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Chapter 1

Introduction to PDEs

1.1 Classification

In these lectures we study numerical methods for partial differential equations
(PDEs). In the later part, in particular, we will concentrate on so called ellip-
tic equations. These equations are used in many areas of application, as e.g.
mechanics, electromagnetics, etc..

To get insight into the quantitative behaviour of the solutions of the PDEs,
and to determine the solutions with some accuracy, in most cases analytic meth-
ods fail and we have to rely on numerical methods. The numerical techniques
to compute (approximations to) the solution are often split in two parts. First,
the PDE (the solution of which is a continuous function or set of functions) is
transformed into a set of linear or nonlinear algebraic equations, usually with a
large number of unknowns. This transformation is called the discretisation pro-
cess. The second step is the solution of the large algebraic system of equations,
in order to determine the unknowns that describe (approximately) the solution
of the PDE.

In the present chapter different kinds of differential equations are classified,
and some elementary properties of the PDEs are explained. In Chapter 2 we
will give a survey of the methods that are used for discretisation, for different
kinds of PDEs. In Chapter 3 we study the Finite Element Method for the
discretisation of elliptic equations.

1.1.1 Ordinary and partial differential equations

An ordinary differential equation (ODE) implicitly describes a function depend-
ing on a single variable and the ODE expresses a relation between the solution
and one or more of its derivatives. The order of the differential equation is the
order of the highest derivative in the equation. Beside the ODE, usually one
or more additional (initial) conditions are needed to determine the unknown
function uniquely.

1



2 P.W. Hemker

Example 1.1.1
An example of a first order ODE is

u(x) = u′(x), u(0) = 1.

An example of a second order ODE is

u(x) = −c2 u′′(x), u(0) = 0, u′(0) = 1.

In many interesting cases a function depends on more independent variables
and a relation is given for the function and its partial derivatives. This relation
describes a partial differential equation (PDE). In many practical problems the
independent variables represent the time and space coordinates (t, x, y, z). To
determine the unknown function, again additional relations are required: initial
and/or boundary conditions.

Example 1.1.2
Let u(t, x, y, z) denote the mass fraction of a chemical species, m, in a medium
with density ρ(t, x, y, z). In the presence of a velocity field v(t, x, y, z) the con-
servation of the species m is expressed by

∂

∂t
(ρu) + div (ρuv) = s, (1.1)

where s(t, x, y, z) is a possible source 1.
If diffusion also plays a role, then the diffusive flux Jd is described by Fick’s

law of diffusion 2

Jd = −d grad u,

where d is the diffusion coefficient, and the complete equation describing the
behaviour of u(t, x, y, z) reads

∂

∂t
(ρu) + div (ρvu) + div Jd = s. (1.2)

In this equation we distinguish between the diffusive flux, Jd, and the convective
flux, Jc = ρuv.

1The divergence of the vector field v is defined by div v = ∇v = ∂vx

∂x
+

∂vy

∂y
+ ∂vz

∂z
. An

important relation for the divergence is Gauss’ theorem
∫

Ω

div u dΩ =

∮

Γ

u · n dΓ,

where Ω ⊂ R
3

is a bounded volume with surface Γ and n is the outward pointing normal on
Γ.

2The gradient gradient of a scalar function φ(x, y, z) is the vector field defined by

grad φ = ∇φ =

(

∂φ/∂x
∂φ/∂y
∂φ/∂z

)

.
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The principle part of a differential equation is the part (the set of terms)
that contain the highest derivatives. E.g. the principle part of (1.1) is (ρu)t +
div (ρuv) and the principle part of (1.2) is (ρu)t − div (d grad u). PDEs can
have quite diverse properties. A few of such typical forms are given in the next
example. Most typical properties are related with the shape of the principle
part of the equation.

Example 1.1.3

• With Ω ⊂ R
2 an open domain, the Poisson equation is

uxx + uyy = f(x, y), (1.3)

where f(x, y) is a prescribed function. In the special case of f ≡ 0 equation
(1.3) is called Laplace’s equation. The solution of these equations can be
determined if the value of u(x, y) is given at the boundary of Ω. Notice
that the equation (in its three-dimensional form) is obtained from (1.2) in
the case of a time-independent solution with v = 0 and s = 0.

• The diffusion equation
ut = d uxx, (1.4)

describes the one-dimensional unsteady case of simple diffusion, without
a velocity field or a source term.

• A different kind of PDE is the wave equation

utt = a2uxx, (1.5)

where a is a positive real number. It is simple to see that a solution of
this equation is given by

u(x, y) = φ(at− x) + ψ(at+ x), (1.6)

where φ and ψ are arbitrary (twice differentiable) functions.

All the above mentioned examples are differential equations that are linear
in the dependent variable u. Although most theory available is for such linear
partial differential equations, many important equations are nonlinear. E.g. the
equation (1.1) or (1.2) would be nonlinear if the velocity field v was dependent
on u or the source s was a nonlinear function of u. An important subclass of
the nonlinear differential equations are the quasi-linear equations, i.e. equations
in which the highest derivatives appear linearly.

In general, the dependent variable u in the PDE is a function of time, t, and
the three space coordinates, (x, y, z). In numerical methods we have to choose
how to represent the function u, and often we select values of the independent
variables at which the values of u will be calculated. The fewer the number of
degrees of freedom in the approximation of u(t, x, y, z), the less computational
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effort is needed to determine an approximation of u(t, x, y, z). Fortunately, not
all problems require all independent variables. By symmetry considerations (i.e.
by a judicious choice of the coordinate system) the number of space dimensions
can often be reduced to two or one.

If a solution is sought that is not time-dependent the solution is called steady
and the time-variable can be neglected. The corresponding equations are the
steady equations.

To understand the behaviour of the solution it is important to notice that
in some equations we can distinguish a direction of “flow of information”. For
the solution (1.6) of equation (1.5) we see that the information contained in the
part φ of the solution flows forward (i.e. in the positive x-direction) with speed
a, whereas the information in the part ψ flows backward as time proceeds. Also,
in equation (1.1) the flow of information follows the vector field v. However,
no such direction is found in (1.3). For time-dependent PDEs such as (1.2) or
(1.4) we can always distinguish a unique direction “forward in time”.

The motivation for the discussion of “direction of flow of information” is
that, if such a direction can be identified, the behaviour of the solution can be
better understood. The knowledge also may be used to reduce the computer
storage and/or the computer time needed to find the numerical solution. E.g. in
a time-dependent problem as (1.1), for which the solution has to be computed
over a long time-interval [t0, t2], the solution at time t = t1, with t0 < t1 < t2,
contains all information to determine the solution for t > t1. Having computed
the solution for t ≤ t1, it may be efficient -from the point of view of computer
resources- to disregard all or most information that was obtained about the
solution for t < t1 (or t < t1 − τ , for some small τ > 0) before the solution on
(t1, t2] is determined.

The notion of direction “forward in time” shows also that in time-dependent
problems all or part of the side-conditions will be given as “initial conditions”,
that determine the solution (i.e. the state of the physical system) at a later
stage.

1.1.2 Elliptic, parabolic or hyperbolic equations

In the previous section we noticed that different PDEs may show a different
character. This character is mainly determined by the highest derivatives that
appear in the equation. To characterise some typical classes of PDEs, we con-
sider the general linear second order differential equation in two space dimen-
sions:

Lu := a(x, y)uxx + 2 b(x, y)uxy + c(x, y)uyy

+ 2 d(x, y)ux + 2 e(x, y)uy + f(x, y)u = g(x, y).
(1.7)

L is a linear differential operator of order two. With this differential operator
we associate the characteristic polynomial

Pxy = a(x, y)ξ2 + 2 b(x, y)ξη + c(x, y)η2+
+ 2 d(x, y)ξ + 2 e(x, y)η + f(x, y).

(1.8)
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The second order differential equation (1.7) is called elliptic at (x, y) if a(x, y)c(x, y)−
b2(x, y) > 0; it is hyperbolic at (x, y) if a(x, y)c(x, y) − b2(x, y) < 0, and it is
parabolic at (x, y) if a(x, y)c(x, y) − b2(x, y) = 0. Thus, this terminology is re-
lated with the geometric interpretation of the characteristic polynomial. The
differential equation is called elliptic, parabolic or hyperbolic (without reference
to a specific point) if it satisfies the corresponding (in)equalities for all (x, y)∈Ω,
where Ω is the domain on which the differential equation is defined. We see that
the Poisson equation, the diffusion equation and the wave equation are elliptic,
parabolic and hyperbolic, respectively.

For an equation of more variables (x1, x2, ..., xn), the general second order
equation reads

Lu :=
n
∑

i,j=1

aij(x)uxixj
+

n
∑

i=1

ai(x)uxi
+ a(x)u. (1.9)

Now, for the principle part of the equation, the characteristic polynomial in
ξ1, ξ2, ..., ξn is

Px(ξ1, ..., ξn) =

n
∑

i,j=1

aij(x) ξiξj . (1.10)

The operator is elliptic if the matrix (aij(x)) is positive or negative definite; it
is hyperbolic if (aij(x)) has one negative (positive) eigenvalue and n−1 positive
(negative) eigenvalues; it is parabolic if one eigenvalue vanishes and the other
n − 1 have the same sign. It is clear that in more dimensions not all linear
second order PDEs can be classified as elliptic, parabolic or hyperbolic.

The characterisation of the different PDEs is important for distinguishing
the kind of additional conditions that is needed to specify a (unique) solution for
the equation and for understanding the “flow of information” that may appear
in its solution. We show this for the three linear examples given earlier in this
section.

The hyperbolic equation

For the wave equation (1.5) with initial conditions u(0, x) = f(x), ut(0, x) =
g(x), the general solution for t ≥ 0 reads

u(t, x) =
1

2
f(x+ at) +

1

2
f(x− at) +

1

2a

∫ x+at

x−at

g(ξ) dξ. (1.11)

This means that the solution at (t, x) depends only on the initial solution on
the interval [x− at, x+ at].

The parabolic equation

For the linear diffusion equation (1.4), with initial condition u(0, x) = f(x),
with x∈R, the solution reads

u(t, x) =
1

2
√
πdt

∫ +∞

−∞

f(ξ) e−(ξ−x)2/(4dt) dξ. (1.12)
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This implies that the solution at x∈R for any t > 0 depends on all of the solution
u(0, x) over the interval −∞ < x < +∞.

The elliptic equation

For Laplace’s equation, written in polar coordinates (r, φ), it is known from the
theory of harmonic functions that the solution u(x, y) = ũ(r, φ) in the interior
of a circle with radius R, is given by

ũ(r, φ) =
1

2π

∮ 2π

0

R2 − r2

R2 − 2Rr cos(θ − φ) + r2
ũ(R, θ) dθ. (1.13)

This shows that the behaviour of the solution inside a circle, r = R, is completely
determined by all the values of the solution at the boundary of that circle.
Generally, the function of an elliptic second order equation is determined by its
values at the boundary of its domain of definition.

1.1.3 Conservation laws

A slight extension of equation (1.1) is the system of equations

∂

∂t
u(t,x,v) + div J(t,x,v)) = s(t,x,v), (1.14)

where v(t,x) is the solution sought, u(t,x,v) is a state vector and J(t,x,v) is
the flux of the state variables3; s(t,x,v) is a possible source term.

Equation(1.14) is called a system of conservation laws because the equations
describe the conservation of the quantities u. This is seen by considering an
arbitrary volume Ω and by integration of (1.14) over Ω. Using Gauss’ theorem,
we see that the increase of the amount of u inside the volume Ω should be
caused either by inflow over its boundary or by a source described in s(t,x,v).

In natural coordinates, a physical system can often be described with u =
u(v), J = J(v), s = s(v). Then, the dependence on (t,x) may be caused by a
coordinate transformation.

Example 1.1.4 The Euler equations.
The Euler equations of gas dynamics describe the flow of an inviscid non-heat-

conducting compressible fluid (a gas). They represent the conservation of mass,
momentum and energy. With ρ(t,x) density, v(t,x) velocity, e(t,x) specific
energy (temperature) and p(t,x) the presure of the gas, these conservation laws
read respectively

∂

∂t
(ρ) + div (ρv) = 0, (1.15)

∂

∂t
(ρvi) + div (ρviv) = − ∂p

∂xi
, i = 1, 2, 3,

3Because we consider a system of equations, now each component of J is a vector.
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∂

∂t
(ρe) + div (ρev) = −div (pv),

and p = p(ρ, e,v). For a perfect gas we have the state equation

p = (γ − 1)ρ(e− 1

2
|v|2). (1.16)

With suitable boundary conditions the variables ρ,v, e and p can be solved from
(1.15) and (1.16). These variables play the role of the vector v in (1.14). Notice
that they are different from the conserved quantities u.

1.2 Hyperbolic equations

The second order equation (1.5) allows decomposition into a system of two first
order equations. Similar to the factorisation of the characteristic polynomial
P (τ, ξ) = τ2 − a2ξ2 = (τ + aξ)(τ − aξ) of (1.5), the first order operators are
found to be ∂

∂t + a ∂
∂x and ∂

∂t − a ∂
∂x . The decomposition first can be written4 as

a system
{

∂u
∂t = −a ∂p

∂x ,
∂p
∂t = −a∂u

∂x .
(1.17)

If we make the change of dependent variables v = u + p and w = u − p, this
equation (1.17) uncouples and transforms into

{

∂v
∂t + a ∂v

∂x = 0,
∂w
∂t − a∂w

∂x = 0.
(1.18)

The solution of the system reads v(t, x) = v(x− at), w(t, x) = w(x+ at). These
equations show that the quantities u+ p (respectively u− p) are constant along
the line x − at = constant (x + at = constant). These lines are called the
characteristics of the differential equation (or of the differential operator).

A typical first order “one-way” wave equation in R
d, d = 1, 2, 3, is

∂u

∂t
− v · grad u = 0. (1.19)

It shares with (1.18) the property of having a characteristic direction, v, along
which the solution is constant. Therefore also the first order equations are called
hyperbolic PDE. To illustrate further the importance of the characteristics, we
consider the inhomogeneous equation

∂u

∂t
− v grad u = s(u). (1.20)

We assume that the vector field v(x) is sufficiently smooth so that it determines
a complete family of characteristics in Ω. Then we will show in Section 1.2.1
that the solution of this PDE is uniquely determined as soon as one value of the
solution is given for each characteristic. Along the characteristic the solution is
now determined by a simple ODE.

4The minus sign is by convention only.
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1.2.1 Characteristics

We consider a general first order (quasi-)linear DE in more dimensions. We
write it down for dimension d = 3; for the one-, two- or more- dimensional case
the treatment is completely analogous. We consider the equation

Pp+Qq + Rr = S , (1.21)

where p = ux, q = uy, r = uz, and P,Q,R, S are functions of (x, y, z, u). I.e.
(x, y, z) are the independent variables and u is the dependent variable.

Let u(x, y, z) be the solution of (1.21), then, by definition of p, q, and r,
(1.21) is satisfied as well as

du = pdx+ qdy + rdz.

Or, if A is a point (x, y, z, u) on a solution, then at A we find

(p, q, r,−1) ⊥ (P,Q,R, S),
(p, q, r,−1) ⊥ (dx, dy, dz, du),
(p, q, r,−1) ⊥ (ẋ, ẏ, ż, u̇),

with ˙ = ∂/∂s, and A(s) is an (arbitrary) curve in a solution surface. Appar-
ently, the vector field (P,Q,R, S)(x, y, z, u) is tangential to the solution in each
point of the solution. Streamlines in this vector field are characteristic solutions.
The projections of these characteristic solutions on the (x, y, z)-space are char-
acteristics (characteristic direction lines). For a solution along a characteristic
solution line (parametrised by s) we have

(P,Q,R, S) ‖ (ẋ, ẏ, ż, u̇), (1.22)

i.e. the two vectors are linearly dependent. It follows that the characteristic
direction can be computed from

P

dx
=

Q

dy
=

R

dz
=

S

du
· (1.23)

Further, it follows that, if a value of (x, y, z, u) is given in one point of a char-
acteristic, then the characteristic and the solution on it can be found by the
solution of the simple ODE (1.23).

If the solution is prescribed on a suitable (d−1)-dimensional manifold (suit-
able means that the manifold intersects all characteristics once) then the solution
is apparently uniquely determined.

Example 1.2.1 Inviscid Burgers’ equation.
inviscid Burgers’ equation A well-known model problem is the inviscid Burgers’
equation

ut + (
1

2
u2)x = 0 .
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Figure 1.1: The generation of a shock for Burgers’ equation

(See also example (1.2.2)). We notice that

1

dt
=

u

dx
=

0

du
.

The characteristic satisfies dx/dt = u and du/dt = 0, so that the solution is
constant along the characteristics, and the characteristics are straight lines. If
the initial solution is increasing in some area, the characteristics will intersect
and no smooth solution will further be possible. This will be considered further
in the next section.

