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Slate Sep 10th 2016: yet another classic finding in 

psychology—that you can smile your way to 

happiness—just blew up…
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Xkcd.org



Reasons for Reproducibility Crisis

1. Publication Bias
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Replication Crisis in 

Science 
somehow related to use of p-values and 

significance testing… 
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somehow related to use of p-values and 

significance testing… 



• Suppose reseach group A tests medication, gets 

‘almost significant’ result.

• ...whence group B tries again on new data. How to 

combine their test results?

• Standard Method 1: sweep data together, recompute p-

value. This is not correct; type-I error guarantee does not 

hold any more

• Standard method 2:  use Fisher’s method for 

combining p-values. Again not correct, since tests 

cannot be viewed as independent

• Standard method 3: multiply p-values. Just plain 

wrong – a mortal sin! 

• With the type of “p-value” introduced here, despite 

dependence, evidences can still be safely multiplied

P-value Problem: 

Combining Dependent Tests



• Suppose reseach group A tests medication, gets 

‘almost significant’ result.

• Sometimes group A can’t resist to test a few 

more subjects themselves...

• A recent survey revealed that 55% of psychologists have 

succumbed to this practice (and then treat data as if large 

sample size was determined in advance)

• But isn’t this just cheating?

• Not clear: what if you submit a paper and the referee 

asks you to test a couple more subjects? Should you 

refuse because it invalidates your p-values!?

P-value Problem (b):

Extending Your Test



S is the new P

• We propose a generic replacement of 

the 𝑝-value that we call the 𝑆-value

• 𝑆-values handle optional continuation 

(to the next test (and the next, and ..)) 

without any problems

(can simply multiply S-values of    

individual tests, despite dependencies)



S is the new P

• We propose a generic replacement of 

the 𝑝-value that we call the 𝑆-value

• 𝑆-values handle optional continuation 

(to the next test (and the next, and ..)) 

without any problems

(can simply multiply S-values of    

individual tests, despite dependencies)

S-values have Fisherian, Neymanian and Bayes-

Jeffreys’ aspects to them, all at the same time

Cf. J. Berger (2003, IMS Medaillion Lecture): Could 

Neyman, Fisher and Jeffreys have agreed on testing?



S-Values: General Definition

• Let 𝐻0 = 𝑃𝜃 𝜃 ∈ Θ0} represent the null hypothesis

• Assume data 𝑋1, 𝑋2, … are i.i.d. under all 𝑃 ∈ 𝐻0 .

• Let 𝐻1= 𝑃𝜃 𝜃 ∈ Θ1} represent alternative hypothesis

• An S-value for sample size 𝑛 is a function                

such that for all 𝑃0 ∈ 𝐻0 , we have 



First Interpretation: p-values

• Proposition: Let S be an S-value. Then 𝑆−1 𝑋𝑛 is a 

conservative p-value, i.e.  p-value with wiggle room: 

• for all 𝑃 ∈ 𝐻0, all 0 ≤ 𝛼 ≤ 1 , 

• Proof: just Markov’s inequality! 



Safe Tests

• The Safe Test against 𝐻0 at level 𝛼 based on S-

value S is defined as the test which rejects 𝐻0 if 

S 𝑋𝑛 ≥
1

𝛼

• Since 𝑆−1 is a conservative 𝑝-valuue...

• ....the safe test which rejects 𝐻0 iff  𝑆(𝑋𝑛) ≥ 20 , i.e.  

𝑆−1 𝑋𝑛 ≤ 0.05 , has Type-I Error Bound of 0.05



Safe Testing and Bayes

• Bayes factor hypothesis testing

with 𝐻0 = 𝑝𝜃 𝜃 ∈ Θ0} vs 𝐻1 = 𝑝𝜃 𝜃 ∈ Θ1} :

Evidence in favour of 𝐻1 measured by 

where 

(Jeffreys ‘39)



Safe Testing and Bayes, simple 𝑯𝟎

Bayes factor hypothesis testing

between 𝐻0 = { 𝑝0} and 𝐻1 = 𝑝𝜃 𝜃 ∈ Θ1} : 

Bayes factor of form

Note that  (no matter what prior 𝑊1 we chose)   



Safe Testing and Bayes, simple 𝑯𝟎

Bayes factor hypothesis testing

between 𝐻0 = { 𝑝0} and 𝐻1 = 𝑝𝜃 𝜃 ∈ Θ1} : 

Bayes factor of form

Note that  (no matter what prior 𝑊1 we chose)   

The Bayes Factor for Simple 𝑯𝟎

is an S-value!



Default S-Value ≠ Neyman

1. 𝐻0 and 𝐻1 are point hypotheses – then default S-

value is:  

... the safe test based on 𝑆 looks a bit like, but is not a 

standard Neyman-Pearson test.

