TODAY: Maximum Entropy

1. Note: No Homework Lecture Today! [new homework
will be posted tomorrow]

2. Brandeis Dice

3. Maximum Entropy: general formulation
« Examples

4. Exponential Families

Next Week: Maximum Entropy & MDL ; Connection to
S-Values



Brandeis Dice (Jaynes 1957)

« X ={1,2,..,6}
« We found a strange looking die. We throw it 10000
times. We observe average nr of spots of 4.5 .

 Now we are asked to guess distribution of X. What
should we do?

* (1) we should perhaps set probs equal to fregs,
but... we have not recorded all the frequencies!

* (2) we pick the most uncertain one, which we take
to be the one with Maximum Entropy, i.e.

Pme = arg max H(P)
PZEXNP[X]:4.5



Brandeis Dice (Jaynes 1957)

X =1{12,..,6}

We throw 10000 times. We observe average nr of
spots of 4.5 .

Now we are asked to guess distribution of X.

We pick the most uncertain one, which we take to be
the one with Maximum Entropy

« Sounds like ‘the least unreasonable one can do’

How does the MaxEnt distribution look like?

(Pme(1),---Pme(6)) =
(0.05435,0.07877,0.11416,0.16545,0.23977,0.34749)



Brandeis Dice (Jaynes 1957)

« How does the MaxEnt distribution look like?

(Pme(1),--,Pme(6)) =
(0.05435,0.07877,0.11416,0.16545,0.23977,0.34749)

* Note that this doesn't have to be the true
distribution!
 P(X=4) = P(X=5) = 1/2 could be 'true’, for example
e ...S0 this distribution can never be more than a first
rather wild guess

 ...still, adopting the MaxEnt distribution may
sometimes be reasonable



General Setting

Suppose we want to make a prediction about a RV X

If we know distribution of X, we can use that to make
optimal predictions

But here we deal with situation that we only have
partial knowledge of distribution of X

* knowledge of form: P € P for convex P

 In lecture/book we only consider the special case
of linear constraints, i.e. P of form P =
{P: Ex[¢(X)] = t} for some function ¢: X — R¥

(convex = linear , but not vice versa)



General Setting

« We assume so many observations that we can safely
set expectations to averages!

« dice problem: ¢ is identity! but in general, can be
more complicated.

« According to Jaynes' maxent principle, we should
pick the distribution in P maximizing entropy

» dice example: distribution | just showed

* More Realistic Examples: e.g. natural language
processing, species modelling



The Good and The Bad

« Good Properties of MaxEnt procedure:
« Unique solution: entropy is strictly concave

« Uniformity: if consistent with constraint, will pick the uniform
distribution [generalizes Laplace’s Principle of Insufficient
Reason]

 |If consistent with constraint, will pick distribution under
which RVs are independent ( ¢ = indicator functions)

« For certain prediction problems, it gives minimax optimal
predictions (next week!)
« Bad Properties:
« Guess might be wrong (Ex Nihilo Nihil!)

« ...for other prediction problems, not at all ‘optimal in any
sense’



How to Compute MaxEnt
Distributions

 Why do we get the answer we got?
e LetP ={P:Ep[¢p(X)] = t} for some function ¢: X — R¥
 Let (T=transpose)

N L 8Te) Z(B) = BT o(X)
ps(0) = 5o (8) x;(e

Theorem: suppose there exists f s.t. PR EP, l.e.

Pz = P, ‘— arg max H(P
/8 me gPEP ( )



Computing MaxEnt Distributions

L ey Z(B) = Y & 90
Z(8) x%;(

pg(z) =

Theorem: suppose there exists f§ s.t. pg €P .e.

EXNPB[QI)(X)] =t. Then:PB — Pme := arg rjyea% H(P)

* Proof:

H(P) < Ex.p[~log P5(X)] =

Expl—B"¢(X) +log Z(B)] = —3"t + log Z(B) =
Ex~py[—8" ¢(X) + log Z(B)] = H(Fp)

« Strange (but correct) proof. We started by assuming the answer,
and then showed that it must actually be the answer



Computing MaxEnt Distributions

N L aTexy  Z(B) = B H(X)
pg(x) = 705 (B) x%;(e

Theorem: suppose there exists £ s.t. ps EP lLe.

EXNPB[Qb(X)] =t. Then:PB — Pme := arg rjyea% H(P)

« Usually constraints P are such that § exists!
« Special case of "Boltzmann-Gibbs distribution”

(131}

"maximum entropy distribution” “exponential family”

 arise frequently in physics

 arise in statistics because they have finite-
dimensional sufficient statistics (next week)



Example 1: Dice

1
pﬁ(x)zz(ﬁ)'eﬁ'x Z(B) = e’ + 20 .. 4O

« Pick £ such that expectation is 4.5
* Note: as [ ranges from —oo to oo EPB [X] ranges from
1to6



Example 2: Bernoulli

X =101 P={P:Ep [X] = t}
PX=1)-14+PX=0)-0=1t¢t

.e.