We may study the above arguments more generally in d-dimensional space.
Let a solution be prescribed along a (d − 1)-dimensional manifold C. Under
what conditions is a solution determined in a layer in the neighbourhood of C?
We easily extend the question to the case of systems of equations. For simplicity
we take d = 3. Let







a1ux + b1uy + c1uz + d1vx + e1vy + f1vz + · · · = g1,
a2ux + b2uy + c2uz + d2vx + e2vy + f2vz + · · · = g2,
· · · ,

(1.24)

or, in short,
∑

j = 1, 2, 3

i = 1, 2, · · · , m

akij
∂ui

∂xj
= bk, k = 1, · · · ,m . (1.25)

We introduce a function φ(x1, x2, x3) such that a surface Φ is determined by
φ(x1, x2, x3) = 0. (The surface Φ is our (d − 1)-dimensional manifold, with
d=3.) Moreover, we introduce a new set of independent variables (φ1, φ2, φ3)
such that the surface is determined by φ1 = constant; e.g. φ1 = 0. (I.e. we
introduce local coordinates around the surface Φ.) Now we have

∂ui

∂xj
=

∑

l=1,2,3

∂ui

∂φl

∂φl

∂xj
·
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Equation (1.25) becomes

∑

l, j = 1, 2, 3

i = 1, 2, · · · , m

akij
∂ui

∂φl

∂φl

∂xj
= bk, k = 1, · · · ,m , (1.26)

and we get

∑

i=1,···,m





∑

j=1,2,3

akij
∂φ1

∂xj





∂ui

∂φ1
= bk −

∑

l = 2, 3

j = 1, 2, 3

i = 1, 2, · · · , m

akij
∂ui

∂φl

∂φl

∂xj
. (1.27)

This is a linear m×m-system for the computation of ∂ui/∂φ1, i.e. the normal
component of ui on the surface Φ. For the computation we need (i) the coef-
ficients akij ; (ii) the right-hand-sides bk; (iii) ∂ui/∂φl, l = 2, 3, on the surface
φ1 = 0.

If the solution u(x, y, z) of the system of PDEs is known in the surface Φ,
then we can also find the normal derivatives (and hence the analytic solution in
a layer around Φ), provided that

det





∑

j=1,2,3

akij
∂φ1

∂xj



 6= 0. (1.28)

If, on the contrary, det = 0, then -in general- no smooth solution exists in the
neighbourhood of Φ.

1.2.2 Discontinuous solutions

For simplicity, in this section we first consider the one-dimensional case. We
have seen that the solution of

ut(t, x) + a ux(t, x) = 0, (1.29)

with a∈R, and the initial condition

u(0, x) = u0(x) , x∈R, (1.30)

is u(t, x) = u0(x − at). Also, with a(x) a continuous function, the behaviour
of u(t, x) is easily understood for t > 0. The problem gets considerably more
interesting if the problem is quasi-linear, i.e. if we consider

ut(t, x) + a(u)ux(t, x) = 0, (1.31)

where a(u) is a continuous function depending on the solution. Together with
the initial condition (1.30), it now turns out that not in all cases a smooth so-
lution exists for all t > 0, even if u0(x) is a smooth function. The reason is that
characteristic lines for the equation (1.31) may intersect. As we have seen, a
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classical solution of (1.31) should be constant on a characteristic line, and dif-
ferent characteristics can carry different values. At points where characteristics
intersect a shock-line is formed and a discontinuity appears. The characteristic
line ends. But this cannot be described by the differential equation.

There are essentially two ways out of this difficulty. The first approach is to
generalise the concept of a solution. The class of possible solutions is extended
from the class of differentiable functions to the class of integrable functions, and
the equation is considered in a weak sense, i.e. it is written in an integral form.
(We see this form later in (1.36).) However, the weak solutions turn out to be
non-unique, (for a given set of initial data), and it remains to characterise the
“physically relevant” weak solutions.

Before we consider this question, we present the second approach. Instead
of (1.31) we now consider the slightly perturbed equation

ut(t, x) + a(u)ux(t, x) = εuxx, 0 < ε� 1. (1.32)

This corresponds with the transition from (1.1) to (1.2) and it means that we
add a small diffusion term to the original equation without diffusion. Under
reasonable conditions for the initial function u0(x) the parabolic equation (1.32)
always has a unique smooth solution uε(t, x) for ε > 0, and a (non-smooth) limit
function u0(t, x) = limε→0 u

ε(t, x) exists.
Now we return to the first approach, where we obtain weak solutions of

(1.31). As the functions uε(t, x) converge to such a weak solution, then that
solution is called the physically relevant weak solution of (1.31).

The integral or weak form5 of the conservation law in divergence form6

ut + div J(u) = 0, (1.34)

is found by integration over an area R = [t0, t1] × Ω. The integral form reads
∫

[t0,t1]

∫

Ω

ut + div J(u) dx dt = 0, (1.35)

5The general principle of weak solution for a differential equation N(u) = 0 on R
d

is

actually to take an arbitrary φ∈C∞

0
(R

+
×R

d
), i.e. an arbitrary smooth function with compact

support, and to consider the integral
∫

∞

0

∫

R
d

φ(t,x) N(u)dx dt = 0.

In our case, with N(u) = ut + div J(u), on the half space t ≥ 0, after partial integration this
comes down to

−

∫

∞

0

∫

R
d

uφt + J(u) · grad φ dx dt = −

∫

R
d

φ(0,x) u0(x) dx (1.33)

for all φ∈C∞

0
(R

+
×R

d
). We see that here the requirement of a differentiable u has disappeared

from the formulation of the equation. By taking a sequence of functions φ∈C∞

0
(R

+
× R

d
),

that have the characteristic function on [t0, t1] × Ω as its limit, it can be shown that (1.33)
and (1.36) are equivalent.

6Notice that (1.19) is written as (1.34) with J(u) = −vu, with div v = 0, because
div(−vu) = −u∇j(vju) = −u∇jvj − vj∇ju = −vgrad u.
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which can also be written as

∫

Ω

u(t1) dΩ −
∫

Ω

u(t0) dΩ = −
∫

[t0,t1]

∮

∂Ω

n · J(u) dΓ dt. (1.36)

The integral form holds also if there is a (d− 1)-dimensional manifold on which
u(t, x) is discontinuous. Thus, (1.35) is a generalisation of (1.34).

For d = 2 we immediately see (cf. Figure ??? ) that at a discontinuity D we
have

(

dx

dt

)

D

[u] = [J⊥(u)] , (1.37)

where [u] denotes the jump of u over the discontinuity. Denoting the propagation
speed of the discontinuity by s, we see7

s =
J⊥(uR) − J⊥(uL)

uR − uL
. (1.38)

This expression for the shock speed is called the Rankine-Hugoniot relation.

Apparently two types of discontinuities may appear in first order hyperbolic
equations: linear and nonlinear ones. The first type is present in the initial
condition and is carried along a characteristic. It is convected with a speed v
that does not essentially depend on the solution. The second type may appear
even if the initial solution is smooth, and the speed essentially depends the
solution.

Example 1.2.2 Burgers’ equation.
The appearance of a nonlinear discontinuity is often shown for Burgers’ equa-

tion. In one space dimension it reads

ut + uux = εuxx. (1.39)

If the r.h.s. is neglected, i.e. if we take ε = 0, in a positive solution the top of a
wave moves faster than the bottom. Hence, after a sufficiently long period this
would lead to a multiple valued function (if that would be possible). Because
such solutions are not allowed, a discontinuity appears of which the speed s is
determined by

J(u) =
u2

2
, (1.40)

and it follows that the discontinuity moves with a speed s = (uleft + uright)/2.

7In more dimensions we get

J⊥(uR) − J⊥(uL) = s(uR − uL)

where J⊥ denotes the flux vector component in the direction perpendicular to the disconti-
nuity.
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t

x

Figure 1.2: A curved shock solution for Burgers’ equation

If we do allow ε > 0, then the r.h.s. will always have a significant value in
those regions the solution is steep and the dissipation will prevent the disconti-
nuity to appear8.

Example 1.2.3 A discontinuous solution.
As an example (from [17]), the following wave is also a solution to the inviscid
Burgers’ equation:

u(t, x) =

{

x/t, −
√
t < x <

√
t,

0, otherwise.
(1.43)

This solution (see Figure 1.2) has two shocks, propagating with speeds ±1/2
√
t.

The right shock has left- and right states uL = 1/
√
t and uR = 0, so the

Rankine-Hugoniot condition is satisfied. The other shock behaves similarly.

We can use the relation (1.38) to solve explicitly some initial value problems
that are not classically solvable. However, now it appears that these solutions
are not always uniquely determined. We take again the inviscid Burgers’ equa-
tion as an example.

8For some initial conditions the shape of the dissipated shock is easy to determine for
Burgers’ equation. With

u(0, x) =

{

u−∞ = q > 0, x < 0,
u∞ = −q < 0, x > 0,

(1.41)

the steady solution of (1.39) is

u(∞, x) = −q tanh

(

qx

2ε

)

. (1.42)

Notice that the initial condition is already a weak solution of the reduced Burgers’ equation
((1.39) with ε = 0). A non-trivial steady solution does not appear for u−∞ < 0 < u∞. In
that case, after a first dissipative phase, the nonlinear convection will level out all differences
in u.

The dissipated shock moves at a speed a = (uL + uR)/2, and its shape is given by

u(t, x) =
uL + uR

2
−

uL − uR

2
tanh

(

(uL + uR)(x − at)

2ε

)

.
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t

x

u=1

u=1

u=0

u=0

u = (1−x)/(1−t)

x = 1 + (t−1)/2

x = t

t = 1

Figure 1.3: A continuous solution developing a discontinuity

t

t

xx

u = 1u = 0u = 0 u = 1

u = x/t
u = 0

Figure 1.4: A discontinuous and a continuous solution solution

Example 1.2.4 A unique solution.
We take Burgers’ equation with initial function

u0(x) =







1, x < 0,
1 − x, 0 ≤ x ≤ 1,
0, x > 1.

(1.44)

The solution we find reads (see Figure (1.3))

u(t, x) =























1, x < t, or
x < 1 + (t− 1)/2,

(1 − x)/(1 − t), t ≤ x ≤ 1,
0, x > 1, or

x > 1 + (t− 1)/2.

(1.45)

Example 1.2.5 A non-unique solution.
We take Burgers’ equation with initial function

u0(x) =

{

0, x < 0,
1, x > 0.

(1.46)

The solutions we find are (see Figure (1.4)) are a family of discontinuous func-
tions for a∈(0, 1)

u(t, x) =







0, x < at/2,
a, at/2 < x < (1 + a)t/2,
1, (1 + a)t/2 < x.

(1.47)
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x

t

u = 1u = −1

u = −a u = a2x=−(1+a)t 2x=(1+a)t

Figure 1.5: Another discontinuous solution

and a continuous function

u(t, x) =







0, x < 0,
x/t, 0 < x < t,
1, x > t.

(1.48)

Example 1.2.6 Another non-unique solution.
We may extend the previous example to obtain a more complex non-unique

solution. We again take Burgers’ equation, now with initial function

u0(x) =

{

−1, x < 0,
1, x > 0.

(1.49)

The solution we find reads (see Figure (1.5)), with some a∈(0, 1),

ua(t, x) =















−1, 2x < −(1 + a)t,
−a, −(1 + a)t < 2x < 0,
+a, 0 < 2x < (1 + a)t,
+1, (1 + a)t < 2x.

(1.50)

To pick out the “physically relevant solution” we have to find the solution
u(t, x) = limε→0 u

ε(t, x), with uε the solution of

ut + f(u)x = εuxx .

First, however, we formulate a condition that guarantees unicity of the discon-
tinuous solution. Such conditions are generally called entropy conditions. Later
we shall see a relationship between these entropy conditions and the physical
relevance of a solution. In the case of a single equation ut + f(u)x = 0 with
f ′′ > 0, one can show that there exists a unique solution that satisfies the
“entropy” condition [Oleinik] (1.51),

u(t, x+ h) − u(x, t)

h
≤ E

t
, h > 0, t > 0, (1.51)

where E is independent9of x, t, and h. This condition implies that if we fix
t > 0, and we let x go from −∞ to +∞, then we can only jump down (in one
direction) over the discontinuity.

9E depends on ‖u0‖∞, min{f ′′(u)} and max{f ′(u)}. We do not go into details. The
interested reader is referred to Chapter 16 of [23].
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This entropy condition of Oleinik guarantees uniqueness of the weak solution.
Condition (1.51) says that, at discontinuities, we have uL > uR. From the
Rankine-Hugoniot condition we have

s =
f(uL) − f(uR)

uL − uR
= f ′(ζ) ,

for some ζ∈[uR, uL]. We had assumed f ′′ > 0 (i.e. f is convex) and hence we
finally find that Oleiniks entropy condition implies

f ′(uL) > s > f ′(uR) . (1.52)

Sometimes this inequality is also called the entropy condition. The inequality
(1.52) means that the characteristic lines on both sides of the discontinuity run
into the discontinuity. The entropy condition (1.51) of Oleinik has not been
extended to systems of conservation laws. However (1.52) has been extended
by Lax [16].

Example 1.2.7 Traffic flow (shocks and rarefaction waves).
(This example is taken from [17].) Let 0 ≤ ρ(x, t) ≤ ρm denote car density on
a road, and u(x, t) car speed. Because cars don’t disappear we have

ρt + (ρu)x = 0 .

Let u be given as u = u(ρ), e.g. u(ρ) = um(1 − ρ/ρm). Combining both equa-
tions, gives

ρt + f(ρ)x = 0 .

with f(ρ) = ρum(1 − ρ/ρm). We easily derive the characteristic speed

f ′(ρ) = um(1 − 2ρ/ρm) ,

and the shock speed for a jump in the car density from ρL to ρR:

s =
f(ρL) − f(ρR)

ρL − ρR
= um(1 − (ρL + ρR)/ρm) . (1.53)

The entropy condition implies that a shock must satisfy f ′(ρL) > f ′(ρR), which
implies ρL < ρR. Now, with initial data

ρ(x, 0) =

{

ρL, x < 0,
ρR, x > 0,

several situations can be distinguished. With 0 < ρL < ρR < ρm a shock wave
travels with speed (1.53). This shock speed can move in the positive or in the
negative direction. With 0 < ρR < ρL < ρm we rather have a “rarefaction
wave’.



Chapter 2

Discretisation Principles

In many cases it is important to obtain quantitative data about physical, tech-
nical or other real-life systems. One may obtain these through measurements.
However, if we have sufficiently accurate mathematical models for a system, we
can also try to derive quantitative data from these models. Models for technical
problems often take the form of a PDE or a system of PDEs, and although much
analytical theory is available for PDEs, most of these equations do not allow an
explicit solution in closed form. Therefore numerical methods are used to get
insight in their quantitative behaviour.

In practice it is clear that there are many restrictions in gathering reliable
data from real-life measurements. In the numerical modelling of these systems,
limitations of accuracy are caused by possible inaccuracies in the mathematical
model, because the model is often a simplification of reality, and also because
there is always a limitation of computing resources.

Numerical mathematics takes the mathematical equations as a starting point
and strives for an efficient and accurate approximation of the the quantitative
data.

2.1 Discrete representation of the solution

In many problems from practice, the solution of a PDE is a steady or time-
dependent (vector-) function in d space variables (d = 1, 2, 3). Thus the solution
is an element of an infinitely-dimensional space, and -in general- it cannot be
described by a finite number of real numbers. Because computational capacity
is always finite, the problem has to be discretised: i.e. the solution has to be
approximated by a function that can be represented by a finite set of numbers.

Example 2.1.1
Let d = 1, and let the solution of the equation be a simple continuous function
u(x), x∈[a, b] = Ω. A few possible ways to represent this function are:

17
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Piecewise linear Piecewise polynomial

Figure 2.1: Piecewise polynomial approximations

i) a table of equidistant function values

ui ≈ u(xi), i = 0, 1, 2, · · · , N, xi = a+ i(b− a)/N ;

ii) a table of non-equidistant function values

ui ≈ u(xi), i = 0, 1, 2, · · · , N, a ≤ x0 ≤ x1 ≤ · · · ≤ · · · ≤ xN ≤ b;

iii) a table of function values and values of derivatives of that function (either
equidistant or non-equidistant)

ui,k =

(

d

dx

)k

u(xi); k = 0, 1; i = 0, 1, 2, · · · , N.

In all these cases the solution at the intermediate values of x can be approxi-
mated by interpolation. This can be done e.g. by a choosing a polynomial, a
spline or a piecewise polynomial as the interpolating function.

Another way to approximate the function is by choosing -a priory- a finite-
dimensional function space, selecting a basis in this space, and determining the
coefficients of the approximation with respect to that basis. Then we have to
select a family of functions {φi(x)|i = 1, · · · , N}, which forms the basis for the
approximating function space, and we compute coefficients {ai|i = 1, · · · , N} so
that the function

φ(x) =
N
∑

i=1

aiφi(x) (2.1)

approximates the function that is to be represented.
Possible choices for {φi} are, e.g. (i) the polynomials φi(x) = xi; (ii) gonio-

metric functions {φi(x)} = {1, sin x, cosx, sin(2x), cos(2x), · · ·}; or (iii) piece-
wise polynomials on a partition of the interval [a, b], e.g. piecewise linear or
piecewise parabolic functions.