Safe Test: reject if 𝑆 𝑋𝜏 ≥ 1/𝛼

NP: reject if 𝑆 𝑋𝜏 ≥ 1/𝐵 with 𝐵 s.t. 𝑃0 𝑆 𝑋𝜏 ≥ 𝐵 = 𝛼

more conservative



Safe Tests are Safe 

under optional continuation

• Suppose we observe data (𝑋1, 𝑌1), 𝑋2, 𝑌2 , …

• 𝑌𝑖:  side information

...coming in batches of size 𝑛1, 𝑛2, … , 𝑛𝑘. Let

• We first evaluate some S-value 𝑆1 on (𝑋1, … , 𝑋𝑛1).

• If outcome is in certain range (e.g. promising but not 

conclusive) and 𝑌𝑛1has certain values (e.g. ‘boss has 

money to collect more data’) then.... 

we evaluate some S-value 𝑆2 on 𝑋𝑛1+1, … , 𝑋𝑁2 ,

otherwise we stop.



Safe Tests are Safe

• We first evaluate 𝑆1.

• If outcome is in certain range and 𝑌𝑛1 has certain 

values then we evaluate 𝑆2 ; otherwise we stop.

• If outcome of 𝑆2 is in certain range and 𝑌𝑁2 has 

certain values then we compute 𝑆3 , else we stop.

• ...and so on

• ...when we finally stop, after say 𝐾 data batches, we 

report as final result the product 

• First Result, Informally: any 𝑺 composed of S-

values in this manner is itself an S-value, 

irrespective of the stop/continue rule used! 



Safe Tests are Safe

• 𝑆𝑗 may be same function as 𝑆𝑗−1, e.g. (simple 𝐻0)

• But choice of 𝑗th S-value 𝑆𝑗 may also depend on 

previous 𝑋𝑁𝑗 , 𝑌𝑁𝑗 , e.g.

and then (full compatibility with Bayesian updating)



Safe Tests are Safe

Let 𝑆1 be S-value on        . For 𝑗 = 1,2,… , let

be any collection of S-values defined on 

Let  be arbitrary 

stop/continue strategy, and:      

Define                          if 

Define                                                       if 

else

else

and so on...

Define                               if 



Safe Tests are Safe

Theorem:

Suppose that for all 𝑖, 𝑋𝑖 ⊥ 𝑋𝑖−1, 𝑌𝑖−1 . Then 

𝑆, the end-product of all employed S-values 

𝑆1, 𝑆𝑔1 , 𝑆𝑔2
, … is itself an S-value 

• Technically, the process                                              is a 

nonnegative supermartingale (Ville ‘39) and the theorem is 

proved using Doob’s optional stopping theorem
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Theorem:

𝑆 , the end-product of all employed S-values 

𝑆1, 𝑆𝑔1 , 𝑆𝑔2
, … is itself an S-value 

Corollary: Type-I Error Guarantee Preserved 

under Optional Continuation

Suppose we combine S-values with arbitrary 

stop/continue strategy and reject 𝐻0 when final 𝑆 has 

𝑆−1 ≤ 0.05 . Then resulting test is a safe test and our 

Type-I Error is guaranteed to be below 0.05!
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Generalizing the Result

Theorem says:

• Let                                       where 

s.t.

,                        is S-value:    

• Suppose that for all 𝑖, 𝑋𝑖 ⊥ 𝑋𝑖−1, 𝑌𝑖−1 .

• Let 𝜏 be smallest 𝑗 such that 𝑔𝑗 𝑍𝑁𝑗 = 𝑠𝑡𝑜𝑝

• Then                      is an S-value  
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,                        is S-value:    

• s.t.
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Generalizing the Result

Theorem says: for all 𝑗,

• Let 𝑋⟨𝑗⟩ = (𝑋𝑁𝑗−1 +1, … , 𝑋𝑁𝑗
) ; 𝑋⟨𝑗⟩ = (𝑋1, … , 𝑋𝑁𝑗

); 

similarly for 𝑌, 𝑍

• Let                                     be a function such that 

• Let 𝜏 be a stopping time for the process 𝑍 1 , 𝑍 2 , …

• Then                      is an S-value  



Optional Stopping vs

Continuation

• Let 𝑋⟨𝑗⟩ = (𝑋𝑁𝑗−1 +1, … , 𝑋𝑁𝑗
) ; 𝑋⟨𝑗⟩ = (𝑋1, … , 𝑋𝑁𝑗

)

• Let                                     be a function such that 

• Let 𝜏 be a stopping time for the process 𝑍 1 , 𝑍 2 , …

• Then                      is an S-value

Optional Continuation: we have batches of data

𝑍⟨1⟩, 𝑍⟨2⟩, … and we can do optional stopping at the batch-

level (and obtain an S-Value and preserve Type I error 

guarantees)

Traditional Optional Stopping: we take 𝑍⟨𝑗 ⟩ = 𝑍𝑗 for all 𝑗. 



