 𝑯𝟎

MDL hypothesis testing

between 𝐻0 = { 𝑝0} and 𝐻1 = 𝑝𝜃 𝜃 ∈ Θ1} : 

Evidence in favor of 𝐻1 measured by  

...since the only reasonable ‘universal’ distribution

relative to 𝑯𝟎 is 𝒑𝟎 itself



Simple Refined MDL, simple 𝑯𝟎

Evidence in favor of 𝐻1 measured by 

Note that  

Hence by Markov’s Inequality



Simple Refined MDL, simple 𝑯𝟎

Evidence in favor of 𝐻1 measured by 

Note that  

Hence by Markov’s Inequality

...so, no matter how ഥ𝒑𝟏 is defined, 

(1) The MDL Evidence for Simple 𝑯𝟎 provides a p-value!

(2) Thus (see next slide) Selecting 𝑯𝟏 (i.e. Rejecting 𝑯𝟎) if 

ഥ𝑳𝟎 𝑿𝒏 − ഥ𝑳𝟏 𝑿𝒏 ≥ log 𝟐𝟎

gives a classical null hypothesis test with significance 

level 
𝟏

𝟐𝟎
= 𝟎. 𝟎𝟓



We have just seen that, no matter how ҧ𝑝1 is defined : 
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The fact that MDL with simple 𝑯𝟎 provides a 

p-value is just the No Hyper-Compression 

Inequality

• We have just seen that, no matter how ҧ𝑝1 is defined : 

• i.e. (set 𝛼 = 2−𝐾, −log 𝛼 = 𝐾 ) the probability that with 

any code ത𝐿1 we can compress data coming from ҧ𝑝0
by 𝐾 bits or more compared to the best code for ҧ𝑝0 is 

bounded by 2−𝐾

• This is just a generalization of no-hypercompression 

inequality: we saw and proved this for 𝑃0 is Bernoulli 

(1/2) in the very first lecture 



Better No-Hypercompression

(not in book)

• Proof: Special Case of Doob’s Optional Stopping 

Theorem (1949)

• Intuitive Reason: 

(1) the exponentiated codelength difference (i.e. 

likelihood ratio) can be interpreted in terms of 

money (Kelly gambling) 

(2) No matter what your rule is for when to go home, 

you don’t expect to make money in a casino



Data Compression as

Gambling! 



• At time 1 you can buy ticket 1 for 1$. It pays off 𝑀1 =
ҧ𝑝1(𝑋1)/𝑝0 𝑋1 $

• At time 2 you can buy ticket 2 for 1$. It pays off 𝑀2 =
ҧ𝑝1 𝑋2|𝑋

1 /𝑝0(𝑋2) $ .... and so on.

You may buy multiple and fractional nrs of tickets. 

• You start by investing 1$ in ticket 1. 

• After 1 outcome you either stop with end capital 𝑀1 or 

you continue and buy 𝑀1 tickets for round 2. After 

second round you stop with end capital 𝑀1 ⋅ 𝑀2 or you 

continue and buy 𝑀1 ⋅ 𝑀2 tickets for third round, and so 

on..

Data Compression as Gambling!
Kelly (1956)



• You start by investing 1$ in ticket 1. 

• After 1 outcome you either stop with end capital 𝑀1 or 

you continue and buy 𝑀1 tickets for round 2. After 

second round you stop with end capital 𝑀1 ⋅ 𝑀2 or you 

continue and buy 𝑀1 ⋅ 𝑀2 tickets for third round, and so 

on..

• 𝑀𝑛 is simply your accumulated capital after 𝑛 rounds

• If null hypothesis true, then at each round, you  do not 

expect to increase your wealth: 



• 𝑀𝑛 is simply your accumulated capital after 𝑛 rounds

• If null hypothesis true, then at each round, you  do not 

expect to increase your wealth: 

• ...so the fact that “the probability that you ever gain 

more than $20 is bounded by 1/20 “ is simply a 

formalization of the common knowledge that ‘it’s 

unlikely that you get rich in a casino, no matter what 

rule you use to decide when to go home!’