PX=1) =t

Note: as f ranges from —oo {0 oo , Epﬁ [X] ranges from

0 to 1 — the ‘MaxEnt’ model coincides with the
Bernoulli model

If you plug in B = log (1%)), you see that Py is just
Bernoulli distribution with mean p



Example 3: Independence if
Consistent with Constraints

X =X; XXy, X; = {a,b}

Constraint:

P(Xy =a) =p; PX; = a) =¢q
...rewrite as Ep|1y, -] = p; Ep|lx,-a] = ¢
1x.-q = 11fX; =a ;0 otherwise.

Solution must be of form

1
pp(Xy, X;) = o eP1lxi=atP21x;=qa
can be written as a product of something only
dependent of X; and something only dependent of X,

-> X;and X, must be independent under pg



Example(s) 4, Continuous Data

* no constraints, X = [a, b] = MaxEnt is uniform
distribution on X

« X = R*, constraint E[X] = t = MaxEnt is
exponential distribution with parameter%

« X = R, constraint E[X] = u,var[X] = 0% = MaxEnt
is normal distribution with parameters u,o*

* [Reinterpretation of Central Limit Theorem: if we
add and renormalize i.i.d. random variables
[perform an operation that keeps u, 0 the same]
then the resulting distribution tends to the one
with maximum entropy with this u, 2]



The Good and The Bad, Revisited

« Good Properties of MaxEnt procedure:
« Unique solution: entropy is strictly concave

« Uniformity: if consistent with constraint, will pick the uniform
distribution [generalizes Laplace’s Principle of Insufficient
Reason]

 |If consistent with constraint, will pick distribution under
which RVs are independent (phi = indicator functions)

« For certain prediction problems, it gives minimax optimal
predictions [next week!]
« Bad Properties:
« Guess might be wrong (Ex Nihilo Nihil!)

« ...for other prediction problems, not at all ‘optimal in any
sense’



General Setting

« Good Properties

« Bad Properties

« ...they also simply arise in many practical situations, for different
reasons [next week we’ll see such a reason!]. So they are
important to study even without the idea to use them as a *first
guess’ of the underlying distribution



Exponential Families

If g(x) = 1, then itis a 'maximum entropy' family

Most models we have seen before are exponential
families: Bernoulli, multinomial, normal, exponential,
Gamma, Poisson, Pareto, Zipf, Beta, Gamma...: all
exp families

... also: Markov (need to extend definition to cover
this),

Gaussian (and other) Mixtures do not form an
exponential family!



Sufficient Statistics!

Why are exponential families easy to work with?
Because they allow for finite dimensional sufficient
statistics (not depending on sample size)

...and (with caveats) they are the only models
with this property (Pitman-Koopman-Darmois)

“A sufficient statistic of a sample relative to a model
summarizes all information in the sample that is
Important to make inferences relative to the model”



Sufficient Statistics!

« Sample size n: exponential families constructed by
taking product distributions

1 TY. )
* pp(x™) = el 2= YU g(xy)

max log ps(x™) = max (BY.¢(x;) —nlog Z(B) + xlog q(x;) )

* To determine this, you only need to know sum
(equivalently, average) of ¢ !



Sufficient Statistics!

max log pp(x™) = max BYP(x;) —nlog Z(B) + Ylog q(x;) )

* To determine this, you only need to know sum
(equivalently, average) of ¢ !

 Bernoulli/binomial: need nr of 1s. <no other details>.

« Normal distribution: need mean and variance <no other
detalls

* Poisson: only need mean

VERY easy to do statistics with: underlying reason why

they are used so often. Not necessarily that they are good
models of reality!

E.g mixture models do not have finite-dim suff stats.



Mean-Value Parameterization

 Theorem:
for every exponential family M = {Pz: B € 03},
Ep, | (X)] is strictly monotonically increasing as a

function of 8
[in the book this is also made precise for k-dim families with
k>1,i.e. ¢:X - R*, where it is not directly clear what
‘monotonic’ means]

 Intuition for proof: if § increases, then x with high

¢ (x) get exponentially more weight

« Therefore, we can identify a distribution in M by its
mean of ¢ rather than the value of



Mean-Value Parameterization

We can also identify a distribution in M’ by its mean of ¢
rather than the value of 5. Thus we can always:

re-parameterize M = {Pg:f € Og}as M = {P,: s € 6,,}
where ug: = Ep, lp(X)]
* f:natural or canonical parameterization

 u: mean-value parameterization
* B, :Inverse of ug

Bernoulli: B, = logﬁ , Exponential: g, = 1/u

Normal with mean 0, varying % = E[X?] mean (!)-
value parameter: 8,2 = 1/(20%)



Nice Properties (“duality”)

« We have:

Ug = ( Plog Z(B) [multivariate: pg = Vlog Z(B) ]

 vary, (9) = (<) 10g 2(8) = 1(6)

[multivariate: covariance matrix = Hessian= ()]

* ...analogous properties for g, = (d%)log D(ul|| uo)

1
I(ﬁﬂ) varp,,[¢]

« I(w) = ( )logD(ulluo)



TODAY: Maximum Entropy

1. Note: No Homework Lecture Today! [new homework
will be posted tomorrow]

2. Brandeis Dice

3. Maximum Entropy: general formulation
« Examples

4. Exponential Families

Next Week: Maximum Entropy & MDL ; Connection to
S-Values
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