To obtain a more accurate approximation of the function u(x), we need -
in general- a denser set of function values or more coefficients to compute. If
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a partition of nodal points is made, or a partition in subintervals, the largest
distance between two neighbouring points, or the size of the largest interval in
the partition is usually denoted by a parameter h. This parameter is called the
mesh-size. For a smaller h the approximation gets (in general) (i) more accurate,
and (ii) more laborious (time-consuming) (”more expensive”) to compute.

We notice that the classification of approximation methods does not yield
disjoint classes of methods. In the representation (2.1) the coefficients may
coincide with function values or values of derivatives. Example (iii) can also
be seen as an interpolation method for a set of function values, given at the
sub-interval endpoints. If there is a set of nodal point {xi} and a set of basis
function {φi}, such that they satisfy the relation

φi(xj) = δi,j ,

where δi,j denotes the Kronecker delta, the same method can be considered as
a pointwise approximation and as a functional approximation as well.

2.1.1 Discretisation of the domain, solution and equation

In the transformation of the PDE into a finite set of equations, (i.e. in the
discretisation process) it is convenient to distinguish a number of stages:

i) the discretisation of Ω, the domain of definition of the PDE;

ii) the discretisation of u, the solution (i.e. the selection of the representation
for the solution); and

iii) the discretisation of the equation.

Before we describe the techniques how to discretise the equations, we first
describe different methods for the discretisation of the domain and of the solu-
tion.

To find the discrete representation of the solution, one usually selects in the
domain where the PDE is defined, a (regular or irregular) mesh of points, or a
partitioning of the domain in triangles or quadrilaterals (See Figure 2.2 or 2.3).

2.1.2 Finite difference approximation

For the finite difference method (FDM), the domain Ω is represented by a finite
subset of points {xi} = Ωh ⊂ Ω. These points are the so called “nodal points”
of the grid. This grid is almost always arranged in (uniform or non-uniform)
rectangular manner, see Figure 2.2.

In the finite difference method (FDM) the function u is represented by a
set of function values ui that approximate u(xi). The discrete equations are
obtained by replacing the differentials in the PDE by finite differences in the
discrete equations.
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Uniform regular grid Non−uniform regular grid

Figure 2.2: Sets of nodal points in rectangular regions

Figure 2.3: Partition of two-dimensional domains
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Piecewise constant Piecewise linear Piecewise linear

Piecewise quadratic Hermite
piecewise cubic

Figure 2.4: Examples of nodal points in a triangular domain

2.1.3 Finite element approximation

In the finite element method (FEM) the domain Ω is partioned in a a finite set
of elements {Ωi}, so that Ωi ∩ Ωj = ∅, for i 6= j, and ∪Ωi = Ω. Usually one
takes for Ωi triangles or quadrangles. Then the function is approximated by

uh =
∑

aiφi(x) ,

where φi are functions that are polynomials on each Ωi (i.e. piecewise polyno-
mials). Usually the functions φi are continuous polynomials of a low degree.
Further they are constructed so that their support extends only over a small
number of elements.

2.1.4 Finite volume approximation

In this case the domain Ω is also partitioned in a finite set of volumes (mostly
triangles or quadrangles) so that Ωi ∩ Ωj = ∅, for i 6= j, and ∪Ωi = Ω. Now in
A cell centered (or block centered) finite volume method (FVM), the function u
is approximated by

uh =
∑

ajφj(x) , (2.2)

where the (possibly discontinuous) functions φi(x) are defined only on a single
volume. or on the boundaries of the volumes.

If there is a single coefficient ai associated with each volume (so that ai may
represent u(x) for x∈Ωi), then the grid is called a block centered or cell centered.
If a (single) coefficient is associated with each vertex, then the method is called
cell vertex (see figure 2.5). If the discretisation is constructed on cells (dashed
lined in Figure 2.5) that are located around vertices of a grid (solid lines), then
the mesh is called vertex centered.

2.1.5 Spectral methods

The function u is again approximated by

uh =
∑

aiφi(x)
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Cell centered Cell vertex Vertex centered

Figure 2.5: Examples of nodal points in a quadrangular domain

where the functions φi(x) are defined on all of Ω (they have a support that
extends over more than only a small part of Ω) then the methods are called
global or spectral methods. (We see that the different types of methods are not
always clearly to distinguish.)

2.1.6 Staggered grid

For systems of equations all methods mentioned above are easy to generalise. All
functions can simply be replaced by vector functions. However, it is also possible
to approximate the different (dependent) variables by different representations.
One way is to approximate the different components of the solution on different
point sets. This is the case e.g. with “staggered grids”. We explain this by two
examples.

Example 2.1.2
We consider the Cauchy Riemann equations

(i) ux + vy = f1
(ii) uy − vx = f2

}

on Ω ⊂ R
2 , (2.3)

Ω is a rectangular domain, and Ω is partitioned in a number of equal sub-
rectangles. Approximations are computed for u and v. The values of u are
calculated for the midpoints of the vertical edges, the values of v for the mid-
points of the horizontal edges. The discrete equations corresponding with equa-
tion (2.3(i)) are related with the midpoints of the cells. The discrete equations
corresponding with equation (2.3(ii)) are constructed at the cell vertices.

To understand the character of these equations, we write the Cauchy-Riemann
equations as

L

(

u
v

)

=

(

∂
∂x

∂
∂y

∂
∂y − ∂

∂x

)

(

u
v

)

=

(

f1
f2

)

. (2.4)

We see that

det(L) = −
(

∂

∂x

)2

−
(

∂

∂y

)2

= −∆ .
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Figure 2.6: A staggered grid for the Cauchy-Riemann equations
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Figure 2.7: A staggered grid for Stokes equations

This shows that the system is elliptic and second order. It is also directly seen
by elimination that 1 ∆u = div f , or ∆v = −curl f .

The system being second order elliptic, it needs one boundary condition
along all the boundary. We take

u.nx + v.ny = v.n = g(x, y) .

In our discrete system, this condition fixes the values of u and v on the boundary.
Now the number of unknowns is 27 (viz. 3 × 5 for u, and 2 × 6 for v), and the
number of equations is 28 (3 × 6 for equation (i), and 2 × 5 for equation (ii)).
Hence, the system seems to be overdetermined. However, it is easily seen that
the boundary function g(x, y) should satisfy a condition. From ux+vy = div v =
f1, it follows that

∫

Ω

ux + vy dΩ =

∫

Ω

div v dΩ =

∮

∂Ω

v.n dΓ =

∮

∂Ω

g(x, y) dΓ ,

1In three dimensions

curlv =





∂v3

∂x2
− ∂v2

∂x3
∂v1

∂x3
− ∂v3

∂x1
∂v2

∂x1
− ∂v1

∂x2



 ,

in two dimensions curlv = ∂v2

∂x1
− ∂v1

∂x2
.



24 P.W. Hemker

i.e. the compatibility condition
∫

Ω

f1(x, y) Ω =

∮

∂Ω

g(x, y) dΓ .

Similarly it follows from adding all discrete equations (uR − uL)/h+ (uT −
uB)/h = f1 for each cell, that -in total-

h
∑

k

gk = h
∑

i

uR,i − h
∑

i

uL,i + h
∑

i

vT,i − h
∑

i

vB,i = h2
∑

i

f1,i, (2.5)

i.e.
∑

k∈boundary

gk = h
∑

i∈interior

f1,i (2.6)

Here f1,i denotes the value of f1(x, y) in the i-th cell in the interior of Ω, and gk

denotes the value of g(x, y) in the k-th boundary edge element. If the boundary
values satisfy condition (2.6), one (linear) dependence relation exists between
the 28 equations and we get a solvable system of equations.

Example 2.1.3 Stationary Stokes equations
Analogous to the staggered grid for the Cauchy-Riemann equations, we can
construct one for the stationary Stokes equations,







η∆u− px = 0,
η∆v − py = 0,
ux + vy = 0.

This can be written as a system with linear differential operator L,

L





u
v
p



 =





η∆ 0 ∇1

0 η∆ ∇2

∇1 ∇2 0









u
v
p



 =





0
0
0



 .

The character of the system of equations is determined by the determinant of
the principle part of the differential operator

detL = η∆ · ∇2
1 + η∆ · ∇2

2 + 0 = η∆2 .

This is a 4-th order elliptic operator, for which we need two conditions over all
of the boundary. The operator ∆ is represented by the finite difference stencil




1
1 −4 1

1



, the operator ∇1 by
[

−1 1
]

and ∇2 by

[

1
−1

]

.

2.2 Techniques for discretisation of PDEs

2.2.1 Finite difference methods

For this method, we have already seen examples. The discrete equation is
constructed by replacing differential operators by difference operators. The
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Figure 2.8: Difference approximation and polynomial interpretation

construction of the difference operators is as follows: in the neighbourhood of a
point x∈Ω the approximation of u(x) is replaced by a truncated Taylor series:

u(x) = a0 + a10x+ a01y + a11x
2 + · · · .

With the values uij in the nodal points xij around x, the coefficients a are
expressed in these function values uij . These coefficients apq are associated
with the derivatives of the approximation in x. Now, in the PDE at this point
the differentials are replaced by difference approximations. In this way, for each
unknown uij an equation is set up at the point xij .

For a regular grid, in the interior points of the domain the same difference
approximation can be used. Different difference approximations appear near
the boundary of the domain, or in parts of the domain where the nodal points
are not regularly placed.

In the neighbourhood of xij , the approximation of u(x) is, thus, considered
as a piecewise polynomial (of a low degree). That does not mean that the
complete function u is considered as a polynomial. The interpretation of the
polynomial representation depends on the nodal point where the interpretation
is made.

The (linear or nonlinear) algebraic system of equations that results from the
discretisation process has an important property. By the difference approxima-
tions the value of the unknown function at a particular point is only coupled
with the values at neighbouring points. In this way a “sparse system” of alge-
braic equations appears. The corresponding matrix (of the linearisation) only
contains a few non-zero elements in each row; most entries in the matrix vanish.
Whereas the systems that appear as a result of discretisations can become very
large, they mostly have this nice property, by which the solution can often be
found in a relatively efficient2 manner. As this property is shared by most dis-
cretisations of PDEs, special methods are sought (and found) for the efficient
solution of such sparse systems of equations.

2Compared with a full system of equations of the same dimensions.
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2.2.2 Variational method

Variational method for difference methods

An important class of PDEs, the symmetric elliptic equations, can be written as
a minimisation problem. This gives another possibility to construct the discrete
equations. We show this by means of the Poisson equation

∆u = f, on Ω,
u = 0, on Γ .

}

This equation can be written as the minimisation problem: find a continuous
function u such that u = 0 on Γ, and

J(u) =

∫

Ω

(

∂u

∂x

)2

+

(

∂u

∂y

)2

+ 2fu dΩ

exists and is minimal. (Exists: u2
x + u2

y and fu should be integrable functions.)

Now we can set up a discrete analogue for this minimisation problem [5].
On a regular square grid (i.e. Ω a rectangle, and square meshes with a meshsize
h) we can write: find uh = {uij} such that uij = 0 on Γ, and

Jh(uh) =
∑

ij

(

ui+1,j − ui,j

h

)2

+

(

ui,j+1 − ui,j

h

)2

+ 2fijui,j

is minimal. The minimisation of this quadratic functional in the unknowns {uij}
leads to linear system in {uij}. This system also yields a difference equation for
each internal point of the grid.

The variational method for coefficients

For problems that can be written as minimisation problems, we can use the
variational method also if we seek an approximation in the form

uh(x, y) =
∑

i

aiφi(x, y) .

We take the same example (2.2.2), so that with φi(x, y) = 0 on Γ. Now we
compute the coefficients ai such that

∫

Ω

{

∑

i

ai
∂

∂x
φi(x, y)

}2

+

{

∑

i

ai
∂

∂y
φi(x, y)

}2

+ 2f(x, y)
∑

i

aiφi(x, y) dΩ

attains its minimum. This minimisation problem also leads to a linear system,
now in the unknown coefficients (ai). The same technique is applicable on
irregular grids.
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2.2.3 Weighted residual methods

A quite general discretisation technique is based on the following consideration.
Let the PDE be given by

NΩ(u) = sΩ, on Ω,
NΓ(u) = sΓ, on Γ,

}

(2.7)

then, for any function w we have

∫

Ω

wΩ(NΩ(u) − sΩ) dΩ +

∮

Γ

wΓ(NΓ(u) − sΓ) dΓ = 0. (2.8)

Or, in an even more general notation, let the equation be N (u) = s and let
s,N (u)∈V , with V a Banach space, then for an arbitrary linear functional
lw∈V ′ the equation3

lw (N (u) − s) = 0

is satisfied. Now, let S be a set of functions in which the solution u is sought:
N : S → V , then the PDE can be formulated as: find u∈S such that

lw(N (u) − s) = 0, for all lw∈V ′.

In a weighted residual method an n-dimensional subspace Sh ⊂ S is selected
and an n-dimensional subspace V D

h ⊂ V ′. The discretisation now reads: find
uh∈Sh such that

lw(N (uh) − s) = 0 for all lw∈V D
h .

In this way, the discretisation yields an n× n-system of equations.
Of course, there are many different applications of the weighted residual

principle. We will treat the most important.

2.2.4 Collocation methods

Collocation methods are weighted residual methods with the functionals lw in
the space V D

h that is spanned by

{lxi
|xi∈Ω; i = 1, · · · , N} .

Here lxi
is defined by

lxi
(f) = f(xi), for f∈V.

This means that the discrete equations are

N (uh)(xi) = s(xi), for i = 1, · · · , N.

This means that the approximate solution uh should satisfy the original PDE
precisely in n given points, where n = dim(Sh).

3The dual space of a Banach space V (denoted by V ′) is the family of all bounded linear
functionals defined on V , furnished with the obvious addition and scalar multiplication.
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2.2.5 Galerkin methods

When the functionals l are defined by integrals with integrable weight functions,
we obtain “Galerkin”-methods. Typically lw∈V D

h is defined by

lw(f) =

∫

Ω

w(x) f(x) dΩ .

The space V D
h is now defined by n linearly independent functions wi(x).

If we choose {wi(x)}i=1,2,···,N , such that Vh := span (wi) = Sh then the
methods are called Bubnov-Galerkin methods. An obvious choice is the wi = φi.
Then the discrete equations read

∫

Ω

φj N (
∑

aiφi) dΩ =

∫

Ω

φj s dΩ.

If we take Vh := span (wi) 6= Sh, the method is called a Petrov-Galerkin
method.

Almost all usual Finite Elements methods are of the (Bubnov-) Galerkin
type. When applied to symmetric positive definite elliptic PDEs, these methods
can also be regarded as variational methods.

2.2.6 Box methods = Finite Volume methods

Box methods are a special kind of Galerkin methods. Here the domain Ω is
partitioned in a number of volumes {Ωi}i=1,···,N I.e. Ωi ∩ Ωj = ∅, if i 6= j, and
∪Ωi = Ω. The weight functions are now the characteristic functions on these
Ωi,

wi(x) = 1, if x∈Ωi,
wi(x) = 0, if x6∈Ωi,

}

and the discrete equations read
∫

Ωi

N
(

∑

aiφi

)

dΩi =

∫

Ωi

s dΩi.

The volumes Ωi are called “boxes”, “cells” or “control volumes”.
Box methods are particularly popular for the discretisation of equations in

divergence form
div J(u) = s(u), on Ω.

Then the discrete equation gets the form
∮

∂Ωi

J(uh) · n dΓi =

∫

Ωi

s(uh) dΩi, for i = 1, · · · , N. (2.9)

If the computation of J(uh) at an interface between two cells is made consis-
tently for both neighbouring cells, then the discretisation satisfies a discrete
conservation law. This means that for an arbitrary union of cells G = ∪Ωi hold:

∫

G

div J(uh) dΩ =

∫

G

s(uh) dΩ .
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Figure 2.9: Nodal points and boxes on the real line

2.3 Examples

2.3.1 The diffusion equation

To show the principle of discretisation, in this section we discretise a steady
one-dimensional diffusion equation, with a source-term s and a variable diffusion
coefficient k,

− d

dx

(

k(x)
d

dx
u

)

= s(x, u), on Ω ⊂ R, (2.10)

together with a boundary condition (e.g. u = 0, on ∂Ω). This may be seen
as the description of heat-conduction through a bar, where u(x) denotes the
temperature, k(x) the heat diffusion coefficient, and s(x, u) the heat generation
per unit length, by some source.

We divide Ω in (unequal) boxes Ωi and we choose for each Ωi a nodal point
xi (see Figure 2.9).

We may choose the box-walls halfway the nodal points, or we may put the
nodal points in the midpoint of the boxes. (Such choice is not relevant at the
moment.)

