MDL exercises, fourth handout

Solutions

24 March 2020

1. (a) Let H(p) = —plogp — (1 — p)log(1 — p) denote the binary entropy
of a Bernoulli[p] distribution when the probability of observing a
zero is p. (The logarithm is base two.) Use Stirling’s approxi-
mation In(n!) = (n+ 3)Inn —n + 127 + O(1/n) to show that
log (1) = nH(v) — 3logn + O(1).

Below, we will abbreviate Stirling’s approximation by SA. We see
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where we have used that all constant terms and all O(1/n) terms are
O(1). Finally, dividing by In2 on both sides, we see
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(b) More generally, consider a sample space X = {1,...,k} and prob-
ability mass functions p on X, given in the form of a vector p =
(p1,---,pr). Let H(p) = Ele —p; log p; denote the binary entropy
of the distribution with mass function p. Use Stirling’s approxima-
tion to express log (plnf_‘_pkn) = n!/((pin)!...(pgn)!) up to an O(1)
term.

Analogous to the previous exercise:

In (p " ) = In(n!/((p1n)!...(pxn)!))

1n...pEN
k
= In(n!) = Y In((p;n)!)
i=1
SA 1 1
=(n+ 5) Inn—n+ 5 In(27) + O(1/n)
k 1 1
= (pin+ 5) In(pin) — pin + 5 In(27) + O(1/(pin))
i=1
1 r u 1
= (0 )t S S+ ) o) +O(1)
1 u 1
(g nn =3 (pin-+ ) ipin) + (1)
o S it Dy a3 - 13 L o)
= - — ; ) Inn— Inp; — = —Inp;
n 2 2 pin B) n ni:1 Ppi 11 p; B 2 2 Di
1—k b
= lnn—nz;pilnpi—&—O(l).
Dividing by In2 on both sides:
k
n 1-k
lo = logn —n i log p; + O(1
g(pmmpkn> 5 log ;p gpi + O(1)

k
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Note that if we put k = 2, we indeed see that this is a generalisation
of the formula given in the previous exercise.

2. Consider two codes for coding sequences of Os and 1s. One is the Bayesian
code with lengths —log Pys(2™), where Pps is the Bayesian probability
based on a uniform prior over the Bernoulli model. The other is the two-
stage code where you first code the number of 1s ny in ™ using a uniform



code, and then you code the actual sequence with that number of 1’s,
using again a uniform code over all sequences of length n with ny 1s.

Which code is better and why?

In the first handout, we proved that
1
(n+1)()

so the Bayesian code has code length

Lpayes(z™) = —log Pa(2™) = log(n + 1) + log (: )
1

The two-stage code needs log(n + 1) bits to encode ny, because n; €
{0,1,...n}. Since there are (:1) sequences with n; ones, it needs log (:1)
bits to encode which sequence with n; ones it precisely is. Therefore the
two-stage code has total code length

n
Lo_stqge(z™) = log(n + 1) + log <n1>

We thus see that the codes have the same codelength for every ™ and are
therefore equally good.

3. Markov chains.

(a) Compute the maximum likelihood estimator 0 = (po—1,p151) for a
binary first order Markov chain.

By definition of the Markov chain, we have for any sequence x™:

P({En) = % H P(l‘i‘l'i,l).

=2

Now, let us denote with n;; (i,7 € {0,1}) the number of times a
transition ¢ — j occurs in z”. Then we can rewrite the probability

to
1 1
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Using that pgo =1 — po—1 and p10 = 1 — p1_1, We write

1
P(z") = 51’6131(1 = Po—1)""p 5 (1 — prs1)™®.

Taking the logarithm, we see

log P(z™) = log(1/2) + no1log(po—1) + noo log(1 — po—1)
+ n11 log(pis1) + nao log(l — pr1o1)-



Differentiating with respect to pg_1:
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Setting to zero to find the maximum likelihood value pg_,1:
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Similar for p;_1:
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Setting to zero to find the maximum likelihood value p;_,1:
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So the maximum likelihood estimator is given by:
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Draw X, X5, X3 from an order 1 Markov chain. Are X; and X3
dependent? What if you know the value of X7

We see

P(X3 =1|X1 = 0) = posopo—1+Po—1P1-1 = (1=Po—1)Po—1+Po—1P1-1
and
P(X3=1|X1 =1) = p150Po1+P151P151 = (1=p151)po—s1+D5 1

Therefore P(X3 = 1|X; = 0) # P(X5 = 1|X; = 1), so X; and X3
are dependent.
If we know the value of X5, then we see

P(X3=1|Xy =29, X1 = 21) = pp,1 = P(X3 = 1|X2 = 22),

so X3 is independent of X7, if we know Xs.



