TODAY: Safe Testing

- 1. Reproducibility Crisis/Problems with p-values
- 2. The S-Value
- 3. Optional Continuation
- 4. Optional Stopping vs Optional Continuation
- 5. Gambling Interpretation, Again
- 6. Types of S-Values / GROW S-Values

[Next Week No Lecture – Homework due Mo May 11]

Safe Testing

Peter Grünwald

Centrum Wiskunde & Informatica – Amsterdam Mathematical Institute – Leiden University

with Rianne de Heide, Wouter Koolen, Judith ter Schure, Alexander Ly, Rosanne Turner

Slate Sep 10th 2016: yet another classic finding in psychology-that you can smile your way to happiness—just blew up...

"at least 50% of highly cited results in medicine is irreproducible: J. Joannidis, PLos Medicine 2005 **Reproducibility Crisis Cover Story of** Economist (2013),

Science (2014)

Reasons for Reproducibility Crisis

1. Publication Bias

2. Problems with Hypothesis Testing Methodology

Reasons for Reproducibility Crisis

1. Publication Bias

2. Problems with Hypothesis Testing Methodology

Replication Crisis in Science

somehow related to use of **P-Values** and significance testing...

Replication Crisis in Science

somehow related to use of Bayalues and significance testing ews AMERICAN STATISTICAL ASSOCIATION Promoting the Practice and Profession of Statistics 21 North Wathly, of Street, Alexandria, VA 22314 (703) 684-1221 • Toll Free: (889) 231-3473 • www.anstat.org • www.tetter.com/Amstat/Mexes

AMERICAN STATISTICAL ASSOCIATION RELEASES STATEMENT ON STATISTICAL SIGNIFICANCE AND *P*-VALUES

Provides Principles to Improve the Conduct and Interpretation of Quantitative Science

March 7, 2016

The American Statistical Association (ASA) has released a "Statement on Statistical Significance and *P*-Values" with six principles underlying the proper use and interpretation of the *p*-value [http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108#.Vt2XIOaE2MN]. The ASA releases this guidance on *p*-values to improve the conduct and interpretation of quantitative

plication cance 2017 sticiation of the statistic cance and statist

and P-Values" with six principles underlying the proper use and interpretation of the p-value [http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108#.Vt2XIOaE2MN]. The ASA releases this guidance on p-values to improve the conduct and interpretation of quantitative

(instatisticians) 2019 Redefine Sta to P Some of the

Abandon Significance: McShane et al. Avanual Significance: (including Some of the most famous)

Provides Principles to Improve the Conduct and Science

March 7, 2016

zinetal. 2017

Fignificance

samous statisticians

The American Statistical Association (ASA) has released a "Statement on Statistical and *P*-Values" with six principles underlying the proper use and interpretation of the p-v [http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108#.Vt2XIOaE2MN]. The ASA releases this guidance on p-values to improve the conduct and interpretation of quantitative

famous statisticians) 2019 CShane et al. e most famous AMERICAN STATISTICAL AS STATISTICAL SIGNIFICA

signatories (including some of the most

Abandon Sigr

Ito P 20.0

Rede

Scation

Rise Up Against Significance: 800

(including statistic:

Provides Principles to Improve the Conduct and Science

ficance

March 7, 2016

ticians

2017

incl-some of the The American Statistical Association (ASA) has released a "Statement on Statistical and *P*-Values" with six principles underlying the proper use and interpretation of the p-v [http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108#.Vt2XIOaE2MN]. The ASA releases this guidance on p-values to improve the conduct and interpretation of quantitative

P-value Problem: Combining Dependent Tests

- Suppose reseach group A tests medication, gets 'almost significant' result.
- ...whence group B tries again on new data. How to combine their test results?
 - Standard Method 1: sweep data together, recompute pvalue. This is not correct; type-I error guarantee does not hold any more
 - Standard method 2: use Fisher's method for combining p-values. Again not correct, since tests cannot be viewed as independent
 - Standard method 3: multiply p-values. Just plain wrong – a mortal sin!
- With the type of "p-value" introduced here, despite dependence, evidences can still be safely multiplied

P-value Problem (b): Extending Your Test

- Suppose reseach group A tests medication, gets 'almost significant' result.
- Sometimes group A can't resist to test a few more subjects themselves...
 - A recent survey revealed that **55% of psychologists** have succumbed to this practice (and then treat data as if large sample size was determined in advance)
- But isn't this just cheating?
 - Not clear: what if you submit a paper and the referee asks you to test a couple more subjects? Should you refuse because it invalidates your p-values!?