Optional Stopping vs

Continuation

• In many but certainly not all cases, we can also do 

optional stopping based on S-values. 

• Suppose that 𝐻0 = {𝑃0}, , no 𝑌𝑖 ‘s 

• Then                                          and we can do optional 

stopping at each 𝑗 and not just optional continuation 

between ‘blocks’ 

• …but if 𝐻0 composite then sometimes the only 

conditional S-value satisfying

is given by the trivial S-value 𝑆𝑗+1 = 1 . Then OS 

impossible (but OC with batches of size 𝑛𝑗 ≫ 1 still 

possible) 



(Again:) Safe Testing = Gambling!

• At time 1 you can buy ticket 1 for 1$. It pays off 

𝑆1(𝑋1, … , 𝑋𝑛1) $ after 𝑛1 steps

• At time 2 you can buy ticket 2 for 1$. It pays off 

𝑆2(𝑋𝑛1+1, … , 𝑋𝑁2) $ after 𝑛2 further steps.... and so on.

You may buy multiple and fractional nrs of tickets. 

Kelly (1956)
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or you continue and buy 𝑆1 tickets of type 2. After 𝑁2 =
𝑛1 + 𝑛2 outcomes you stop with end capital 𝑆1 ⋅ 𝑆2 or 

you continue and buy 𝑆1 ⋅ 𝑆2 tickets of type 3, and so 

on..
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• 𝑺 is simply your end capital

• Your don’t expect to gain money, no matter what the 

stop/continuation rule since none of individual 

gambles 𝑺𝒌 are strictly favorable to you



Safe Testing = Gambling!

• You start by investing 1$ in ticket 1. 

• After 𝑛1 outcomes you either stop with end capital 𝑆1
or you continue and buy 𝑆1 tickets of type 2. After 

𝑁2 = 𝑛1 + 𝑛2 outcomes you stop with end capital 𝑆1 ⋅
𝑆2 or you continue and buy 𝑆1 ⋅ 𝑆2 tickets of type 3, 

and so on...

• 𝑺 is simply your end capital

• Your don’t expect to gain money, no matter what the 

stop/continuation rule since none of individual 

gambles 𝑺𝒌 are strictly favorable to you

• Hence a large value of 𝑺 indicates that something 

very unlikely has happened under 𝐻0 ...



Default S-Value ≠ Neyman

1. 𝐻0 and 𝐻1 are point hypotheses – then default S-

value is:  

... the safe test based on 𝑆 looks a bit like, but is not a 

standard Neyman-Pearson test.

Safe Test: reject if 𝑆 𝑋𝜏 ≥ 1/𝛼

NP: reject if 𝑆 𝑋𝜏 ≥ 1/𝐵 with 𝐵 s.t. 𝑃0 𝑆 𝑋𝜏 ≥ 𝐵 = 𝛼

more conservative



SafeTests & Neyman-Pearson, again

• Let 𝑝 be a strict 𝑝-value: for all 𝑃 ∈ 𝐻0,  𝑃 𝑝 ≤ 𝛼 = 𝛼

• Let 𝑆 =
1

𝛼
if 𝑝 ≤ 𝛼 , and 𝑆 =0 otherwise

• Then for all 𝑃 ∈ 𝐻0,

...so 𝑆 is an S-value, and obviously, the safe test based 

on 𝑆 rejects iff 𝑝 ≤ 𝛼. It thus implements the Neyman-

Pearson test at significance level 𝛼. 



• Let 𝑝 be a strict 𝑝-value: for all 𝑃 ∈ 𝐻0,  𝑃 𝑝 ≤ 𝛼 = 𝛼

• Let 𝑆 =
1

𝛼
if 𝑝 ≤ 𝛼 , and 𝑆 =0 otherwise

• Then for all 𝑃 ∈ 𝐻0,

...so 𝑆 is an S-value, and obviously, the safe test based 

on 𝑆 rejects iff 𝑝 ≤ 𝛼. t thus implements the Neyman-

Pearson test at significance level 𝛼. 

...but it is a very silly S-value to use! With 

probability 𝜶, you loose all your capital, and you will 

never make up for that in the future!

SafeTests & Neyman-Pearson, again



Safe Tests and Neyman-Pearson, 

again

• The Safe Test based on an S-Value that is a 

likelihood ratio is not a Neyman-Pearson test (it is 

more conservative)

• Neyman-Pearson tests (that only report ‘reject’ 

and ‘accept’, and not the p-value) are (other) Safe 

Tests, but useless ones corresponding to 

irresponsible gambling... 



Some S-Values are 

Better than Others

• The Trivial S-Value 𝑆 = 1 is valid, but useless

• The Neyman-Pearson S-value is valid, but extremely

dangerous to use!