The discrete approximation is represented by the function values at the nodal
points ui ≈ u(xi). Integration of the equation over Ωi yields

∫ xe

xw

s(x, u)dx = −
∫ xe

xw

(kux)xdx = − k(x)ux(x)|xe

xw
. (2.11)

To set up the discrete equations we need an approximation of u(x) over
Ωi, and approximations ux(xe) and ux(xw). Starting from ui ≈ u(xi) we can
approximate u, e.g. by
i) taking a constant value ui on Ωi;
ii) taking a piecewise linear approximation between the nodal points.
With (i) we cannot approximate the r.h.s. of (2.11), but with (ii) we can. Then
we obtain

k(xe)
ui+1 − ui

xi+1 − xi
− k(xw)

ui − ui−1

xi − xi−1
= −

∫ xe

xw

s(x, uh) dx = −si(uh) (xe − xw) ,

(2.12)
where si is the mean value of s(x, u) over the volume Ωi.
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2.3.2 The source term and solution of the system

If s is independent of u, or if s depends linearly on u, then (2.12) is a linear
system of equations that can be solved immediately (as soon as the values of
the endpoints u0 and un are given) if we take si(uh) = s(ui).

On the other hand, if s = s(u) is a nonlinear function of u, then (i) si(uh)
should be approximated, and (ii) the equation has to be solved iteratively. The

source term si can either be approximated by a constant si := si(u
(n)
h ), where

the previous approximation u
(n)
h is used directly to obtain a (hopefully better)

approximation u
(n+1)
h by (2.12), or by linearisation, i.e. taking a linear approx-

imation of s as si = sC
i (u

(n)
h ) + sL

i (u
(n)
h )(u

(n+1)
i − u

(n)
i . In this case we have to

adapt (2.12) slightly.

The difference between (i) and (ii) is that in (i) si depends completely on the
previous approximation, whereas in (ii) linear dependence of s on u is taken into
account; sC

i and sL
i are constants, that have to be determined for each nodal

point. This makes that the linear system to solve is changed:

k(xe)
xi+1−xi

ui+1 −
(

k(xe)
xi+1−xi

+ k(xw)
xi−xi−1

− (xe − xw)sL
i (u

(n)
h )
)

ui+

+ k(xw)
xi−xi−1

ui−1 = −(xe − xw)sC
i (u

(n)
h )

(2.13)

where sL
i and sC

i are such that sL
i (uh)ui + sC

i (uh) = si(uh). Here, the process
reads: first make an initial estimate for uh, then determine sC

i (uh), and sL
i (uh),

and solve the linear system (2.13). This process is repeated until convergence
is reached.

The final solution of the two processes (i) and (ii) is the same if

si(uh) = sC
i (uh) + sL

i (uh)ui .

An advantage of the alternative (ii) is that, by a judicious choice of sL
i we may

expect that the iterative process (ii) converges faster than process (i). The
processes are identical if we take sL

i = 0 for all i. However, if s is a linear
function of u, and if we know sL(u) = ds/du, then process (ii) may converge in
one step.

We see that by (2.12) or (2.13) ui is only coupled with ui−1 nd ui+1, the
values in the neighbouring cells. Hence the linear system is tridiagonal. This
band structure of the matrix makes that the linear system can be solved very
efficiently.

In the construction of (2.12) we have used the simplest possible representa-
tion for uh that still allows an approximation of (kux). Other representations
are possible as well. Apparently, it is not necessary to be consistent in the
choice for uh, (i.e. in the assumptions for the approximation of u) when the
different parts in the differential operator are discretised. E.g. we could take
si = s(ui) piecewise constant, whereas a piecewise linear approximation was
used to determine ux.
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2.3.3 The convection equation

Now we consider the problem

∂

∂x
(v(x)u(x)) = s(u, x), (2.14)

where v(x) is a given function. As a boundary condition we use e.g. u = 0 at
the left boundary of the interval. Integration, analogous to (2.11) gives

∫ xe

xw

s(u, x)dx =

∫ xe

xw

(vu)xdx = v(x)u(x)|xe

xw
. (2.15)

We take the same grid as in (2.3.1) and, again, a piecewise linear approximation
for uh. This yields the discrete equation

v(xe)
ui+1 + ui

2
− v(xw)

ui + ui−1

2
= si(uh) (xe − xw) . (2.16)

For a constant v(x) = v, this leads to

v

2
(ui+1 − ui−1) = si(uh) (xe − xw) . (2.17)

Here we see that an important problem appears. In the simplest case of a
constant v and s, we see that in equation (2.16) ui+1 is coupled with ui−1 only.
The approximations of u at the even nodes are coupled to each other, and also
the values at the odd nodes, but there is no coupling between the odd and
the even nodes. If the problem is defined for 0 ≤ i ≤ N , and the boundary
condition is given at the inflow boundary x0 (i = 0), then there is no boundary
condition to determine the values at the odd nodes. Because the linear system
is singular there is a family of possible solutions. The homogeneous equation
allows nontrivial solutions. This is also called instability: the discrete solution
is not bounded by the rhs of the discrete equation.

Notice that the technique for the discretisation of the equations in the in-
terior domain cannot be used at the outflow boundary. There a different dis-
cretisation method should be used, because no value un is available. In fact it
is this particular discretisation at the outflow boundary that determines the be-
haviour of the discrete solution at the odd points. We consider this completely
intolerable.

2.4 Techniques for time-discretisation

2.4.1 Time-space discretisation or semi-discretisation

We have seen that (because the time-direction is unique) it makes sense to treat
the time-dependence of a problem different from the space-dependence. The dis-
crete solution is determined in a number of subsequent time-steps. Usually one
uses the same time-steps for all nodal points in a grid. Thus, in a 2-dimensional
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finite difference discretisation, the solutions are represented by {un
ij}, where

(i, j) denotes the nodal point xij and n the time-coordinate tn.
By the special character of the time-variable (the future depends on the past,

and not the past on the future) the values {un
ij} are computed on basis of the

known values {uk
ij}, k = n− 1, n− 2, · · ·.

Another possibility for discretisation of time-dependent PDEs is to defer
the time-discretisation and to apply semi-discretisation: the solution of the
equations is represented by {uij(t)}. The value of the solution at the point
xij (or another coefficient used for the space-discretisation) is considered as a
function in time. Then, the semi-discretised PDE leads to a very large system
of ODEs for the unknown functions {uij(t)}, as e.g. in

d

dt
uij(t) = Fij({ukl(t)}kl), ∀i, j.

For the solution of these equations any suitable technique for the solution of
ODEs can be used.

2.4.2 FDM for a linear hyperbolic problem

In this section we will show and analyse a number of characteristic problems
that are encountered in the treatment of time-dependent problems. We do this
by means of the simple convection equation

∂u

∂t
+

∂

∂x
f(u) = 0. (2.18)

As a grid we simply take a set of equidistant nodal point {xi}. Halfway the
nodal points we situate the cell interfaces of the cell Ωi at xi± 1

2
. Integration of

(2.18) over Ωi yields

∂

∂t

∫

Ωi

u dx + f(u(x))

∣

∣

∣

∣

x=x
i+ 1

2

x=x
i− 1

2

= 0 . (2.19)

We represent the discrete approximation by {ui}, with ui the mean value of u
over the cell Ωi. Then we arrive at the equation

(xi+ 1
2
− xi− 1

2
)
∂

∂t
ui(t) + fx

i+ 1
2

− fx
i− 1

2

= 0 . (2.20)

Here, fx
i± 1

2

denotes an approximation for f(u(xi± 1
2
)).

For the space discretisation we use upwind, downwind and central flux com-
putations. To construct a system of equations for the variables {ui} we still
have to decide how we relate f(u(xi± 1

2
)) to the values of {ui}. As in section

2.3.3, one possible choice is

fx
i+ 1

2

=
1

2
(f(ui) + f(ui+1)),
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the central approximation. Other choices are e.g.

fx
i+ 1

2

= f(ui) or fx
i+ 1

2

= f(ui+1),

respectively the backward and the forward discretisation4.
For convenience we will combine the three choices in one formula, with a

parameter w. After some analysis we make a choice for w. We write

fi+ 1
2

= wf(ui) + (1 − w)f(ui+1), i = 1, 2, 3, · · · . (2.21)

Now we have completed our semi-discretisation:

∂

∂t
ui(t) =

w

∆x
f(ui−1) +

1 − 2w

∆x
f(ui) −

1 − w

∆x
f(ui+1), (2.22)

where ∆x = xi+ 1
2
− xi− 1

2
. We write this equation briefly as

∂

∂t
uh(t) = gh(uh(t)). (2.23)

We realise the time discretisation of (2.23) simply by time-stepping with
steps ∆t. This can be done e.g. by the forward Euler method:

1

∆t

[

uh(tn+1) − uh(tn)
]

= gh(uh(tn)). (2.24)

In this case the new values uh(tn+1) are expressed explicitly in the old values
uh(tn).

An alternative possibility is the backward Euler method:

1

∆t

[

uh(tn+1) − uh(tn)
]

= gh(uh(tn+1)), (2.25)

or also the Cranck-Nicolson method

1

∆t

[

uh(tn+1) − uh(tn)
]

= ( gh(uh(tn)) + gh(uh(tn+1)) )/2. (2.26)

These two methods are “implicit” time-discretisation methods. Here we have
to solve a system of equations to compute the new values uh(tn+1).

We summarise the three possibilities, again, in one parametrised formula:

1

∆t

[

uh(tn+1) − uh(tn)
]

= (1 − θ)gh(uh(tn)) + θgh(uh(tn+1)) . (2.27)

The fully discretised system reads:

un+1
i − un

i = ∆t
∆xθ {wfn+1

i−1 + (1 − 2w)fn+1
i − (1 − w)fn+1

i+1 }+
∆t
∆x (1 − θ) {wfn

i−1 + (1 − 2w)fn
i − (1 − w)fn

i+1},
(2.28)

4With ∂f/∂u > 0, the approximation fx
i+ 1

2

= f(ui) is called upwind approximation,

because the flow of information is from left to right and for the approximation of fx
i+1

2

the

upstream value ui is used. The other approximation is called downstream approximation.
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where fk
j represents f(uk

j ).

In general, to compute un+1
i from un

i , we have to solve a system of nonlinear
equations. Because it is difficult to analyse nonlinear equations we simplify the
problem by linearising it. We set df

du = f ′ constant, and we combine a few
parameters in a single: λ = f ′∆t/∆x. Now equation (2.28) becomes

un+1
i − un

i = λθ {wun+1
i−1 + (1 − 2w)un+1

i − (1 − w)un+1
i+1 }+

λ(1 − θ) {wun
i−1 + (1 − 2w)un

i − (1 − w)un
i+1} .

(2.29)

Having simplified the equation so far, it is simple to solve it also analytically.
We will use this knowledge about the analytic solution to check if our numerical
techniques yield reliable results.

The equation now is ut + f ′ux = 0, and the solution is ψ(x − f ′t) for an
arbitrary initial solution ψ(x) = u(0, x). In time the solution doesn’t really
change, it doesn’t grow or shrink, it only moves with the velocity f ′. With the
different possible choices for the numerical method, we can see which properties
of the true solution are inherited by the numerical counterparts.

In order to study the behaviour of the solution of the discrete system, we
consider the behaviour in time of the approximate solution in the domain Ω =
(−∞,+∞), for an initial function u(t0, x) = ejωx. We use the notation j :=√
−1 in order not to interfere with the index i previously used. (We refer to a

textbook in Fourier analysis to understand the relevance of this choice.) The
discrete initial function, then, is

u0
i = ejωhi.

Using equation (2.29) we see immediately that the solution at a later stage is
given by

un
i = γn ejωhi, (2.30)

where γ is a complex number that satisfies

γ − 1 = λθ {wγe−jωh + (1 − 2w)γ − (1 − w)γe+jωh}+
λ(1 − θ) {we−jωh + (1 − 2w) − (1 − w)e+jωh} . (2.31)

This can also be written as

γ =
1 + λ(1 − θ){(1 − 2w) + we−jωh − (1 − w)e+jωh}

1 − λθ{(1 − 2w) + we−jωh − (1 − w)e+jωh} (2.32)

=
1 + λ(1 − θ){(1 − 2w)(1 − cos(ωh)) − j sin(ωh)}

1 − λθ{(1 − 2w)(1 − cos(ωh)) − j sin(ωh)} ;

γ is the amplification factor for the time-integration: |un
i | = |γ|n. The solutions

increases for t→ ∞ if |γ| > 1, and it decreases for |γ| < 1. We see that

|γ|2 =
{1 + λ(1 − θ)(1 − 2w)(1 − cos(ωh))}2 + λ2(1 − θ)2 sin2(ωh)

{1 − λθ(1 − 2w)(1 − cos(ωh))}2 + λ2θ2 sin2(ωh)
· (2.33)

Now we want to study the effect of the parameter w, that was introduced in
the space discretisation, and of θ that was introduced in the time discretisation.
Further we can see what is the effect of the parameter λ.
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• If w = 1
2 (i.e. for central discretisation in space) equation(2.33) reduces to

|γ|2 =
1 + λ2(1 − θ)2 sin2(ωh)

1 + λ2θ2 sin2(ωh)
, (2.34)

and we find

|γ| < 1 ⇔ (1 − θ)2 ≤ θ2 ⇔ θ ≥ 1

2
·

Depending on θ we can draw the following conclusion:
i) θ = 1

2 ⇔ |γ| = 1. This implies neutral stability (Crank-Nicolson).
ii) θ = 0 ⇔ |γ| > 1. This means unconditional instability (forward Euler).
iii) θ = 1 ⇔ |γ| < 1. This means unconditional stability (backward Euler).

• If w = 1 (i.e. for “backward” discretisation in space)
stability ⇔ |γ| ≤ 1 ⇔ λ(λ(1 − 2θ) − 1) ≤ 0. Depending on the sign of f ′

we find:

– f ′ > 0 ⇔ λ > 0 ⇔ stability for: λ(1 − 2θ) ≤ 1.
This implies stability for θ ≥ 1

2 . If θ < 1
2 stability may depend on λ;

stability is obtained for λ ≤ 1
1−2θ and we obtain stability only for λ

(i.e. the time-step) small enough.

– f ′ < 0 ⇔ λ < 0 ⇔ stability for: λ(1 − 2θ) ≥ 1.
This implies instability for θ∈[0, 1

2 ]. If θ > 1
2 then stability is guar-

anteed for |λ| ≥ 1
2θ−1 and we obtain stability only for λ large (!)

enough.

• If w = 0 (i.e. for “forward” discretisation in space)
stability ⇔ |γ| ≤ 1 ⇔ λ(λ(1 − 2θ) + 1) ≤ 0

– f ′ > 0 ⇔ λ > 0 ⇔ stability for λ(1 − 2θ) ≤ 1.
This implies instability for θ∈[0, 1

2 ]; if θ > 1
2 then get stability for

|λ| ≥ 1
2θ−1 , i.e. only for λ large(!) enough.

– f ′ < 0 ⇔ λ < 0; this implies stability for θ ≥ 1
2 ; if θ∈[0, 1

2 ] we get
stability for |λ| ≤ 1

1−2θ , i.e. we obtain stability for λ small enough.

We recognise a symmetry If f ′ > 0 then w = 1 corresponds with upwind dis-
cretisation and w = 0 with downwind; with f ′ < 0 it is the other way. We
notice that the upwind discretisation is unconditionally stable when θ ≥ 1

2 . For
θ < 1

2 it is stable if the time-step is small enough. The downwind discretisation
is unstable for all reasonable cases.

2.4.3 The equivalent differential equation

In this section we study the local discretisation error (i.e. the amount to which
the true solution -at the nodal points- does not satisfy the discrete equation 5)

5For the differential operator L : X → Y and its discrete operator Lh : Xh → Yh, and the
restriction operators Rh : X → Xh and Rh : Y → Yh, we remember the definitions for global
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for (2.28). We consider again the linear problem

∂

∂t
u+ f ′

∂

∂x
u = 0, (2.35)

and its discretisation equation (2.28). We can write (2.29) also as

un+1
i − un

i = −λθ{ 1
2 (un+1

i+1 − un+1
i−1 ) + ( 1

2 − w)(un+1
i+1 − 2un+1

i + un+1
i−1 )}+

−λ(1 − θ){ 1
2 (un

i+1 − un
i−1) + ( 1

2 − w)(un
i+1 − 2un

i + un
i−1)}.