S is the new P

- We propose a generic replacement of the *p*-value that we call the *S*-value
- S-values handle optional continuation (to the next test (and the next, and ..)) without any problems

(can simply multiply S-values of individual tests, despite dependencies)

S is the new P

S-values have Fisherian, Neymanian and Bayes-Jeffreys' aspects to them, all at the same time

Cf. J. Berger (2003, IMS Medaillion Lecture): Could Neyman, Fisher and Jeffreys have agreed on testing? INDIVIDUAL TESTS, DESPITE DEPENDENCIES)

S-Values: General Definition

- Let $H_0 = \{ P_{\theta} | \theta \in \Theta_0 \}$ represent the null hypothesis
 - Assume data X_1, X_2, \dots are i.i.d. under all $P \in H_0$.
- Let $H_1 = \{ P_{\theta} | \theta \in \Theta_1 \}$ represent alternative hypothesis
- An S-value for sample size n is a function $S : \mathcal{X}^n \to \mathbb{R}_0^+$ such that for **all** $P_0 \in H_0$, we have

$\mathbf{E}_{P_0}\left[S(X^n)\right] \le 1$

First Interpretation: p-values

- Proposition: Let S be an S-value. Then $S^{-1}(X^n)$ is a conservative p-value, i.e. p-value with wiggle room:
- for all $P \in H_0$, all $0 \le \alpha \le 1$,

$$P\left(\frac{1}{S(X^n)} \le \alpha\right) \le \alpha$$

Proof: just Markov's inequality!

$$P\left(S(X^n) \ge \alpha^{-1}\right) \le \frac{\mathbf{E}[S(X^n)]}{\alpha^{-1}} = \alpha$$

Safe Tests

- The Safe Test against H_0 at level α based on Svalue S is defined as the test which rejects H_0 if $S(X^n) \ge \frac{1}{\alpha}$
- Since S^{-1} is a conservative *p*-value...
-the safe test which rejects H_0 iff $S(X^n) \ge 20$, i.e. $S^{-1}(X^n) \le 0.05$, has **Type-I Error** Bound of 0.05

Safe Testing and Bayes

Bayes factor hypothesis testing (Jeffreys '39)
 with H₀ = { p_θ | θ ∈ Θ₀} vs H₁ = { p_θ | θ ∈ Θ₁} :
 Evidence in favour of H₁ measured by

$$\frac{p_{W_1}(X_1,\ldots,X_n)}{p_{W_0}(X_1,\ldots,X_n)}$$

where

$$p_{W_1}(X_1, \dots, X_n) := \int_{\theta \in \Theta_1} p_{\theta}(X_1, \dots, X_n) dW_1(\theta)$$

$$p_{W_0}(X_1, \dots, X_n) := \int_{\theta \in \Theta_0} p_{\theta}(X_1, \dots, X_n) dW_0(\theta)$$

Safe Testing and Bayes, simple H₀

Bayes factor hypothesis testing

between $H_0 = \{ p_0 \}$ and $H_1 = \{ p_{\theta} | \theta \in \Theta_1 \}$: Bayes factor of form

$$M(X^{n}) := \frac{p_{W_{1}}(X_{1}, \dots, X_{n})}{p_{0}(X_{1}, \dots, X_{n})}$$

Note that (no matter what prior W_1 we chose) $E_{X^n \sim P_0} [M(X^n)] = \int p_0(x^n) \cdot \frac{p_{W_1}(X^n)}{p_0(x^n)} dx^n = \int p_{W_1}(x^n) dx^n = 1$

Safe Testing and Bayes, simple H₀

Bayes factor hypothesis testing

between $H_0 = \{ p_0 \}$ and $H_1 = \{ p_\theta | \theta \in \Theta_1 \}$: Bayes factor of form

$$M(X^{n}) := \frac{p_{W_{1}}(X_{1}, \dots, X_{n})}{p_{0}(X_{1}, \dots, X_{n})}$$

Note that (no matter what prior W_1 we chose) $E_{X^n \sim P_0}[M(X^n)] = 1$

The Bayes Factor for Simple *H*₀ is an S-value!