• At time j you can buy ticket 𝑗 for 1$. It pays off 𝑀𝑗 =

ҧ𝑝1(𝑋𝑗|𝑋
𝑗−1 )/𝑝0 𝑋𝑗 $

• Equivalent, more intuitive view: let 𝒳 = {1,… , 𝐾}. At 

time 𝑗 there are 𝐾 tickets available. Ticket 𝑘 pays off 

1/𝑝0(𝑘) if outcome is 𝑘, and 0 otherwise. 

• You think of  ҧ𝑝1 ⋅ 𝑋𝑗−1 ) as a strategy for dividing your 

capital over the 𝐾 tickets: you put a fraction ҧ𝑝1൫

ห

𝑋𝑗 =

𝑘 𝑋𝑗−1 ) of your money obtained so far on ticket 𝐾

• Then your total capital gets multiplied by 𝑀𝑗 =

ҧ𝑝1 𝑋𝑗|𝑋
𝑗−1 /𝑝0(𝑋𝑗)

Data Compression as Gambling!
Kelly (1956)



• Standard interpretation − log ҧ𝑝1 and −log 𝑝0 are both 

code-lengths. 

• New interpretation: 

ҧ𝑝1 is investment strategy, 𝑝0 determines pay-offs

[or vice-versa!] 

Data Compression as Gambling!
Kelly (1956)



Technical Aside (for those who 

know stochastic process theory)

• Technically, we can view the process 

𝑀1, 𝑀1 ⋅ 𝑀2, 𝑀1 ⋅ 𝑀2 ⋅ 𝑀3, … as a nonnegative 

supermartingale.

• The Type-I Error Probability result is then Ville’s 

(1939) Inequality, and the Proof is Immediate by 

Doob’s Optional Stopping Theorem



MDL Model Selection 

with Simple Null

• Codelength difference, or equivalently, likelihood 

ratio, also gives ‘robust’ (always-valid) p-value

• Less sharp than standard p-value

• you need more data to get significant result

• …but you get something back for that: you can 

stop/continue whenever you want

• …the fact that you cannot do optional stopping with 

p-value is one of the major reasons for the 

replicability crisis in science 

• But what about composite null? 



Say, ҧ𝑝0= ҧ𝑝𝑊0
is Bayesian universal distribution. 

Evidence given by

No Hypercompression/p-value interpretation requires 

that for all 𝑃0 ∈ 𝐻0 :

...but we can only guarantee “average statement” that  

Composite 𝑯𝟎:  Simple Refined MDL does 

not always give an always-valid p-value 



Composite 𝑯𝟎:  Simple Refined MDL does 

not always give an always-valid p-value 

• In general MDL with composite 𝐻0 does not give p-

values let alone always-valid p-values 

• ...but there do exist very special priors 𝑊1
∗ , 𝑊2

∗

(sometimes highly unlike priors that “Bayesian” 

statisticians tend to use!) for which ҧ𝑝𝑊1
∗ , ҧ𝑝𝑊0

∗

provide universal distributions such that the 

corresponding likelihood/MDL ratio does give an 

always-valid p-value



Example: 

Jeffreys’ (1961) Bayesian t-test 

• In general Bayes factors are not S-values

• But lo and behold, Jeffreys’ uses very special priors 

and his Bayes factor is an 𝑆-value, so his Bayesian 

t-test is a Safe Test!