• We need some idea of ‘optimal S-value’



How to design S-Values?

• Suppose we are willing to admit that we’ll only be 

able to tell 𝐻0 and 𝐻1 apart if 𝑃 ∈ 𝐻0 ∪ 𝐻1
′ for some 

𝐻1
′ ⊂ 𝐻1 that excludes points that are ‘too close’ to 𝐻0

e.g. 

• We can then look for the  GROW (growth-optimal in 

worst-case) S-value achieving 



GROW: an analogue of Power

• The GROW (growth-optimal in worst-case) S-value 

relative to 𝐻1,𝛿 is the S-value achieving 

where the supremum is over all 𝑆-values relative to 𝐻0
• ...so we don’t expect to gain anything when investing 

in 𝑆 under 𝐻0
• ...but among all such 𝑆 we pick the one(s) that make 

us rich fastest if we keep reinvesting in new gambles 

under 𝐻1



Main Theorem

(will be made precise in 3 weeks)

• Under ‘hardly any conditions’ on 𝐻0 and 𝐻1 a GROW 

S-value exists! [G., De Heide, Koolen, 2019]



• Jerzy Neyman: alternative exists, “inductive  .       .   

...   behaviour”, ‘significance level’ and power 

Sir Ronald Fisher: test statistic rather than 

alternative, p-value indicates “unlikeliness”

• Sir Harold Jeffreys: Bayesian, alternative exists, 

absolutely no p-values

J. Berger (2003, IMS Medaillion Lecture): Could 

Neyman, Fisher and Jeffreys have agreed on testing? 

... Using S-Values we can unify/correct the central 

ideas

Three Philosophies of Testing



“Fisherian” Example

2. Ryabko & Monarev’s (2005)           

Compression-based randomness test

R&M checked whether sequences generated by 

famous random number generators can be 

compressed by standard data compressors such as 

gzip and rar

Answer: yes! 200 bits compression for file of 10 

megabytes



Additional Background Slides



Null Hypothesis Testing

• Let 𝐻0 = 𝑃𝜃 𝜃 ∈ Θ0} represent the null hypothesis

• For simplicity, today we assume data 𝑋1, 𝑋2, … are 

i.i.d. under all 𝑃 ∈ 𝐻0 .

• Let 𝐻1= 𝑃𝜃 𝜃 ∈ Θ1} represent alternative hypothesis

• Example: testing whether a coin is fair

Under 𝑃𝜃 , data are i.i.d. Bernoulli 𝜃

Θ0 =
1

2
, Θ1 = 0,1 ∖

1

2

Standard test would measure frequency of 1s
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• Let 𝐻1= 𝑃𝜃 𝜃 ∈ Θ1} represent alternative hypothesis

• Example: testing whether a coin is fair

Under 𝑃𝜃 , data are i.i.d. Bernoulli 𝜃

Θ0 =
1

2
, Θ1 = 0,1 ∖

1

2

Standard test would measure frequency of 1s

Simple 𝐻0



Null Hypothesis Testing

• Let 𝐻0 = 𝑃𝜃 𝜃 ∈ Θ0} represent the null hypothesis

• Let 𝐻1= 𝑃𝜃 𝜃 ∈ Θ1} represent alternative hypothesis

• Example: t-test (most used test world-wide)

𝐻0: 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 0, 𝜎2 vs. 

𝐻1 : 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 𝜇, 𝜎2 for some 𝜇 ≠ 0

𝜎2 unknown (‘nuisance’) parameter 

𝐻0 = 𝑃𝜎 𝜎 ∈ 0,∞ }

𝐻1 = 𝑃𝜎,𝜇 𝜎 ∈ 0,∞ , 𝜇 ∈ ℝ ∖ 0 }



Null Hypothesis Testing

• Let 𝐻0 = 𝑃𝜃 𝜃 ∈ Θ0} represent the null hypothesis

• Let 𝐻1= 𝑃𝜃 𝜃 ∈ Θ1} represent alternative hypothesis

• Example: t-test (most used test world-wide)

𝐻0: 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 0, 𝜎2 vs. 

𝐻1 : 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 𝜇, 𝜎2 for some 𝜇 ≠ 0

𝜎2 unknown (‘nuisance’) parameter 

𝐻0 = 𝑃𝜎 𝜎 ∈ 0,∞ }

𝐻1 = 𝑃𝜎,𝜇 𝜎 ∈ 0,∞ , 𝜇 ∈ ℝ ∖ 0 }

Composite 𝐻0



Standard Method: 

p-value, significance

• Let 𝐻0 = 𝑃𝜃 𝜃 ∈ Θ0} represent the null hypothesis

• A (“nonstrict”) p-value is a random variable (!) such 

that, for all 𝜃 ∈ Θ0 , 