Default S-Value \neq Neyman

1. H_0 and H_1 are point hypotheses – then default S-value is:

$$S(X^n) = \frac{p_1(X^n)}{p_0(X^n)}$$

... the safe test based on *S* looks a bit like, but is *not* a standard Neyman-Pearson test. **more conservative** Safe Test: reject if $S(X^{\tau}) \ge 1/\alpha$ NP: reject if $S(X^{\tau}) \ge 1/B$ with *B* s.t. $P_0(S(X^{\tau}) \ge B) = \alpha$

Safe Tests are Safe under optional continuation

- Suppose we observe data $(X_1, Y_1), (X_2, Y_2), \dots$
 - Y_i : side information ...coming in batches of size $n_1, n_2, ..., n_k$. Let $N_j := \sum_{i=1}^j n_i$
- We first evaluate some S-value S_1 on $(X_1, ..., X_{n_1})$.
- If outcome is in certain range (e.g. promising but not conclusive) and Y_{n_1} has certain values (e.g. 'boss has money to collect more data') then.... we evaluate some S-value S_2 on $(X_{n_1+1}, ..., X_{N_2})$, otherwise we stop.

- We first evaluate S_1 .
- If outcome is in certain range and Y_{n_1} has certain values then we evaluate S_2 ; otherwise we **stop.**
- If outcome of S_2 is in certain range and Y_{N_2} has certain values then we compute S_3 , else we **stop**.
- ...and so on
- ...when we finally stop, after say *K* data batches, we report as final result the product $S := \prod_{j=1}^{K} S_j$
- First Result, Informally: any *S* composed of Svalues in this manner is itself an S-value, irrespective of the stop/continue rule used!

• S_j may be same function as S_{j-1} , e.g. (simple H_0)

$$S_{1} = \frac{\int_{\Theta_{1}} p_{\theta}(X_{1}, \dots, X_{n_{1}}) dW(\theta)}{p_{0}(X_{1}, \dots, X_{n_{1}})} \qquad S_{2} = \frac{\int_{\Theta_{1}} p_{\theta}(X_{n_{1}+1}, \dots, X_{N_{2}}) dW(\theta)}{p_{0}(X_{n_{1}+1}, \dots, X_{N_{2}})}$$

But choice of *j*th S-value S_j may also depend on previous X^{N_j}, Y^{N_j}, e.g.

$$S_{2} = \frac{\int_{\Theta_{1}} p_{\theta}(X_{n_{1}+1}, \dots, X_{N_{2}}) dW(\theta \mid X_{1}, \dots, X_{n_{1}})}{p_{0}(X_{n_{1}+1}, \dots, X_{N_{2}})}$$

and then (full compatibility with Bayesian updating
$$S_{1} \cdot S_{2} = \frac{\int p_{\theta}(X_{1}, \dots, X_{N_{2}}) dW(\theta)}{p_{0}(X_{1}, \dots, X_{N_{2}})}$$

Let S_1 be S-value on \mathcal{X}^{n_1} . For j = 1, 2, ..., let S_{j+1} be any collection of S-values defined on $\mathcal{X}^{n_{j+1}}$ Let $g_i: \mathcal{X}^{N_j} \times \mathcal{Y}^{N_j} \to \{ \mathtt{stop} \} \cup \mathcal{S}_{i+1}$ be arbitrary stop/continue strategy, and: **Define** $S := S_1(X^{n_1})$ if $g_1(X^{n_1}, Y^{n_1}) = \text{stop}$ else Define $S := S_1(X^{n_1}) \cdot S_{q_1(X^{n_1},Y^{n_1})}(X^{N_2}_{n_1+1})$ if $g_2(X^{N_2},Y^{N_2}) = \text{stop}$ else **Define** $S := S_1 \cdot \prod_{i=2}^{3} S_{q_{i-1}}$ if $g_3 = \text{stop}$ and so on...