(2.36)
In order to compute the local truncation error, we expand the function u(x, t)
in a Taylor series around the point x = xi, and t? = tn + θ∆t. We denote
u? := u(xi, t?). We obtain

(i) un
i = u? − θ∆t

(

∂u
∂t

)

?
+ 1

2θ
2∆t2

(

∂2u
∂t2

)

?
+ O(∆t3);

(ii) un+1
i = u? + (1 − θ)∆t

(

∂u
∂t

)

?
+ 1

2 (1 − θ)2∆t2
(

∂2u
∂t2

)

?
+ O(∆t3);

(iii) ui−1 = ui − ∆x
(

∂u
∂x

)

i
+ 1

2∆x2
(

∂2u
∂x2

)

i
+ O(∆x3);

(iv) ui+1 = ui + ∆x
(

∂u
∂x

)

i
+ 1

2∆x2
(

∂2u
∂x2

)

i
+ O(∆x3);

(v) 1
2 (ui+1 − ui−1) = +∆x

(

∂u
∂x

)

i
+ O(∆x3);

(vi) (ui+1 − 2ui + ui−1) = ∆x2
(

∂2u
∂x2

)

i
+ O(∆x3);

(vii)
(

∂u
∂x

)n

i
=
(

∂u
∂x

)

?
− θ∆t

(

∂2u
∂x∂t

)

?
+ O(∆t2);

(viii)
(

∂u
∂x

)n+1

i
=
(

∂u
∂x

)

?
+ (1 − θ) ∆t

(

∂2u
∂x∂t

)

?
+ O(∆t2);

(ix) (1 − θ)
(

∂u
∂x

)n

i
+ θ

(

∂u
∂x

)n+1

i
=
(

∂u
∂x

)

?
+ O(∆t2);

(x) (1 − θ)
(

∂2u
∂x2

)n

i
+ θ

(

∂2u
∂x2

)n+1

i
=
(

∂2u
∂x2

)

?
+ O(∆t2).

(2.37)
Substitution of this in (2.36) yields for the left-hand-side

un+1
i − un

i

= ∆t
(

∂u
∂t

)

?
+ 1

2 (1 − 2θ)∆t2
(

∂2u
∂t2

)

?
+ O(∆t3) =

and for the right-hand-side

−λθ
{

∆x
(

∂u
∂x

)n+1

i
+ ( 1

2 − w)∆x2
(

∂2u
∂x2

)n+1

i
+ O(∆x3)

}

−λ(1 − θ)
{

∆x
(

∂u
∂x

)n

i
+ ( 1

2 − w)∆x2
(

∂2u
∂x2

)n

i
+ O(∆x3)

}

= −λ
{

∆x
[(

∂u
∂x

)

?
+ O(∆t2)

]

+ ( 1
2 − w)∆x2

[(

∂2u
∂x2

)

?
+ O(∆t2)

]}

+ O(∆x3) .

discretisation error

|u(xi) − ui| = |(Rhu)i − ui|,

and for the local discretisation error

|(LhRhu − RhLu)i|.
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Making use of the parameter λ = f ′∆t/∆x we get the expression for the trun-
cation error (in equation (2.36) τ?(u) = rhs − lhs)

τ?(u)

∆t
= −

(

∂u

∂t

)

?

− (
1

2
− θ)∆t

(

∂2u

∂t2

)

?

+ O(∆t2)

− f ′
{(

∂u

∂x

)

?

+ O(∆t2) + (
1

2
− w)∆x

(

∂2u

∂x2

)

?

+ O(∆x2)

}

= (θ − 1

2
)∆t

(

∂2u

∂t2

)

?

+ f ′(w − 1

2
)∆x

(

∂2u

∂x2

)

?

+ O(∆x2) + O(∆t2) .

This means that the method is first order consistent in time and space. If θ = 1
2

it is second order in time, and if w = 1
2 it is second order in space.

Differentiating the PDE (2.35) we find that utt = (f ′)2uxx, so that the
principal term in the truncation error can be written as

f ′
[

(θ − 1

2
)f ′∆t+ (w − 1

2
)∆x

]

uxx = (2.38)

f ′∆x

[

(θ − 1

2
)λ+ (w − 1

2
)

]

uxx = εnumuxx . (2.39)

So, we may see the difference scheme as a second order discretisation of a mod-
ified equation (or the equivalent differential equation)

ut = f ′∆x

[

(θ − 1

2
)λ+ (w − 1

2
)

]

uxx − f ′ux . (2.40)

For this reason εnum is also called the numerical diffusion of the difference
scheme.

Remark:
Notice that the stability of the difference scheme as studied in Section 2.4.2
corresponds exactly with a positive numerical diffusion!

The numerical diffusion, however, can cause problems in a convection diffu-
sion problem if the diffusion coefficient in the equation is (much) smaller than
the numerical diffusion. The numerical diffusion may then overrule the ‘physi-
cal’ diffusion, and the discrete solutions are much more smeared than the true
solution of the differential equation.

If we make computations with one of the above schemes, we notice:
(i) the numerical diffusion can have a significant effect;
(ii) the second order scheme (without numerical diffusion) shows an “overshoot”,
i.e in the numerical solutions maxima or minima appear that do not exist in the
true solution;
(iii) unstable scheme are useless.
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Example 2.4.1
We solve the equation

ut = 0.01uxx − ux

on the domain t ≥ 0, x ≥ 0, with initial condition u = 0 at t = 0, and boundary
condition u = 1 at x = 0 (at the “inflow” boundary). We discretise the term
uxx by

uxx ≈ 1

2
(un+1

i+1 − 2un+1
i + un+1

i−1 ) +
1

2
(un

i+1 − 2un
i + un

i−1) .

The other terms are discretised by (2.29), and we solve the problem for different
values of w and θ. In the Figures 2.10 and 2.11 we show the results for t = 1
(and in Figure 2.12 for t = 0.5). We take a fixed ∆x = 0.01 and either ∆t = 0.05
(λ = 0.5) or ∆t = 0.1 (λ = 1.0). For comparison the true solution is also shown,
as well as the solution of the modified equation

ut = (0.01 + εnum)uxx − ux .
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Figure 2.10: Numerical solution of the convection diffusion equation
In all figures the numerical solution is given for t = 1; The true sulution is

given by the solid line; the dashed line represents the solution of the modified
equation. The dotted line is the numerical approximation; obtained with

upwind space discretisation: w = 1.0, ∆x = 0.1.
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Figure 2.11: Numerical solution of the convection diffusion equation
In all figures the numerical solution is given for t = 1; The true sulution is

given by the solid line; the dashed line represents the solution of the modified
equation. The dotted line is the numerical approximation; obtained with

central space discretisation: w = 0.5, ∆x = 0.1.
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Figure 2.12: Numerical solution of the convection diffusion equation
In these figures the numerical solution is given for t = 0.5; The true sulution is
given by the solid line; the dashed line represents the solution of the modified

equation. The dotted line is the numerical approximation; obtained with
central space discretisation (w = 0.5), and forward Euler time-discretisation

(θ = 0), ∆x = 0.1.

Figure 2.13: Non-conservative interpolation
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2.5 Criteria for good discretisation methods

In this section we want to summarise a set of rules and give criteria that can
help us to find good discretisation methods. The last three rules are taken from
[19].

Rule 1. If the number of nodal points (coefficients for the representation)
increases we may expect (and we should require) that the discrete solutions con-
verge to a true solution of the continuous problem.

This property of a discretisation is usually mathematically formulated by an
asymptotic statement: if the mesh-width h of the discretisation is sufficiently
small, the discretisation error (in the solution) (in some norm) should vanish
(at some rate) as h tends to zero.

Rule 2 Often we wish more than only an asymptotic validity. We wish
that a reasonably accurate solution is already obtained for a reasonably fine (=
reasonably coarse) grid. We do not want to construct an extremely fine grid
before we can be sure about the value of the approximation.

This requirement is more difficult to formulate mathematically. Often it
is expressed that we want to obtain a “physically realistic” solution. I.e. one
requires that the discrete solution -already for a coarse grid- shows the same
“global character” as the continuous solution.

For example, if it is known that the continuous solution is positive or mono-
tone, one often requires that also the discrete solution is positive or monotone.
E.g. (i) if concentrations of a chemical are computed, one doesn’t like to find
negative concentrations by approximation errors; (ii) for the stationary solu-
tion of a heat-conduction problem without sources or sinks, one requires that
the temperature as computed does not show local extrema; (iii) if the continu-
ous equation describes a conservation law, one requires that also the computed
quantity is not created or does not disappear in the computation.

For the class of (hyperbolic) problems in conservation form it is relatively
simple to satisfy the requirement that the discrete equations satisfy the conser-
vation law, not only globally, for all Ω, but also locally, for each cell Ωe of the
discretisation of Ω.

A class of (elliptic) problems for which the requirement of “physical rele-
vance” is usually not too hard to satisfy, are those problems that can be formu-
lated as a minimisation problem. For such symmetric elliptic problems a convex
functional exists that is minimised by the solution of the PDE.

Often the functional has a physical meaning (e.g. the energy left in the
system) and, therefore, the minimising element in a subspace satisfies automat-
ically the requirement of physical relevance. Some discretisation methods (finite
element methods) find this minimising approximate solution.

Rule 3: Obeying the conservation law. A conservation law is most
reliably discretised if the discrete system satisfies the law on each sub-element
of the discretisation separately. In order to satisfy the conservation law locally
in a box method, the flux over box-interfaces should be computed consistently.
I.e. the computed flux J(u) · n over the box interface should be the same when
it represents the flow out of the one cell or when it represents the flow into the
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other. The explanation is simple: the amount of the conserved quantity that
leaves the one cell should reappear (exactly) in the other cell.

Example 2.5.1
If we use a three-point, parabolic approximation to compute the flux over the
right boundary of cell Ωi (fig.2.13) then the requirement of conservation is not
fulfilled. If we take the two-point linear approximation the conservation require-
ment is satisfied.

Example 2.5.2
See Section 2.3.1. In equation (2.12) we have (correctly) approximated J(u) by

J(u) = k(xi+ 1
2
)
ui+1 − ui

xi+1 − xi
.

If in equation (2.12) we had approximated k(x) by k(xi), then the discretisation
would not have been conservative.

Rule 4: Trivial (constant) solutions should satisfy the discrete so-
lution.

If a differential operator only contains derivatives of a dependent variable,
then with an approximate solution u also u + constant should be a solution of
the discrete equations. I.e. the constant function should be in the kernel of the
discrete operator. (The row-sum of the linearisation of the discrete operator
should vanish.)

This rule can be seen as an instance for the more general principle: Seeking
a good discretisation for a complex (intricate) operator, it makes sense to find a
discretisation that -at least- satisfies basic requirements for most simplifications
of the problem. (A good method for a problem is also a good method for any
simplification of that problem.)

Rule 5: Guaranteed positivity of the solution. In order to guarantee
the positivity of the solution (in the absence of sources and sinks) for the lin-
earisation of the discrete operator, the diagonal and the off-diagonal elements
of the Jacobian matrix should have different signs.

Explanation: If we write the linearised discrete equation for one space di-
mension as

aiui = ai−1ui−1 + ai+1ui+1 + si (2.41)

the coefficients ai, ai−1 and ai+1 should have the same sign to guarantee that
for all possible ui−1 and ui+1. The same argument is simple to generalise for
two or three dimensions.

For discretisations with a higher order of accuracy (than one) it is difficult
(often impossible) to satisfy this requirement. For higher order discretisations
more non-zero diagonals appear in the linearised operator.

The fifth rule allows an extension for the case that a source term is present.
First, if the source term is neglected the discretisation should satisfy rule 5.
Further, (ii) if there is a source term, it should not disturb the positivity (mono-
tonicity).
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Let s(u) the source term in the equation Lu = s(u) allow the linearisation
s(u) ≈ sC + sL + u, then the discretisation of Lu = s(u) leads to (see sect
(2.3.2))

(ai − sL
i )ui = ai−1ui−1 + ai+1ui+1 + sC

i ,

then sL
i and ai should have opposite signs.



Chapter 3

Finite Element Methods

3.1 Introduction

This chapter is devoted entirely to the subject of Finite Elements. First we
give a number of examples that also will be treated later in applications of the
method. Then we give the theoretical foundation of the method. Subsequently
we discuss how the method can be used in practice and finally we show how
accurate the method is.

Excellent reference books on the subject are, e.g., [2] and [3].

3.2 Examples of boundary value problems

The finite element method is best applied to (partial) differential equations in
variational form. This is best illustrated by means of elliptic equations, which
are always of even order. In this section we discuss a number of typical examples
we will frequently use. Although we will restrict ourselves in these lectures to the
examples, in general we can apply the FEM also to systems of PDEs, nonlinear
equations or problems that involve differentiation in time.

3.2.1 One-dimensional second order

The simplest problem we meet is the homogeneous Dirichlet two-point boundary-
value problem (TPBVP) on an interval Ω = [a, b] ⊂ R:

−(a2ux)x + a1ux + a0u = f,

u(a) = u(b) = 0.

For smooth functions a2, a1, a0 and f , and a2 > 0, it is known that this problem
has a unique solution.

45
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3.2.2 Two-dimensional second order

An example of a two-dimensional, second-order, elliptic equation is the steady-
state convection-diffusion equation

∇ · (D∇ψ) −∇ · (ψv) = f on Ω ⊂ R
2, (3.1)

where ψ(x, y) is the unknown function (for instance the temperature or the
density of some matter), v(x, y) is a (given) velocity field, D(x, y) a diffusion
tensor, and f(x, y) is the source function. Special examples are the diffusion
equation (v = 0), the potential equation (v = 0, D is is the identity matrix)
and the Laplace equation (v = 0, D is is the identity matrix, f = 0). Because
of the special difficulties in the numerical treatment of the convection diffusion
equation, we will discuss it in more detail in a later chapter.

We write the linear two-dimensional second-order equation in its most gen-
eral form:

a11uxx + 2a12uxy + a22uyy + a1ux + a2uy + a0u = f, (3.2)

on a domain Ω ⊂ R
2, where the coefficients aij , ai and f are functions of x and

y.
We assume the equation to be elliptic on Ω, which means the coefficients of

the principle part of (3.2) satisfy

a11ξ
2
1 + 2a12ξ1ξ2 + a22ξ

2
2 6= 0, ∀ξ = (ξ1, ξ2) 6= (0, 0) ∈ Ω. (3.3)

It is easy to see that (3.3) is equivalent with a2
12 < a22a11. The sign of a11

completely determines the sign of the left hand side of (3.3).
Define the coefficient matrix by

A =

(

a11 a12

a12 a22

)

,

then (3.3) is equivalent with

ξTA ξ > 0, ∀ξ 6= 0,

i.e. the matrix A is positive definite.
The elliptic equation (3.2) is defined on an open connected domain Ω ⊂ R

2,
and to obtain a unique solution we have to provide boundary conditions. It
appears that we need one condition along all the boundary Γ := ∂Ω. This
boundary condition can be of the form

u = g on Γ, (3.4)

or, more generally,
∂u

∂n
+ b1

∂u

∂s
+ b0u = h on Γ, (3.5)

where n is the outward unit normal on Γ and s is the vector tangent to the
boundary. Boundary conditions of type (3.4) are called Dirichlet conditions,
boundary conditions of the form (3.5) mixed conditions. The special case when
b0 = b1 = 0 is called Neumann condition.
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Theorem 3.2.1 If the coefficients in equation (3.2) are taken constant, the
principle part

a11uxx + 2a12uxy + a22uyy

can be reduced to the form
∆u

by a linear coordinate transformation.
Proof: First we notice that the principle part of (3.2) can be written as
(∇, A∇u), where we use the notation ∇ = (∂/∂x, ∂/∂y)T . We also define
∇′ = (∂/∂ξ, ∂/∂η)T . The transformation we need is of the form:

(

ξ
η

)

= T

(

x
y

)

.

A direct consequence is (ξ, η) = (x, y) T T . Also easy to check are
(

∂/∂ξ
∂/∂η

)

(ξ, η) = I,

and a similar expression for the other coordinates. Assuming the existence of a
W so that ∇ = W∇′ we see

TT =

(

∂/∂x
∂/∂y

)

(x, y) TT =

(

∂/∂x
∂/∂y

)

(ξ, η)

= W

(

∂/∂ξ
∂/∂η

)

(ξ, η) = W.

Hence ∇ = T T ∇′, and we write the principle part as:

(∇, A∇u) = (T T∇′, ATT∇′u)
= (∇′, TATT∇′u),

by the definition of adjoint. Because A is positive definite we can choose T
such that TAT T = D, with D = diag{α11, α22}, where α11, α22 are positive.
Because both α11 and α22 are positive we can reduce the principle part of the
elliptic equation by a simple scaling to

∆u.

This completes the proof.

A transformation of equation (3.2) along the lines of the above theorem reduces
the equation to

−∆u+ β1ux + β2uy + β0u = f. (3.6)

By an additional transformation of the dependent variable u we can remove the
first order terms from (3.6). A substitution

u(x, y) = v(x, y) · exp{1

2
(β1x+ β2y)}
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reduces (3.6) to

−∆v + [β0 +
1

4
(β2

1 + β2
2)]v = f(x, y) exp{−1

2
(β1x+ β2y)}.

Note that the right hand side of the equation is weighted by an exponential
factor. In case of variable coefficients βj , if the field ~β is rotation free (.e., if

∇× ~β = 0, so that there exists a B(x, y) such that ~β = ∇B ≡ grad B), we use
the transformation

u(x, y) = v(x, y) · exp{1

2

∫

~β · d~x}. (3.7)

Inserting this in (3.6) gives

−∆v + [β0 +
1

4
(β2

1 + β2
2) − 1

2
((β1)x + (β2)y)]v = f · exp {−1

2

∫

~β · d~x}.