𝐻0: 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 0, 𝜎2 vs. 𝐻1 : 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 𝜇, 𝜎2 for some 𝜇 ≠ 0

𝜎2 unknown (‘nuisance’) parameter

𝐻0 = 𝑃𝜎 𝜎 ∈ 0,∞ } 𝐻1 = 𝑃𝜎,𝜇 𝜎 ∈ 0,∞ , 𝜇 ∈ ℝ ∖ {0}}



Example: 

Jeffreys’ (1961) Bayesian t-test 

Jeffreys uses improper right-Haar prior 𝑤 𝜎 = 1/𝜎
within both models, and uses Cauchy on 𝛿 ≔ 𝜇/𝜎

• With this choice                                   has same 

distribution under all 𝑃 ∈ 𝐻0, and

𝐻0: 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 0, 𝜎2 vs. 𝐻1 : 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 𝜇, 𝜎2 for some 𝜇 ≠ 0



Example: 

Jeffreys’ (1961) Bayesian t-test 

• Jeffreys uses improper right-Haar prior 𝑤 𝜎 = 1/𝜎

within both models, and uses 𝑤 𝛿 Cauchy on 𝛿 =
𝜇

𝜎

• In fact, for right-Haar prior combined with arbitrary 

prior on effect size 𝛿 = 𝜇/𝜎 we get that 𝑆 has same 

distr. under all 𝑃 ∈ 𝐻0, and

𝐻0: 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 0, 𝜎2 vs. 𝐻1 : 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 𝜇, 𝜎2 for some 𝜇 ≠ 0



Example 2: 

Independence Testing/2x2 tables

• 𝑋𝑖 ∈ {0,1} ; 𝑍𝑖 ∈ {𝑚, 𝑓}

• 𝐻0:  𝑋1, 𝑋2, … , 𝑋𝑛 ∣ 𝑍1, … , 𝑍𝑛 iid Bernoulli(𝜃), 

• 𝐻1:  𝑋1, 𝑋2, … , 𝑋𝑛 ∣ 𝑍1, … , 𝑍𝑛 independent but   

𝑃 𝑋𝑖 = 1 𝑍𝑖 = 𝑚 = 𝜃𝑚
𝑃 𝑋𝑖 = 1 𝑍𝑖 = 𝑓 = 𝜃𝑓 ≠ 𝜃𝑚

• Are both populations same or different? 



2x2 Contingency Tables

• For Θ1 = { 𝜃𝑓 , 𝜃𝑚 ∈ 0,1 2}

…gives an always-valid p-value, for every prior density 

on 𝛿 ∈ [−
1

2
,
1

2
]



next week: 

Safe Testing

Peter Grünwald

Centrum Wiskunde & Informatica – Amsterdam

Mathematical Institute – Leiden University 

with Rianne de Heide, 

Wouter Koolen, Judith 

ter Schure, Alexander 

Ly, Rosanne Turner 



• Suppose reseach group A tests medication, gets 

‘almost significant’ result.

• ...whence group B tries again on new data. How to 

combine their test results?

• Standard methods for combining p-values (Fisher’s 

and Stouffer’s) require independence hence cannot 

be applied

• With the type of “p-value” introduced here, 

despite dependence, evidences can still be 

safely multiplied

P-value Problem: 

Combining Dependent Tests



• Suppose reseach group A tests medication, gets 

‘almost significant’ result.

• Sometimes group A can’t resist to test a few 

more subjects themselves...

• A recent survey revealed that 55% of psychologists have 

succumbed to this practice 

• But isn’t this just cheating?

• Not clear: what if you submit a paper and the referee 

asks you to test a couple more subjects? Should you 

refuse because it invalidates your p-values!?

P-value Problem (b):

Extending Your Test



• Jerzy Neyman: alternative exists, “inductive  .       .   

...   behaviour”, ‘significance level’ and power 

Sir Ronald Fisher: test statistic rather than 

alternative, p-value indicates “unlikeliness”

• Sir Harold Jeffreys: Bayesian, alternative exists, 

absolutely no p-values

J. Berger (2003, IMS Medaillion Lecture): Could 

Neyman, Fisher and Jeffreys have agreed on testing? 

... Using always-valid p-values based on MDL we can 

unify/correct the central ideas

Three Philosophies of Testing