Theorem:

Suppose that for all $i, X_i \perp (X^{i-1}, Y^{i-1})$. Then *S*, the end-product of all employed S-values $S_1, S_{g_1}, S_{g_2}, \dots$ is itself an S-value

• Technically, the process $(S_1, S_1 \cdot S_{g_1}, S_1 \cdot S_{g_1} \cdot S_{g_2}, ...)$ is a **nonnegative supermartingale** (Ville '39) and the theorem is proved using Doob's optional stopping theorem

Theorem:

S , the end-product of all employed S-values $S_1, S_{g_1}, S_{g_2}, \dots$ is itself an S-value

Corollary: Type-I Error Guarantee Preserved under Optional Continuation

Suppose we combine S-values with arbitrary stop/continue strategy and reject H_0 when final *S* has $S^{-1} \leq 0.05$. Then resulting test is a safe test and our Type-I Error is guaranteed to be below 0.05!

Theorem: S, the end-product of all employed S-values, $S_1, S_{g_1}, S_{g_2}, \dots$ is itself an S-value of p-values, Corollary: Type-I Error Guars oblemeserved under Optional Continue problemeserved Suppose we combing centrales with arbitrary stop/continue ed a and reject H_0 when final S has $S^{-1} \leq 0.0$ solver resulting test is a safe test and our Type- We is guaranteed to be below 0.051

Generalizing the Result

Theorem says:

- Let $S_{\langle j+1 \rangle} \coloneqq S_{g_j(Z^{N_j})}(X_{N_j+1}^{N_{j+1}})$ where $g_j : \mathbb{Z}^{N_j} \to \{ \mathtt{stop} \} \cup \mathcal{S}_{j+1}$ s.t. $\forall j, \forall k \in \mathcal{S}_j, S_k : \mathcal{X}^{n_j} \to \mathbb{R}_0^+$ is S-value: $\forall P \in H_0 : \mathbf{E}_P[S_k] \le 1$
- Suppose that for all $i, X_i \perp (X^{i-1}, Y^{i-1})$.
- Let τ be smallest j such that $g_j(Z^{N_j}) = stop$
- Then $S \coloneqq \prod_{j=1}^{\tau} S_{\langle j \rangle}$ is an S-value

Generalizing the Result

Theorem says:

- Let $S_{(j+1)} := S_{g_j(Z^{N_j})}(X_{N_j+1}^{N_{j+1}})$ where $g_j : \mathbb{Z}^{N_j} \to \{\text{step}\} \sqcup S_{j+1}$ For all j, let $g_j : \mathbb{Z}^{N_j} \to \{\text{continue}, \text{stop}\}$ and let ... $\forall j, \forall k \in S_j, S_k : \mathbb{X}^{n_j} \to \mathbb{R}^+_0$ is \mathbb{S} value: $\forall P \in H_0 : \mathbb{E}_P[S_k] \leq 1$
- $S_{\langle j+1 \rangle} : \mathcal{Y}^{N_j} \times \mathcal{X}^{N_{j+1}} \to \mathbb{R}_0^+$ s.t. $\forall P \in H_0 : \mathbf{E}_P[S_{\langle j+1 \rangle} \mid Z^{N_j}] \le 1$
- Cuppose that for all $i, X_l \perp (X^{i-1}, Y^{i-1})$.
- Let τ be smallest j such that $g_j(Z^{N_j}) = stop$
- Then $S \coloneqq \prod_{j=1}^{\tau} S_{\langle j \rangle}$ is an S-value

Generalizing the Result

Theorem says: for all *j*,

- Let $X_{\langle j \rangle} = (X_{N_{j-1}+1}, \dots, X_{N_j})$; $X^{\langle j \rangle} = (X_1, \dots, X_{N_j})$; similarly for Y, Z
- Let $S_{\langle j+1 \rangle} : \mathcal{Y}^{\langle j \rangle} \times \mathcal{X}^{\langle j+1 \rangle} \to \mathbb{R}_0^+$ be a function such that $\forall P \in H_0 : \mathbf{E}_P[S_{\langle j+1 \rangle} \mid Z^{\langle j \rangle}] \leq 1$
- Let τ be a stopping time for the process $(Z_{(1)}, Z_{(2)}, ...)$
- Then $S \coloneqq \prod_{j=1}^{\tau} S_{\langle j \rangle}$ is an S-value