For constant β’s this is the same as the previous reduced equation.
These computations show that any uniqueness/existence result we obtain

for −∆u + au = f will also be valid for the general case. To understand the
existence and uniqueness of such problem, in Section 3.3 we will discuss parts
of the theory on elliptic partial differential equations.

3.2.3 Fourth order problems

The results on existence and uniqueness of elliptic problems are also applicable
to fourth order elliptic problems like the biharmonic problem

∆2u = f in Ω,

u = 0 on Γ,

∂u

∂n
= 0 on Γ.

To this form we may reduce the Stokes problem in fluid dynamics and it also
models the displacement of a thin elastic plate, clamped at its boundary, under
a transversal load.

We may consider the one-dimensional homogeneous biharmonic problem on
[a, b] ⊂ R, e.g.,

a2uxxxx − a1uxx + a0u = f,

u(a) = u(b) = u′(a) = u′(b) = 0.

3.3 Abstract Elliptic Theory

A powerful tool to prove the existence and uniqueness of solutions of PDEs of
elliptic type is the (generalised) Theorem of Lax-Milgram 3.3.18, which can be
seen as a variant of the Riesz Representation Theorem 3.3.13. To formulate
this theory properly we first introduce some basic notions. After this we state
the theorem and give a number of applications.
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3.3.1 Introduction to Functional Analysis

Vector-spaces

A linear space or vector space X is a non-empty set of elements, provided with
an addition and a scalar multiplication over a scalar field K. These operations
satisfy (for all x, y ∈ X and scalars α, β ∈ K) the following properties

1. x+ y = y + x,

2. x+ (y + z) = (x+ y) + z,

3. ∃! 0 ∈ X, such that 0 + x = x+ 0 = x,

4. ∀x ∈ X, ∃(−x) ∈ X such that x+ (−x) = 0,

5. α(x+ y) = αx+ αy,

6. (α+ β)x = αx+ βx,

7. (αβ)x = α(βx),

8. 1 · x = x. where 1 ∈ K.

The usual fields are the fields of the real (K = R) or the complex (K = C)
numbers.

A normed linear space is a linear space X provided with a norm ‖ · ‖, i.e.
a mapping X → R, that satisfies for all x ∈ X and every scalar α ∈ K the
properties

1. ‖x‖ ≥ 0,

2. ‖x‖ = 0 ⇐⇒ x = 0,

3. ‖x+ y‖ ≤ ‖x‖ + ‖y‖,

4. ‖αx‖ = |α| ‖x‖.

Property 3 is called the triangle inequality. A semi-norm is a similar mapping
satisfying 1, 3 and 4, but not necessarily 2. Two norms ‖.‖ and ‖.‖′ are called
equivalent if there exist c, C > 0, such that for all u ∈ X

c‖u‖ ≤ ‖u‖′ ≤ C‖u‖.

An inner product space is a linear space X provided with a mapping (·, ·) :
X × X → K (the inner product or scalar product), such that for all x, y ∈ X
and scalars α, β ∈ K

1. (αx+ βy, z) = α(x, z) + β(y, z);

2. (x, y) = (y, x);

3. (x, x) ≥ 0, and (x, x) = 0 ⇐⇒ x = 0.
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Here z denotes the complex conjugate of z ∈ C.
We say that two elements x and y of an inner product space X are perpen-

dicular to each other (notation x ⊥ y) if (x, y) = 0.
Every inner product space is a normed linear space because we can define a

norm:
‖x‖ :=

√

(x, x), ∀x ∈ X.

Quite useful is the Cauchy-Schwarz inequality:

|(x, y)| ≤ ‖x‖‖y‖. (3.8)

Equality holds in (3.8) if and only if x and y are linearly dependent.
With the norm we have introduced a metric or distance ρ(x, y) = ‖x − y‖.

So we can discuss the convergence of Cauchy sequences in X and the closure X.
A Banach space is a normed linear space which is closed in the given norm. This
means that every Cauchy sequence converges in the norm given. Such spaces
for which X = X are called complete. A Hilbert space is a inner product space
which is closed in the norm induced by the inner product. Note that different
norms can cause different closures and that a space can be a Banach space when
equipped with one norm but will not be a Banach space in another norm. A
subset M ⊂ X is said to be dense in X if M = X. The set X is separable
if it contains a countable dense subset, or equivalently if it contains a dense
sequence.

We conclude this section with some elementary results on Banach and Hilbert
spaces.

Lemma 3.3.1 A closed linear subspace Y of a Banach space X is also a Banach
space.

Lemma 3.3.2 Let V be a closed linear subspace of a Hilbert space H and
V 6= H. Then there is a space V ⊥ (the orthogonal complement) with V ⊥ V ⊥

such that each element e ∈ H can be uniquely written as e = u+v, where u ∈ V
and v ∈ V ⊥

Corollary 3.3.3
Let V be a closed linear subspace of a Hilbert space H (V 6= H), then there
exists an element e 6= 0 in H such that for all v ∈ V :

(v, e) = 0.

Corollary 3.3.4
Let V be a closed linear subspace of a Hilbert space H and let u ∈ H. If
P : H → V is the orthogonal projection on V , then Pu ⊥ u− Pu. Further

(Pv,w) = (v, Pw)

for all v, w ∈ H, P 2 = P and ‖P‖ = 1.
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Function spaces

Functions on Ω (mappings Ω → R or Ω → C) can be considered as elements of
linear spaces. Such linear spaces are called function spaces. Here and in what
follows we denote by Ω an open set Ω ⊂ R

d. The boundary of Ω is denoted by
Γ = ∂Ω. This boundary is supposed to be Lipschitz continuous 1.

Before we give examples of function spaces we first introduce the multi-
integer or multi-index notation for higher derivatives of functions in more vari-
ables. Let Ω ⊂ R

d then we will denote the i-th partial derivative Diu of the
function u by:

Diu = (
∂

∂xi
)u, i = 1, 2, . . . d.

Further we introduce a multi-index α = (α1, α2, . . . αd) ∈ N
d and we write

|α| = α1 + α2 + . . .+ αd.

Then the α-th derivative of u is

Dαu = Dα1

1 Dα2

2 · · ·Dαd

d u = (
∂

∂x1
)α1(

∂

∂x2
)α2 · · · ( ∂

∂xd
)αdu. (3.9)

We will now give a number of examples of function spaces as well as norms
and inner products we can define on them.

C0(Ω) is the space of all continuous functions defined on Ω and

Cm(Ω) = {u ∈ C0(Ω); Dαu ∈ C0(Ω), ∀ |α| ≤ m}.

As the elements of these spaces are not necessarily bounded functions we also
introduce the space

Cm(Ω) = {u ∈ Cm(Ω); Dαu are bounded and uniformly continuous on Ω,

∀ 0 ≤ |α| ≤ m}.

This is a Banach space with norm

‖u‖Cm(Ω) = max
|α|≤m

sup
x∈Ω

|Dαu(x)|, (3.10)

in which α is a multi-integer. We will also use the associated semi-norms:

|u|Cm(Ω) = max
|α|=m

sup
x∈Ω

|Dαu(x)|. (3.11)

The space C∞0 (Ω) is the subset of all functions in C∞(Ω) with compact support:
the function values and the derivatives vanish on the boundary. Analogously
we define the subsets Cm

0 (Ω) of Cm(Ω).

1A boundary Γ of a subset Ω of a d-dimensional space is Lipschitz continuous if it is locally
a sufficiently smooth (d − 1)-dimensional manifold. In effect we can define an outward unit
normal n a.e. on Γ. See [27].
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Example 3.3.5
Consider the function f : R

d → R defined by

f(x) =

{

exp( 1
|x|2−1 ) |x| < 1,

0 |x| ≥ 1.

This function is arbitrarily often differentiable and its support is the unit ball
T

d = {x ∈ R
d | |x| ≤ 1}. Then f ∈ C∞0 (Rd).

Further we define the Lebesgue-spaces of integrable functions [30]. First, Lp(Ω),
1 ≤ p <∞, is the set of functions u on Ω, such that |u|p is Lebesgue integrable.
On Lp(Ω) we define the (obvious) norm:

‖u‖Lp(Ω) :=

{∫

Ω

|u(x)|pdx
}

1
p

. (3.12)

As a particular case , L2(Ω) is a Hilbert space with inner product:

(u, v)L2(Ω) :=

∫

Ω

u(x)v(x)dx. (3.13)

By Lp(Ω) with p = ∞ we denote the space L∞(Ω) of essentially bounded
functions, with norm

‖f‖L∞(Ω) := ess sup
x∈Ω

|f | = inf{λ ∈ R | |f(x)| ≤ λ a.e.}. (3.14)

Lemma 3.3.6 C∞0 (Ω) ⊂ L2(Ω) and C∞0 (Ω) is densely embedded in L2(Ω).
Proof: See [1].

Remark:
As C∞0 (Ω) is densely embedded in L2(Ω) we can say that L2(Ω) is the completion
of C∞0 (Ω) in the norm

‖u‖L2(Ω) =

{∫

Ω

|u(x)|2dx
}1/2

.

It is important to note the following inequality due to Hölder.

Lemma 3.3.7
Let p, q be two real numbers such that q ≥ 1, p ≥ 1, 1

q + 1
p = 1 and f ∈ Lp(Ω),

g ∈ Lq(Ω). Then fg ∈ L1(Ω) and

‖fg‖L1(Ω) ≤ ‖f‖Lp(Ω) · ‖g‖Lq(Ω). (3.15)

Proof: [30, page 33].

The Hölder inequality (3.15) is a generalisation of the Cauchy-Schwarz inequal-
ity (3.8).
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Linear operators and functionals

Let X and Y be normed linear spaces over a field K. A linear operator T :
X → Y is a mapping such that T (u + v) = T (u) + T (v) and T (λu) = λT (u)
for all u, v ∈ X and scalar λ ∈ K. A conjugate-linear operator S : X → Y is a
mapping such that S(u+ v) = S(u) + S(v) and S(λu) = λ̄S(u).

The norm of a linear operator T is defined by

‖T‖ = ‖T‖Y←X := sup
x∈X, x6=0

‖Tx‖Y

‖x‖X
. (3.16)

A linear operator is bounded iff ‖T‖ <∞.

Lemma 3.3.8 A linear operator T is continuous iff it is bounded.
Proof:
Assume T is bounded: ‖T‖ <∞. Let ε > 0, then choose δ < ε

‖T‖ . So for all x, y

such that ‖x−y‖ < δ we have (because T is linear): ‖Tx−Ty‖ = ‖T (x−y)‖ ≤
‖T‖‖x− y‖ < ‖T‖ · ε

‖T‖ = ε. So T is continuous.

Assume T is continuous, so in 0 we have: ∀ε > 0 ∃δ > 0 : ∀x : ‖x‖ < δ ⇒
‖Tx‖ < ε. Take an y and consider y∗ = δ

2 · y
‖y‖ . We have ‖y∗‖ = δ/2 < δ, so

‖Ty∗‖ = δ
2 · ‖Ty‖

‖y‖ < ε, so ‖Ty‖
‖y‖ < 2ε

δ , or ‖T‖ ≤ 2ε
δ < ∞, which means that T is

bounded.

Definition 3.3.9 A bilinear operator F : X1 × X2 → Y is an operator that
is linear in each of its arguments. A sesquilinear operator is a mapping F :
X × X → Y that is linear in its first argument and conjugate-linear in its
second.

A bilinear operator F : X1 ×X2 → Y is called bounded with bound ‖F‖ if

‖F‖ := sup
u,v 6=0

‖F (u, v)‖Y

‖u‖X1
‖v‖X2

<∞.

A bilinear operator F : X ×X → C is called symmetric if F (u, v) = F (v, u).

Remark:
An inner product is an example of a sesquilinear operator. In fact every strictly
positive, symmetric, sesquilinear operator can be considered as an inner prod-
uct.

A special class of operators are functionals, i.e. operators that map elements of
a Banach space to the field, K, of real or complex numbers. So we obtain the
following definitions.

Definition 3.3.10
(1) A linear functional T is a linear operator T : X → K.
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(2) A bilinear functional F is a bilinear operator F : X1 ×X2 → K.
(3) A sesquilinear functional F is a sesquilinear operator F : X ×X → K.

Examples: Functionals

• Let X = C(Ω) and f ∈ X, then for every x0 ∈ Ω is T : f → T (f) = f(x0)
a bounded linear functional.

• Let X = Lp(Ω), f ∈ X and w ∈ C∞0 (Ω) a given function. Then

f 7→ T (f) =

∫

Ω

f(x)w(x)dx (3.17)

is a bounded linear functional. The function w is called the weighting
function.

• Equation (3.17) also defines a bounded linear functional if w is an element
in Lq(Ω) under condition that p and q are conjugate exponents, that is
p, q ≥ 1 and

1

p
+

1

q
= 1.

This follows from Hölders inequality (3.15).

Dual spaces

Definition 3.3.11 The space of all bounded linear functionals X → K is called
the dual space X ′ of X. It is equipped with the norm

‖x′‖X′ := sup
x∈X, x6=0

|x′(x)|
‖x‖X

(3.18)

We sometimes write < x′, x > instead of x′(x) and we will call < ., . > the
duality paring between X and X ′.

We want to characterise the dual of some spaces. First the following elemen-
tary theorem.

Theorem 3.3.12 The dual space X ′ of a normed linear space X is a Banach
space.
Proof: Let x′n be a Cauchy-sequence in X ′. This means that

∀ε > 0 ∃N ≥ 0 ∀n,m ≥ N : ‖x′n − x′m‖X′ < ε,

or
∀ε > 0 ∃N ≥ 0 ∀n,m ≥ N : ∀x ∈ X |x′n(x) − x′m(x)| < ε.

Now R and C are complete, so for every x the sequence x′n(x) has a limit, say
x′(x). So,

∀ε > 0 ∃N ≥ 0 ∀n ≥ N : ∀x ∈ X |x′n(x) − x′(x)| < ε.
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Now define the function x′ as the function that maps every x to the number
x′(x) then we see

∀ε > 0 ∃N ≥ 0 ∀n ≥ N : ‖x′n − x′‖X′ < ε,

or rather that the Cauchy-sequence x′n has limit x′.

To characterise the dual of a Hilbert space we have the following important
theorem. It says that the dual space can be identified with the space itself.

Theorem 3.3.13 (The Riesz Representation Theorem)
Let u : X → K be a bounded linear functional on a Hilbert space X, then there
exists one and only one yu ∈ X such that 2

u(x) = (x, yu)X ∀x ∈ X. (3.19)

Proof: Consider the null space N(u) = {x|u(x) = 0}. Due to continuity of
u and completeness of X, this is a closed linear subspace of X. Let P be the
projection of X to N(u). Assuming u 6= 0 (or we could take yu = 0) there is
a y0 such that u(y0) 6= 0. Define y1 = y0 − Py0, then y1 ⊥ N(u). Further

u(y1) = u(y0) − u(Py0) = u(y0) 6= 0. Normalisation yields y2 =
(

1
u(y1)

)

y1, so

that u(y2) =
(

1
u(y1)

)

u(y1) = 1 and still y2 ⊥ N(u). Now define yu := y2

‖y2‖2
.

Take x ∈ X arbitrarily, then z := x − u(x)y2 ∈ N(u), because u(z) =
u(x) − u(x)u(y2) = 0. So

(z, y2) = 0

⇐⇒ (x− u(x)y2, y2) = 0

⇐⇒ (x, y2) = u(x)(y2, y2)

⇐⇒ u(x) =
(x, y2)

(y2, y2)
= (x,

y2
‖y2‖2

) = (x, yu).

Uniqueness is clear, since (x, z) = 0 for all x implies z = 0.

Corollary 3.3.14
The norms of u ∈ X ′ and z ∈ X with u(x) = (x, z)X are identical:

‖u‖X′ = sup
x∈X

|u(x)|
‖x‖X

= sup
x∈X

|(x, z)|X
‖x‖X

= ‖z‖X ,

so the mapping R : X ′ → X of u to its representation Ru = z is a linear bijective
isomorphism.

2The converse is trivial: let uy(x) = (x, y), then uy ∈ X′.
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The dual of a Lp-space is a Lq-space under some conditions, as is shown by the
following theorem.

Theorem 3.3.15 (Riesz for Lp(Ω))
Lq(Ω) is isometric isomorph to the dual space of Lp(Ω) if p, q ≥ 1 and 1

p + 1
q = 1.

If p = 1 then q = ∞, but L∞ can not be associated with the dual of L1.
Proof: See [1, page 40,41]

With the notion of the dual in mind we can give a weaker definition for conver-
gence. For contrast we also state the usual definition.

Definition 3.3.16 A sequence {un}n in X is called (strongly) convergent to
u ∈ X if

lim
n→∞

‖un − u‖X = 0.

