
MDL exercises, fourth handout

Solutions

24 March 2020

1. (a) Let H(p) = −p log p − (1 − p) log(1 − p) denote the binary entropy
of a Bernoulli[p] distribution when the probability of observing a
zero is p. (The logarithm is base two.) Use Stirling’s approxi-
mation ln(n!) = (n + 1

2 ) lnn − n + 1
2 ln 2π + O(1/n) to show that

log
(
n
γn

)
= nH(γ)− 1

2 log n+O(1).

Below, we will abbreviate Stirling’s approximation by SA. We see

ln

(
n

γn

)
= ln

(
n!

(γn)!(n− γn)!

)
= ln(n!)− ln((γn)!)− ln((n(1− γ))!)

SA
= (n+

1

2
) lnn− n+

1

2
ln 2π +O(1/n)

− (γn+
1

2
) ln(γn) + γn− 1

2
ln 2π +O(1/(γn))

− (n(1− γ) +
1

2
) ln(n(1− γ)) + n(1− γ)− 1

2
ln 2π +O(1/(n(1− γ)))

= (n+
1

2
− γn− 1

2
− n(1− γ)− 1

2
) ln(n)− (γn+

1

2
) ln(γ)

− (n(1− γ) +
1

2
) ln(1− γ)− 1

2
ln(2π) +O(1/n)

= − 1

2
ln(n) + n(−γ ln(γ)− (1− γ) ln(1− γ))

− 1

2
ln(γ)− 1

2
ln(1− γ)− 1

2
ln 2π +O(1/n)

= − 1

2
ln(n) + n(−γ ln(γ)− (1− γ) ln(1− γ)) +O(1),

where we have used that all constant terms and all O(1/n) terms are
O(1). Finally, dividing by ln 2 on both sides, we see

log

(
n

γn

)
= −1

2
log n+ n(−γ log(γ)− (1− γ) log(1− γ)) +O(1)

= −1

2
log n+ nH(γ) +O(1).
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(b) More generally, consider a sample space X = {1, . . . , k} and prob-
ability mass functions p on X , given in the form of a vector p =
(p1, . . . , pk). Let H(p) =

∑k
i=1−pi log pi denote the binary entropy

of the distribution with mass function p. Use Stirling’s approxima-
tion to express log

(
n

p1n...pkn

)
= n!/((p1n)! . . . (pkn)!) up to an O(1)

term.

Analogous to the previous exercise:

ln

(
n

p1n . . . pkn

)
= ln (n!/((p1n)! . . . (pkn)!))

= ln(n!)−
k∑
i=1

ln((pin)!)

SA
= (n+

1

2
) lnn− n+

1

2
ln(2π) +O(1/n)

−
k∑
i=1

(pin+
1

2
) ln(pin)− pin+

1

2
ln(2π) +O(1/(pin))

= (n+
1

2
) lnn− n+

k∑
i=1

pin−
k∑
i=1

(pin+
1

2
) ln(pin) +O(1)

= (n+
1

2
) lnn−

k∑
i=1

(pin+
1

2
) ln(pin) +O(1)

= (n+
1

2
−

k∑
i=1

(pin+
1

2
)) lnn− n

k∑
i=1

pi ln pi −
1

2

k∑
i=1

1

2
ln pi +O(1)

=
1− k

2
lnn− n

k∑
i=1

pi ln pi +O(1).

Dividing by ln 2 on both sides:

log

(
n

p1n . . . pkn

)
=

1− k
2

log n− n
k∑
i=1

pi log pi +O(1)

=
1− k

2
log n+ nH(p) +O(1).

Note that if we put k = 2, we indeed see that this is a generalisation
of the formula given in the previous exercise.

2. Consider two codes for coding sequences of 0s and 1s. One is the Bayesian
code with lengths − logPM (xn), where PM is the Bayesian probability
based on a uniform prior over the Bernoulli model. The other is the two-
stage code where you first code the number of 1s n1 in xn using a uniform
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code, and then you code the actual sequence with that number of 1’s,
using again a uniform code over all sequences of length n with n1 1s.

Which code is better and why?

In the first handout, we proved that

PM (xn) =
1

(n+ 1)
(
n
n1

) ,
so the Bayesian code has code length

LBayes(x
n) = − logPM (xn) = log(n+ 1) + log

(
n

n1

)
.

The two-stage code needs log(n + 1) bits to encode n1, because n1 ∈
{0, 1, . . . n}. Since there are

(
n
n1

)
sequences with n1 ones, it needs log

(
n
n1

)
bits to encode which sequence with n1 ones it precisely is. Therefore the
two-stage code has total code length

L2−stage(x
n) = log(n+ 1) + log

(
n

n1

)
.

We thus see that the codes have the same codelength for every xn and are
therefore equally good.

3. Markov chains.

(a) Compute the maximum likelihood estimator θ̂ = (p0→1, p1→1) for a
binary first order Markov chain.

By definition of the Markov chain, we have for any sequence xn:

P (xn) =
1

2

n∏
i=2

P (xi|xi−1).

Now, let us denote with nij (i, j ∈ {0, 1}) the number of times a
transition i → j occurs in xn. Then we can rewrite the probability
to

P (xn) =
1

2

1∏
i=0

1∏
j=0

p
nij

i→j .

Using that p0→0 = 1− p0→1 and p1→0 = 1− p1→1, we write

P (xn) =
1

2
pn01
0→1(1− p0→1)n00pn11

1→1(1− p1→1)n10 .

Taking the logarithm, we see

logP (xn) = log(1/2) + n01 log(p0→1) + n00 log(1− p0→1)

+ n11 log(p1→1) + n10 log(1− p1→1).
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Differentiating with respect to p0→1:

∂

∂p0→1
logP (xn) =

n01
p0→1

− n00
1− p0→1

.

Setting to zero to find the maximum likelihood value p̂0→1:

n01
p̂0→1

=
n00

1− p̂0→1
⇒ p̂0→1 =

n01
n01 + n00

.

Similar for p1→1:

∂

∂p1→1
logP (xn) =

n11
p1→1

− n10
1− p1→1

.

Setting to zero to find the maximum likelihood value p̂1→1:

n11
p̂1→1

=
n10

1− p̂1→1
⇒ p̂1→1 =

n11
n11 + n10

.

So the maximum likelihood estimator is given by:

θ̂ =

(
n01

n01 + n00
,

n11
n11 + n10

)
.

(b) Draw X1, X2, X3 from an order 1 Markov chain. Are X1 and X3

dependent? What if you know the value of X2?

We see

P (X3 = 1|X1 = 0) = p0→0p0→1+p0→1p1→1 = (1−p0→1)p0→1+p0→1p1→1

and

P (X3 = 1|X1 = 1) = p1→0p0→1+p1→1p1→1 = (1−p1→1)p0→1+p21→1.

Therefore P (X3 = 1|X1 = 0) 6= P (X3 = 1|X1 = 1), so X1 and X3

are dependent.

If we know the value of X2, then we see

P (X3 = 1|X2 = x2, X1 = x1) = px2→1 = P (X3 = 1|X2 = x2),

so X3 is independent of X1, if we know X2.
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