Optional Stopping vs Continuation

- Let $X_{\langle j \rangle} = (X_{N_{j-1}+1}, \dots, X_{N_j}); X^{\langle j \rangle} = (X_1, \dots, X_{N_j})$
- Let $S_{\langle j+1 \rangle} : \mathcal{Y}^{\langle j \rangle} \times \mathcal{X}^{\langle j+1 \rangle} \to \mathbb{R}_0^+$ be a function such that $\forall P \in H_0 : \mathbf{E}_P[S_{\langle j+1 \rangle} \mid Z^{\langle j \rangle}] \le 1$
- Let τ be a stopping time for the process $(Z_{(1)}, Z_{(2)}, ...)$
- Then $S \coloneqq \prod_{j=1}^{\tau} S_{\langle j \rangle}$ is an S-value

Optional Continuation: we have *batches* of data $Z_{\langle 1 \rangle}, Z_{\langle 2 \rangle}, ...$ and we can do optional stopping at the batchlevel (and obtain an S-Value and preserve Type I error guarantees)

Traditional Optional Stopping: we take $Z_{(j)} = Z_j$ for all *j*.

Optional Stopping vs Continuation

• In many but certainly not all cases, we can also do optional stopping based on S-values.

• Suppose that
$$H_0 = \{P_0\}, S_j = \frac{\bar{p}_1(X_j|X^{j-1})}{p_0(X_j)}$$
, no Y_i 's

- Then ∀P ∈ H₀ : E_P[S_{j+1} | X^j] ≤ 1 and we can do optional stopping at each *j* and not just optional continuation between 'blocks'
- ...but if H₀ composite then sometimes the only conditional S-value satisfying ∀P ∈ H₀ : E_P[S_{j+1} | X^j] ≤ 1 is given by the trivial S-value S_{j+1} = 1. Then OS impossible (but OC with batches of size n_j ≫ 1 still possible)

(Again:) Safe Testing = Gambling! Kelly (1956)

- At time 1 you can buy ticket 1 for 1\$. It pays off $S_1(X_1, ..., X_{n_1})$ \$ after n_1 steps
- At time 2 you can buy ticket 2 for 1\$. It pays off $S_2(X_{n_1+1}, ..., X_{N_2})$ \$ after n_2 further steps.... and so on. You may buy multiple and fractional nrs of tickets.

- At time 1 you can buy ticket 1 for 1\$. It pays off $S_1(X_1, ..., X_{n_1})$ \$ after n_1 steps
- At time 2 you can buy ticket 2 for 1\$. It pays off $S_2(X_{n_1+1}, ..., X_{N_2})$ \$ after n_2 further steps.... and so on. You may buy multiple and fractional nrs of tickets.
- You start by investing 1\$ in ticket 1.

- At time 1 you can buy ticket 1 for 1\$. It pays off $S_1(X_1, ..., X_{n_1})$ \$ after n_1 steps
- At time 2 you can buy ticket 2 for 1\$. It pays off $S_2(X_{n_1+1}, ..., X_{N_2})$ \$ after n_2 further steps.... and so on. You may buy multiple and fractional nrs of tickets.
- You start by investing 1\$ in ticket 1.
- After n_1 outcomes you either stop with end capital S_1 or you continue and buy S_1 tickets of type 2.

- At time 1 you can buy ticket 1 for 1\$. It pays off $S_1(X_1, ..., X_{n_1})$ \$ after n_1 steps
- At time 2 you can buy ticket 2 for 1\$. It pays off $S_2(X_{n_1+1}, ..., X_{N_2})$ \$ after n_2 further steps.... and so on. You may buy multiple and fractional nrs of tickets.
- You start by investing 1\$ in ticket 1.
- After n_1 outcomes you either stop with end capital S_1 or you continue and buy S_1 tickets of type 2. After $N_2 = n_1 + n_2$ outcomes you stop with end capital $S_1 \cdot S_2$ or you continue and buy $S_1 \cdot S_2$ tickets of type 3, and so on..