A sequence {un}n in X is called weakly convergent to u ∈ X if

lim
n→∞

ϕ(un) = ϕ(u) ∀ϕ ∈ X ′.

As this defines the weakest topology which renders all elements of the dual
continuous, we call it the weak topology.

Strong convergence implies weak convergence, but the converse is not true
(cf. [22]).

Remark:
If X is a Hilbert space we have by the Riesz Representation Theorem 3.3.13
that weak convergence is equivalent to

lim
n→∞

(un, v)X = (u, v)X , ∀v ∈ X.

3.3.2 The Generalised Lax-Milgram Theorem

Definition 3.3.17
(1) A symmetric bilinear (sesquilinear) functional F : X × X → K is called
coercive (or strictly positive) if there exists a γ > 0 such that for all x ∈ X

|F (x, x)| ≥ γ‖x‖2. (3.20)

(2) A non-symmetric bilinear functional F : X1×X2 → K is called sub-coercive
if there exists a γ > 0 such that:

∀x ∈ X1 ∃z ∈ X2, z 6= 0 |F (x, z)| ≥ γ‖x‖X1
‖z‖X2

(3.21)

and
∀z ∈ X2, z 6= 0 ∃x ∈ X1 |F (x, z)| > 0. (3.22)
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It is easy to see that a coercive functional also satisfies the properties (3.21) and
(3.22) of a sub-coercive functional.

Condition (3.22) is equivalent to ∀z ∈ X2, z 6= 0 F (·, z) 6≡ 0. Condition
(3.21) implies that ∃γ > 0 such that for all x ∈ X1:

sup
z∈X2

|F (x, z)|
‖z‖X2

≥ γ‖x‖X1
. (3.23)

This means that we can find a largest possible γ as:

γ := inf
x∈X1

sup
z∈X2

|F (x, z)|
‖x‖ ‖z‖ . (3.24)

We now come to the central theorem of this chapter: the Lax-Milgram Theorem.
It discusses, in an abstract setting, the existence as well as the uniqueness and
boundedness of solutions to elliptic PDEs. We will state it in a more generalised
version than usually, namely for the general, asymmetric instead of only the
symmetric case. The treatment is such that we can easily generalise it for
discrete equations later.

Theorem 3.3.18 (Generalised Lax-Milgram)
Let X1 and X2 be two Hilbert spaces and let F : X1 ×X2 → K be a bounded,
sub-coercive, bilinear functional. Let f ∈ X ′2, then there exists one and only
one u0 ∈ X1 such that ∀v ∈ X2,

F (u0, v) = f(v). (3.25)

Further the problem is stable: small changes in the data f cause only small
changes in the solution u0:

‖u0‖X1
≤ 1

γ
‖f‖X′

2
.

Proof: We give the proof in six parts.
(1) As F is bounded we have a bounded linear functional F (u, ·) : X2 → K for
each u ∈ X1. Now, according to the Riesz Theorem for every u ∈ X1 a unique
element z ∈ X2 exists such that F (u, ·) = (·, z)X2

. This defines an operator
R : X1 → X2 such that

F (u, ·) = (·, Ru)X2
. (3.26)

(2) The operator R is linear, due to the bi-linearity of F .

(3) To prove that R is a surjection we first prove that R(X1) is a closed subspace
of X2. We first note that:

‖Ru‖X2
= sup

v∈X2

|(Ru, v)|
‖v‖X2

= sup
v∈X2

|F (u, v)|
‖v‖X2

.
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(a) An easy consequence is that R is bounded, and so continuous:

‖R‖X2←X1
= sup

u∈X1

‖Ru‖X2

‖u‖X1

= sup
u∈X1

1

‖u‖ sup
v∈X2

|F (u, v)|
‖v‖X2

= ‖F‖.

(b) F is sub-coercive, so we get using (3.21) or (3.23):

‖Ru‖ = sup
v

|F (u, v)|
‖v‖ ≥ γ‖u‖. (3.27)

(c) Now we show that R(X1) is closed or that every accumulation
point of R(X1) is an element of it. So let v be an accumulation
point of R(X1), then it is the limit point of some Cauchy-sequence
{Run}. Due to (3.27) we know ‖Rum − Run‖X2

≥ γ‖um − un‖, so
{un} is a Cauchy sequence in X1. Because X1 is a Banach space
∃!u ∈ X1, u = lim un and so ∃!Ru ∈ X2 as limit of {Run}. Clearly
v = Ru, by continuity of R, so v ∈ R(X1). Hence it follows that
R(X1) = R(X1) ⊂ X2.

(4) We prove that the range of R actually is all of X2. To do so we first assume
that R(X1) 6= X2. This means there exists a v0 6= 0 ∈ X2 such that v0 ⊥ R(X1),
or (v0, Ru)X2

= 0 for all u ∈ X1 (by Corollary 3.3.3). By (3.26) F (·, v0) ≡ 0,
which contradicts the sub-coercivity of F . This implies R(X1) = X2. Now we
have proved that R is surjective. So we obtain ∀v ∈ X2 ∃u ∈ X1 Ru = v
which means ∃R−1 : X2 → X1.

(5) In fact R−1 is the solution operator for the equation (3.25). This is seen as
follows. If we take a right-hand-side of our equation f ∈ X ′2, then according to
the Riesz theorem ∃!v0 (v, v0) = f(v), ∀v ∈ X2. If we define u0 = R−1v0 then

f(·) = (·, v0) = (·, Ru0) = F (u0, ·),

so u0 is the solution of equation (3.25).

(6) Finally we prove the stability of the problem, using (3.27): γ‖u0‖ ≤ ‖Ru0‖ =
‖v0‖ = ‖f‖, or:

‖u0‖ ≤ 1

γ
‖f‖.

Uniqueness is a direct consequence of this stability.

3.3.3 Distributions and Sobolev Spaces

Solutions to (weak formulations of) elliptic PDEs are often found among special
classes of functions: the so called Sobolev spaces. In this section we will discuss
these spaces and some of the properties of their elements. Because it involves
weak formulations of PDEs we first treat the subject of distributions.
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Distributions

We define the function space D(Ω) as the set of functions C∞0 (Ω) supplied with
the following topology. We say that a sequence ϕn ∈ D(Ω) converges to ϕ ∈
D(Ω), notation

lim
n→∞

ϕn = ϕ,

if and only if there exists a compact subset K ⊂ Ω such that for every function
ϕn we have supp(ϕn) ⊂ K and such that for all |α| ≥ 0

Dαϕn → Dαϕ.

So D(Ω) is the same set of functions as C∞0 (Ω), but it has more structure.

Definition 3.3.19 A distribution (or generalised function) on Ω is a bounded
linear functional on D(Ω). The space of distributions is denoted by D′(Ω), being
the dual of D(Ω).

Example 3.3.20 (Generalised functions)

A function f ∈ Lp(Ω) defines3 a distribution Tf : D(Ω) → R by:

Tf (ϕ) =

∫

Ω

f(x)ϕ(x)dx, ∀ϕ ∈ D(Ω).

In this way we can identify each Lp-function with a distribution from D′(Ω).
Sometimes we write Tf (ϕ) =< f, ϕ >, in which < ·, · > is the duality paring
between D(Ω) and D′(Ω).

Example 3.3.21
Let x0 ∈ Ω and define Tx0

: D(Ω) → R as

Tx0
(ϕ) = ϕ(x0).

This generalised function is called the Dirac delta function associated with point
x0 and it is also called δx0

. We write < δx0
, ϕ > or

∫

Ω

δx0
(x)ϕ(x)dx.

However, the latter is rather formal because it has nothing to do with an actual
integration.

3In fact we can extend the class of such functions to the locally integrable functons

L1
loc(Ω) =

{

f | f∈L1(K) ∀compactK ⊂ Ω
}

.
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The topology on D′(Ω) is defined as follows. With Tn, T ∈ D′(Ω) we say that

lim
n→∞

Tn = T

when:
lim

n→∞
Tn(ϕ) = T (ϕ), ∀ϕ ∈ D(Ω).

Because of the analogy with weak convergence we will call this the weak topology.

Definition 3.3.22 The distributional or generalised derivative DαT of a distri-
bution T is defined by

DαT (ϕ) = (−1)|α|T (Dαϕ), ∀ϕ ∈ D(Ω).

If we have a differentiable f , say f ∈ C1(Ω), then we may consider the dis-
tribution Tf associated with f , and the distribution TDf associated with the
derivative Df of f . Now we see, for any ϕ ∈ D(Ω)

TDf (ϕ) =

∫

Ω

Df(x)ϕ(x)dx = −
∫

Ω

f(x)Dϕ(x)dx = −Tf (Dϕ) = DTf (ϕ).

This means that, for differentiable functions, the generalised derivative of the
(generalised) function is the generalised function of the derivative. However, for
all (generalised) functions all generalised derivatives (always) exist.

Remark:
The mapping Dα : D′(Ω) → D′(Ω) is continuous because if

lim
n→∞

Tn = T in D′(Ω),

then ∀ϕ ∈ D(Ω):

DαTn(ϕ) = (−1)|α|Tn(Dαϕ) → (−1)|α|T (Dαϕ) = DαT (ϕ).

Example 3.3.23 (Heaviside and delta-function)
We consider the Heaviside function H(x), which yields 0 if x < 0 and 1 if x ≥ 0.
Of course, this is not an L2-function, (if Ω = R) but it is a distribution:

TH(ϕ) =

∫

R

H(x)ϕ(x) dx =

∫ ∞

0

ϕ(x) dx,

which is clearly bounded as ϕ ∈ C∞0 (Ω). We compute the derivative DTH :

DTH(ϕ) = −TH(Dϕ) = −
∫

R

H(x)Dϕ(x)dx

= −
∫ ∞

0

Dϕ(x)dx = ϕ(0) = Tδ0
(ϕ).

This means DTH = Tδ0
, i.e. the generalised derivative of the Heaviside-function

is the Dirac delta-function.
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Sobolev spaces

In the theory of elliptic PDEs, functions that, together with their (generalised)
derivatives, are elements of L2(Ω), play an important role. Therefore, we intro-
duce the so called Sobolev spaces.

Definition 3.3.24 The Sobolev space W n,p(Ω), p ≥ 1, n = 0, 1, . . . , is the
space of all Lp(Ω)-functions u for which all distributional derivatives Dαu, |α| ≤
n are also elements of Lp(Ω):

Wn,p(Ω) = {u ∈ Lp(Ω)|Dαu ∈ Lp(Ω), ∀ |α| ≤ n}.

This is a Banach space if we provide it with the norm:

‖u‖n,p,Ω :=







∑

|α|≤n

‖Dαu‖p
Lp(Ω)







1
p

. (3.28)

In case of p = 2 we denote the space W n,2(Ω) as Hn(Ω). Supplied with the
inner product

(u, v)W n,2(Ω) =
∑

|α|≤n

(Dαu,Dαv)L2(Ω), (3.29)

these Sobolev spaces are Hilbert spaces. We write ‖u‖n,Ω := ‖u‖n,2,Ω, or even
‖u‖n := ‖u‖n,2,Ω.

Another way of saying that a functional u is an element of W n,p(Ω) is that they
are Lp-functions uα, 0 ≤ |α| ≤ n such that

∫

Ω

uα(x) ϕ(x) dx = (−1)|α|
∫

Ω

u(x) Dαϕ(x) dx,

for all ϕ ∈ D(Ω).

Example 3.3.25
The definition is not trivial. For instance the Heaviside function on an interval
Ω = [a, b], −∞ < a < 0 < b < ∞ shows that u ∈ Lp(Ω) does not imply
Du ∈ Lp(Ω).

Example 3.3.26
Consider the basic hat function on the interval Ω = [0, 1]:

u(x) =

{

2x for x ∈ [0, 1
2 )

2 − 2x for x ∈ [ 12 , 1].

}

.

This function is in L2(Ω). To look if it is also in H1(Ω) we must find an L2(Ω)-
function du that is the derivative of u in distributional sense:

∫

Ω
du(x) ϕ(x) dx =

−
∫

Ω
u(x) Dϕ(x) dx, for all ϕ ∈ D(Ω). Now take the function du such that

du = ∂u
∂x , except for x = 0, 1

2 , 1 where we define it (arbitrarily) zero. This
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function du is a simple function, so it is in L2, so it remains to check if this is
the generalised derivative of u.

∫

Ω

du(x) ϕ(x) dx =

∫ 1
2

0

du(x) ϕ(x) dx+

∫ 1

1
2

du(x) ϕ(x) dx

=

∫ 1
2

0

∂u

∂x
ϕ(x) dx+

∫ 1

1
2

∂u

∂x
ϕ(x) dx

=

{

lim
x↑ 1

2

u(x) ϕ(x) − lim
x↓0

u(x)ϕ(x)

}

−
∫ 1

2

0

u(x)
∂ϕ

∂x
(x) dx

+

{

lim
x↑1

u(x)ϕ(x)− lim
x↓ 1

2

u(x) ϕ(x)

}

−
∫ 1

1
2

u(x)
∂ϕ

∂x
(x) dx

= −
∫ 1

2

0

u(x)
∂ϕ

∂x
(x) dx−

∫ 1

1
2

u(x)
∂ϕ

∂x
(x) dx

= −
∫

Ω

u(x) Dϕ(x) dx,

where we have used the fact that

lim
x↑ 1

2

u(x) = lim
x↓ 1

2

u(x)

and that ϕ ∈ D([0, 1]), so ϕ(0) = ϕ(1) = 0.

The proof shows that it is essential that u is continuous in the point 1
2 , where

its (generalised) derivative is discontinuous. This raises the question under
which conditions elements of Sobolev spaces are continuous or even continuously
differentiable.4 This is the content of the next theorem.

Theorem 3.3.27 (Sobolev’s Embedding Theorem)
Let Ω ⊂ R

d be a bounded open region and let n > k+ d/p, then every element
from Wn,p(Ω) is k times continuously differentiable. Or:

n > k + d/p⇒Wn,p(Ω) ⊂ Ck(Ω). (3.30)

Proof: [30, page 174]

Example 3.3.28
Note that the dimension d plays a role. So for d = 1 the functions of H1(Ω)
are continuous, but for d = 2 they do not have to be and indeed it should be

4An element u of a Sobolev space is continuous, bounded or whatever, if there is an
equivalent function u′ such that this function has the property.
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noted that the Sobolev’s inequality (3.30) is sharp: there are functions in H1(Ω)
(d = 2) that are not continuous. An example of this is

f(x, y) = log | log(x2 + y2)| on B 1
2
(0, 0).

It is not continuous in (x, y) = (0, 0), but it is not difficult to prove that ‖f‖L2 ,
‖∂f

∂x‖L2 and ‖∂f
∂y ‖L2 do exist.

Example 3.3.29
Remember that, according to Lemma 3.3.6, we have that C∞0 (Ω) is dense in
L2(Ω). Unfortunately, for a true subset Ω ⊂ R

d, the space C∞0 (Ω) is not dense
in Wn,p(Ω). For instance, consider H1(Ω). Assuming that C∞0 (Ω) is not dense
we compute the orthogonal complement:

0 = (u, ϕ)H1 = (u, ϕ)L2 + (Du,Dϕ)L2 = (u, ϕ)L2 − (∆u, ϕ)L2 = (u− ∆u, ϕ)L2 .

So the orthogonal complement of C∞0 (Ω) consists of those u that satisfy u−∆u =
0 distributionally. A non trivial example is the function e(ξ,x), with |ξ| = 1. This
function is in H1(Ω), but not in H1

0 (Ω) (in terms of the trace operator in the
next section: the trace on Γ is not zero). Luckily however, C∞(Ω) is dense
in Wn,p(Ω) under the Sobolev norm. This implies that we might introduce
Wn,p(Ω) as the closure of C∞(Ω) in the norm ‖ · ‖n,p,Ω.

We now give the following definition.

Definition 3.3.30 Wn,p
0 (Ω) is the closure of C∞0 (Ω) in the norm ‖ · ‖n,p,Ω. In

analogy to Wn,2(Ω) = Hn(Ω) we write also Wn,2
0 (Ω) = Hn

0 (Ω).

Corollary 3.3.31
D(Ω) is dense in Hn

0 (Ω).

From Lemma 3.3.6 we see that H0
0 (Ω) = H0(Ω). For n ≥ 1 however Hn

0 (Ω) 6=
Hn(Ω), as is shown by Example 3.3.29.

We are interested in the dual spaces of the Sobolev spaces. First a definition.

Theorem 3.3.32 Let p 6= ∞ and 1
p + 1

q = 1, then

(W p,m
0 (Ω))′ ∼= W q,−m(Ω).

Proof: [1, page 48]

For the Sobolev spaces with p = q = 2 we write H−m = (Hm
0 )′, m > 0. In

particular we use H−1(Ω) := W 2,−1(Ω), the dual of H1
0 (Ω).
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Trace operator

For a function f ∈ C∞(Ω) we define the trace γ0f as γ0f = f |Γ i.e. the restriction
of f to Γ, the boundary of the domain Ω. 5

If Ω is a bounded area and has a Lipschitz continuous boundary then one
can show that the linear mapping

γ0 : C∞(Ω) → L2(Γ)

is bounded in the sense that

‖γ0u‖L2(Γ) ≤ C‖u‖H1(Ω).