- You start by investing 1\$ in ticket 1.
- After n_1 outcomes you either stop with end capital S_1 or you continue and buy S_1 tickets of type 2. After $N_2 = n_1 + n_2$ outcomes you stop with end capital $S_1 \cdot$ S_2 or you continue and buy $S_1 \cdot S_2$ tickets of type 3, and so on...
- S is simply your end capital
- Your don't expect to gain money, no matter what the stop/continuation rule since none of individual gambles S_k are strictly favorable to you

 $\mathbf{E}_{P_0}[S_1] \le 1, \mathbf{E}_{P_0}[S_2] \le 1, \ldots \Rightarrow \mathbf{E}_{P_0}[S] \le 1$

- You start by investing 1\$ in ticket 1.
- After n_1 outcomes you either stop with end capital S_1 or you continue and buy S_1 tickets of type 2. After $N_2 = n_1 + n_2$ outcomes you stop with end capital $S_1 \cdot$ S_2 or you continue and buy $S_1 \cdot S_2$ tickets of type 3, and so on...
- S is simply your end capital
- Your don't expect to gain money, no matter what the stop/continuation rule since none of individual gambles S_k are strictly favorable to you
- Hence a large value of *S* indicates that something very unlikely has happened under H_0 ...

Default S-Value \neq Neyman

1. H_0 and H_1 are point hypotheses – then default S-value is:

$$S(X^n) = \frac{p_1(X^n)}{p_0(X^n)}$$

... the safe test based on *S* looks a bit like, but is *not* a standard Neyman-Pearson test. **more conservative** Safe Test: reject if $S(X^{\tau}) \ge 1/\alpha$ NP: reject if $S(X^{\tau}) \ge 1/B$ with *B* s.t. $P_0(S(X^{\tau}) \ge B) = \alpha$

SafeTests & Neyman-Pearson, again

- Let *p* be a strict *p*-value: for all $P \in H_0$, $P(p \le \alpha) = \alpha$
- Let $S = \frac{1}{\alpha}$ if $p \le \alpha$, and S = 0 otherwise
- Then for all $P \in H_0$,

$$\mathbf{E}_{P}[S] = P(p \le \alpha) \cdot \frac{1}{\alpha} + P(p > \alpha) \cdot \mathbf{0} = 1$$

...so *S* is an S-value, and obviously, the safe test based on *S* rejects iff $p \le \alpha$. It thus implements the Neyman-Pearson test at significance level α .

SafeTests & Neyman-Pearson, again

- Let *p* be a strict *p*-value: for all $P \in H_0$, $P(p \le \alpha) = \alpha$
- Let $S = \frac{1}{\alpha}$ if $p \le \alpha$, and S = 0 otherwise
- Then for all $P \in H_0$,

$$\mathbf{E}_{P}[S] = P(p \le \alpha) \cdot \frac{1}{\alpha} + P(p > \alpha) \cdot \mathbf{0} = 1$$

...so *S* is an S-value, and obviously, the safe test based on *S* rejects iff $p \le \alpha$. t thus implements the Neyman-Pearson test at significance level α .

...but it is a very silly S-value to use! With probability α , you loose all your capital, and you will never make up for that in the future!

Safe Tests and Neyman-Pearson, again

- The Safe Test based on an S-Value that is a likelihood ratio is *not* a Neyman-Pearson test (it is more conservative)
- Neyman-Pearson tests (that only report 'reject' and 'accept', and not the p-value) are (other) Safe Tests, but useless ones corresponding to irresponsible gambling...

Some S-Values are Better than Others

- The Trivial S-Value S = 1 is valid, but useless
- The Neyman-Pearson S-value is valid, but extremely dangerous to use!
- We need some idea of 'optimal S-value'

How to design S-Values?

Suppose we are willing to admit that we'll only be able to tell H₀ and H₁ apart if P ∈ H₀ ∪ H'₁ for some H'₁ ⊂ H₁ that excludes points that are 'too close' to H₀ e.g.

$$H'_1 = \{P_\theta : \theta \in \Theta'_1\}, \Theta'_1 = \{\theta \in \Theta_1 : \inf_{\theta_0 \in \Theta_0} \|\theta - \theta_0\|_2 \ge \delta\}$$

• We can then look for the GROW (growth-optimal in worst-case) S-value achieving

$$\sup_{S} \inf_{\theta \in \Theta'_{1}} \mathbf{E}_{X^{n} \sim P_{\theta}}[\log S]$$

GROW: an analogue of **Power**

• The GROW (growth-optimal in worst-case) S-value relative to $H_{1,\delta}$ is the S-value achieving

$$\sup_{S} \inf_{\theta \in \Theta'_{1}} \mathbf{E}_{X^{n} \sim P_{\theta}}[\log S]$$

where the supremum is over all S-values relative to H_0

- ...so we don't expect to gain anything when investing in *S* under *H*₀
- ...but among all such S we pick the one(s) that make us rich fastest if we keep reinvesting in new gambles under H₁

Main Theorem (will be made precise in 3 weeks)

 Under 'hardly any conditions' on H₀ and H₁ a GROW S-value exists! [G., De Heide, Koolen, 2019]

Three Philosophies of Testing

Jerzy Neyman: alternative exists, "inductive . behaviour", 'significance level' and power

Sir Ronald Fisher: test statistic rather than alternative, p-value indicates "unlikeliness"

Sir Harold Jeffreys: **Bayesian**, alternative exists, absolutely no p-values

J. Berger (2003, IMS Medaillion Lecture): Could Neyman, Fisher and Jeffreys have agreed on testing? ... Using S-Values we can unify/correct the central ideas

"Fisherian" Example

2. Ryabko & Monarev's (2005) Compression-based randomness test

R&M checked whether sequences generated by famous random number generators can be compressed by standard data compressors such as gzip and rar

(!!)

Answer: yes! 200 bits compression for file of 10 megabytes

 $S(X^n) = 2^{nr \text{ of bits compressed}}$

Additional Background Slides

- Let $H_0 = \{ P_{\theta} | \theta \in \Theta_0 \}$ represent the null hypothesis
 - For simplicity, today we assume data $X_1, X_2, ...$ are i.i.d. under all $P \in H_0$.
- Let $H_1 = \{ P_{\theta} | \theta \in \Theta_1 \}$ represent alternative hypothesis
- Example: testing whether a coin is fair Under P_θ, data are i.i.d. Bernoulli(θ)
 Θ₀ = {1/2}, Θ₁ = [0,1] \ {1/2}
 Standard test would measure frequency of 1s

• Let $H_0 = \{ P_{\theta} | \theta \in \Theta_0 \}$ represent the null hypothesis

- Let $H_1 = \{ P_{\theta} | \theta \in \Theta_1 \}$ represent alternative hypothesis
- Example: testing whether a coin is fair Under P_{θ} , data are i.i.d. Bernoulli(θ) $\Theta_0 = \left\{\frac{1}{2}\right\}, \Theta_1 = [0,1] \setminus \left\{\frac{1}{2}\right\}$ Simple H_0 Standard test would measure frequency of 1s

• Let $H_0 = \{ P_{\theta} | \theta \in \Theta_0 \}$ represent the null hypothesis

- Let $H_1 = \{ P_{\theta} | \theta \in \Theta_1 \}$ represent alternative hypothesis
- Example: t-test (most used test world-wide) $H_0: X_i \sim_{i.i.d.} N(0, \sigma^2)$ vs. $H_1: X_i \sim_{i.i.d.} N(\mu, \sigma^2)$ for some $\mu \neq 0$ σ^2 unknown ('nuisance') parameter $H_0 = \{ P_{\sigma} | \sigma \in (0, \infty) \}$ $H_1 = \{ P_{\sigma,\mu} | \sigma \in (0, \infty), \mu \in \mathbb{R} \setminus \{0\} \}$

• Let $H_0 = \{ P_{\theta} | \theta \in \Theta_0 \}$ represent the null hypothesis

- Let $H_1 = \{ P_{\theta} | \theta \in \Theta_1 \}$ represent alternative hypothesis
- Example: t-test (most used test world-wide) $H_0: X_i \sim_{i.i.d.} N(0, \sigma^2) \vee s.$ Composite H_0 $H_1: X_i \sim_{i.i.d.} N(\mu, \sigma^2)$ for some $\mu \neq 0$ σ^2 unknown ('nuisance') parameter $H_0 = \{ P_{\sigma} | \sigma \in (0, \infty) \}$ $H_1 = \{ P_{\sigma,\mu} | \sigma \in (0, \infty), \mu \in \mathbb{R} \setminus \{0\} \}$

Standard Method: p-value, significance

- Let $H_0 = \{ P_{\theta} | \theta \in \Theta_0 \}$ represent the null hypothesis
- A ("nonstrict") **p**-value is a random variable (!) such that, for all $\theta \in \Theta_0$,

$$P_{\theta_0} (\mathbf{p} \le \alpha) \le \alpha$$