So one can extend the operator γ0 to a bounded linear operator

γ0 : H1(Ω) → L2(Γ).

H1
0 (Ω) is exactly the kernel of γ0:

H1
0 (Ω) = {u ∈ H1(Ω) : γ0u = 0}.

We also define the trace operator γ1:

γ1u :=
∂u

∂n
=

d
∑

i=1

γ0

(

∂u

∂xi

)

ni.

3.3.4 The Poincaré-Friedrichs Inequality.

To prove the coercivity of a bilinear functional one can sometimes use the fol-
lowing lemma.

Lemma 3.3.33 (Poincaré’s Lemma)
If Ω ⊂ R

d is a bounded and open set then for all v ∈ H1
0 (Ω)

∫

Ω

|v|2dx ≤ C(Ω)

∫

Ω

|∇v|dx. (3.31)

Proof: It is sufficient to prove the statement for functions in D(Ω) as D(Ω) is
dense in H1

0 (Ω).
We enclose Ω in a rectangle S:

Ω ⊂ S = [a1, b1] × · · · × [ad, bd].

We extend u to S by setting u(x) = 0 whenever x ∈ S \ Ω.
As u ∈ D(Ω) we have u ∈ D(S) and for every i = 1, . . . , d:

u(x) =

∫ xi

ai

∂u

∂xi
(x1, . . . , xi−1, t, xi+1, . . . , xd), dt

5For more on trace operators we refer to [1, page 113].
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so we get by the Cauchy-Schwarz-Lemma (3.8):

|u(x)|2 ≤
∫ xi

ai

12dt ·
∫ xi

ai

| ∂u
∂xi

(. . . , t, . . .)|2dt

≤ (bi − ai) ·
∫ bi

ai

| ∂u
∂xi

(. . . , t, . . .)|2dt

Now integrate over S:

∫ b1

a1

· · ·
∫ bd

ad

|u(x)|2dx ≤ (bi − ai)

∫ b1

a1

· · ·
∫ bd

ad

∫ bi

ai

| ∂u
∂xi

(. . . , t, . . .)|2 dx dt

= (bi − ai)
2

∫ b1

a1

· · ·
∫ bd

ad

| ∂u
∂xi

(. . . , t, . . .)|2dx.

So we get for every i = 1, 2, . . . , n,
∫

Ω

|u(x)|2dx ≤ (bi − ai)
2

∫

Ω

|∇iu|2dx

and so
∫

Ω

|u(x)|2dx ≤ C(Ω)

∫

Ω

|∇u|2dx.

Corollary 3.3.34
When the set Ω is bounded, the semi-norm | · |1,Ω is a norm over the space
H1

0 (Ω) equivalent to the norm ‖ · ‖1,Ω.

The inequality (3.31) is also known as the Poincaré-Friedrichs inequality.

3.3.5 Variational formulations for differential equations

A Dirichlet problem

Let Ω ⊂ R
d be an open bounded area with Lipschitz continuous boundary Γ.

Let u ∈ C2(Ω) be a solution of the Poisson problem with homogeneous Dirichlet
boundary conditions

−∆u = f in Ω, (3.32)

u = 0 on Γ, (3.33)

then, by partial integration, for every ϕ ∈ C∞(Ω)
∫

Ω

ϕf dx = −
∫

Ω

ϕ∆u dx = −
∫

Ω

ϕ
∑

i

∇i∇iu dx (3.34)

=
∑

i

∫

Ω

∇iϕ∇iu dx−
∫

Γ

ϕ(∇u · n) ds, (3.35)
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where n is the outward unit normal. For all ϕ ∈ D(Ω) we get
∫

Ω

ϕfdx =
∑

i

∫

Ω

∇iϕ∇iu dx.

This leads to the following formulation of a problem similar to (3.32): find a u
with u = 0 on Γ such that

∫

Ω

∇iϕ∇iu dx =

∫

Ω

ϕfdx, ∀ϕ ∈ C∞0 (Ω). (3.36)

We see that a solution of (3.32) is also a solution of (3.36).
Equation (3.36) is of the following form: given the bilinear form B : S×V →

R defined by

B(u, ϕ) =
∑

i

∫

Ω

∇iϕ∇iu dx

and the linear form l : V → R, defined by

l(ϕ) =

∫

Ω

ϕf dx,

find a u ∈ S such that

B(u, ϕ) = l(ϕ) for all ϕ ∈ V. (3.37)

In our case (3.36) we see that B : H1
0 (Ω)×H1

0 (Ω) → R is a symmetrical bilinear
form defined on H1

0 (Ω), and from Poincaré’s Lemma 3.3.33 we get:

B(u, u) =

∫

Ω

|∇u|2 dx ≥ γ ‖u‖1,Ω,

which tells us B : H1
0 (Ω) × H1

0 (Ω) → R is coercive. Now it is an immediate
consequence of the generalised theorem of Lax-Milgram 3.3.18 that for every
f ∈ H−1(Ω) there exists a unique solution u ∈ H1

0 (Ω) to (3.36) for which

‖u‖H1
0
(Ω) ≤

1

γ
‖f‖H−1(Ω).

If (3.32) has a solution, we can find this solution by solving (3.36).
It is clear that there will be cases where (3.36) has a solution but (3.32)

hasn’t: for instance when u ∈ H1
0 (Ω) but u 6∈ C2

0(Ω). Obviously we have
generalised the meaning of (3.32). Hence we will call the solution u ∈ H1

0 (Ω)
the weak solution.

More general problems

Let u ∈ C2(Ω) be a solution to

−∆u+ cu = f in Ω, (3.38)

un + βu = h on Γ, (3.39)
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then for every ϕ ∈ C∞(Ω):

∫

Ω

ϕfdx = −
∫

Ω

∆u ϕ dx+

∫

Ω

cϕ u dx

=

∫

Ω

∇iϕ∇iu dx+

∫

Ω

cϕ u dx−
∫

Γ

ϕ∇iu ni dx

=

∫

Ω

[∇iϕ∇iu+ c ϕu ] dx−
∫

Γ

ϕ(h− βu) ds

=

∫

Ω

[∇iϕ∇iu+ c ϕu ] dx+

∫

Γ

βϕu ds−
∫

Γ

ϕh ds.

This leads to the problem: find u ∈ S such that

B(u, ϕ) = l(ϕ), ∀ϕ ∈ V,

where

B(u, ϕ) =

∫

Ω

∇iϕ∇iu dx+

∫

Ω

c ϕ u dx+

∫

Γ

β ϕ u ds

and

l(ϕ) =

∫

Ω

ϕ f dx+

∫

Γ

ϕ h ds.

The bilinear operator B : H1(Ω)×H1(Ω) → R is bounded and symmetric, and
it is coercive if c ≥ 0, β ≥ 0, except when c = 0 and β = 0:

|B(ϕ, ϕ)| =

∣

∣

∣

∣

∫

Ω

|∇ϕ|2 dx+ c

∫

Ω

|ϕ|2 dx+ β

∫

Γ

|ϕ|2 ds
∣

∣

∣

∣

=

∫

Ω

|∇ϕ|2 dx+ c

∫

Ω

|ϕ|2 dx+ β

∫

Γ

|ϕ|2 ds

≥ C
{

|ϕ|2 + |∇ϕ|2
}

= C‖ϕ‖1,Ω, ∀ϕ ∈ H1(Ω),

for some C > 0, and also

|B(ϕ, ϕ)| ≤ C
{

|ϕ|2 + |∇ϕ|2
}

= C‖ϕ‖1,Ω, ∀ϕ ∈ H1(Ω),

for some C > 0. From the Lax-Milgram Theorem we conclude that there exists
one and only one solution in H1(Ω). So, if the solution to (3.38) with boundary
condition (3.39) exists, we can find it by solving the weak problem.

Symmetric problems and minimisation of quadratic func-

tionals

In the equations (3.32) and (3.38), where B(u, v) is a symmetric, coercive bilin-
ear form, the functional J(ϕ) = B(ϕ, ϕ) can be considered as a quadratic form.
B(ϕ, ϕ) ≥ 0 and B(ϕ, ϕ) = 0 if and only if ϕ = 0. For problem (3.32) this
functional is defined on X = H1

0 (Ω), for problem (3.38) on X = H1(Ω).
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Theorem 3.3.35 Under the circumstances that B(ϕ, ϕ) is a quadratic form,
we can also characterise the solution of the problem: find u ∈ X such that

B(u, ϕ) = l(ϕ) for all ϕ ∈ X

as: find u ∈ X which minimises the quadratic functional

J(u) =
1

2
B(u, u) − l(u).

Proof:

J(u+ ϕ) =
1

2
B(u+ ϕ, u+ ϕ) − l(u+ ϕ)

=
1

2
B(u, u) − l(u) +B(u, ϕ) − l(ϕ) +

1

2
B(ϕ, ϕ).

For a u that satisfies B(u, ϕ) = l(ϕ) we see that

J(u+ ϕ) = J(u) +
1

2
B(ϕ, ϕ) ≥ J(u).

Obviously, there is one and only one u ∈ X that minimises J(·).

Asymmetric problems

A quite different situation exists for problems with first derivatives and/or more
general boundary values:

{

−∆u+ bj∇ju+ cu = f on Ω,
un + αus + βu = h on Γ.

(3.40)

Then for ϕ ∈ C∞(Ω)

∫

Ω

ϕfdx =

∫

Ω

[∇iϕ∇iu+ ϕ bj∇ju+ ϕ c u] dx−
∫

Γ

ϕ(h− βu− αus)ds.

This again can be written in the form

B(u, ϕ) = l(ϕ), ∀ϕ ∈ V,

but in this case the form B(u, ϕ) is not symmetric, due to the first order deriva-
tive. To prove that the conditions of Lax-Milgram are satisfied is a bit more
hard to do. As we have seen in Theorem 3.2.1 we can get rid of the first order
terms by a transformation of the variables. This helps us to prove existence
and uniqueness (as in Section 3.3.5), but for numerical purposes the transfor-
mation is of no use. We will see an example of this in the chapter concerning
the convection-diffusion equation.
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3.4 The technique of the finite element method

In this section we treat the practical aspects of the finite element method. We
give a simple error estimate and we discuss the choice of basic functions (in
one or two dimensions) and the construction of the discrete equations for an
example problem. We will also discuss the use of isoparametric elements for
the case of curved boundaries. The techniques explained here for the one and
two-dimensional case can readily be generalised to three space dimensions.

3.4.1 The principles

The basic principle of the finite element method is the following. It is a Galerkin
method applied to the variational problem: find u ∈ S such that

B(u, ϕ) = l(ϕ), ∀ ϕ ∈ V, (3.41)

in which S and V are (infinitely dimensional) vector spaces. Usually we have a
conforming finite element discretisation for which the discrete system of equa-
tions read: find uh ∈ Sh such that

B(uh, ϕh) = l(ϕh), ∀ ϕh ∈ Vh, (3.42)

where Sh and Vh are finite dimensional subspaces of S and V , with dim(Sh) =
dim(Vh). We also may replace B(·, ·) with an approximation Bh(·, ·) and l(·)
with an approximation lh(·). The consequences of this are discussed in Section
3.5.

If B(·, ·) is a symmetric and coercive bilinear form and if S = V then we
can show that this type of discretisation gives an approximate solution if Sh =
Vh ⊂ S = V . The solution to (3.41) is the minimising function of a quadratic
functional J(u) over S. The discrete function uh minimises the same functional
over the subspace. This implies that an optimal solution is found in the norm
induced by the problem (the energy norm). We describe this in the following
theorem.

Theorem 3.4.1 Let (·, ·)B = B(·, ·) be the inner product induced by the bi-
linear form B and let eh = uh − u be the error in the approximation, then, in
the norm ‖.‖B induced by B, the solution of (3.42) is in Sh = Vh the optimal
approximation of u, the solution to (3.41):

‖eh‖B ≤ inf
vh∈Sh

‖u− vh‖B .

Proof: First,
‖eh‖2

B = B(eh, eh) = B(eh, uh − u).

Now because B(u, vh) = f(vh) for all vh ∈ V , and B(uh, vh) = f(vh) for all
vh ∈ Vh, we have B(uh − u, vh) = B(eh, vh) = 0 for all vh ∈ Vh and because
uh ∈ Sh = Vh we get B(eh, uh) = 0. So

B(eh, uh − u) = B(eh, vh − u) ≤ ‖eh‖B‖u− vh‖B ∀vh ∈ Vh.
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This gives
‖eh‖B ≤ inf

vh∈Vh

‖u− vh‖B .

We want to investigate the approximation in other norms (Lp and Sobolev
norms) and for more general problems. To this purpose we will first consider
some specific approximation spaces Vh and in the next chapter discuss in more
detail the error estimates that are valid when we use these approximations.

3.4.2 Piecewise Lagrange Interpolation in one dimension

We divide an interval Ω = [a, b] ⊂ R in N (not necessarily equal) subintervals

ej = [xj−1, xj ] j = 1, . . . , N.

We denote this partition by

ΩN : a = x0 < x1 < . . . < xN = b.

Further we define hj = xj −xj−1 and h = max{hj}, the meshwidth of the mesh
ΩN .

Definition 3.4.2
(1) Let Ω′ be a (connected) subinterval of Ω, then Pk(Ω′) is the set of all
polynomials of degree less or equal k on Ω′.
(2) We define Pk(ΩN ) as the space of continuous, piecewise polynomial functions
on Ω:

Pk(ΩN ) = {f |f ∈ C(Ω); f |ei
∈ Pk(ei), i = 1, . . . , N}.

A polynomial in Pk(ei) needs k + 1 (independent) values in order to be defined
correctly and uniquely.

Lemma 3.4.3 Pk(ΩN ) ⊂ H1(Ω). Also Pk(Ω) ⊂ Pk(ΩN ), for each partition
ΩN .
Proof: We prove the first, the second is obvious.
Take a polynomial p ∈ Pk(ΩN ), then p ∈ L2(Ω). Define the distribution dp

dx

by dp(x) = ∂p
∂x (x), x 6= xi and dp

dx (xi) = 0, then we can prove in a way similar
to Example 3.3.26 (and using the continuity of p) that dp is the distributional
derivative of p. Also dp ∈ L2(Ω), so p ∈ H1(Ω).

Now we want to determine the dimension and a basis for the space Pk(ΩN ) for
k = 1, 2, 3. For this purpose we first define on the subinterval ei a new variable
t = (x − xj−1)/hj , so that t = 0 corresponds with x = xj−1 and t = 1 with
x = xj .

The case k = 1.
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An element from P1(ΩN ) is a piecewise linear function. Such a function is
determined by its values at the points xi. So there are N + 1 basis functions.
A natural choice is the set {ψj}N

j=1 where

ψj(xi) = δij i, j = 0, . . . , N. (3.43)

These are the so called standard hat functions. In figure 3.1 the function ψi is
given.

a bx
i

Figure 3.1: Hat function ψj .

It turns out that a basis function ψi vanishes everywhere on Ω except on the two
subintervals to which xi belongs. For each subinterval ej there are two non-zero
basis-functions:

ψj−1(x) = 1 − (x− xj−1)/hj = (1 − t),

ψj(x) = (x− xj−1)/hj = t.

The case k = 2.
An element from P2(ΩN ) is a piecewise quadratic function. The functions are
not completely determined by their values on the points in the partition ΩN .
We need one additional value in each interval. We take in each ej an interior
point, for instance xj− 1

2
= (xj−1 + xj)/2, the midpoint of the interval. We now

choose the basis functions {ψi} ⊂ P2(ΩN ) as

ψi(xj) = δi,j i, j = 0, 1/2, 1, 3/2, . . . , (2N − 1)/2, N.

The number of basis functions is 2N+1. Again ψi 6= 0 on at most two segments
ei, namely those to which xi belongs. On each segment ej there are at most
three basis functions unequal to zero

ψj−1(x) = (1 − t)(1 − 2t),

ψj− 1
2
(x) = 4t(1 − t),

ψj(x) = −t(1 − 2t).

In figure 3.2 the functions ψj and ψj− 1
2

are shown. All basis-functions ψi,

i integer, are similar to ψj (with the exception for the two functions at the
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e

j

x x x x

x xx
j−1 j+1

0 1 2 N
j

Figure 3.2: Second order Lagrange.

boundary). Note that the support of ψj− 1
2

is completely contained in ej . All
functions ψi− 1

2
, i integer, are translated versions of ψj− 1

2
.

The case k = 3.
This can be treated completely analogous to the case k = 2. We get the space
P3(ΩN ) of piecewise cubic functions. Now we have two extra degrees of freedom
for each interval ej . We can choose xj+k/3−1 = xj−1 + k

3hj for k = 1, 2 and the
basis {ψi} is defined by

ψi(xj) = δi,j i, j = 0, 1/3, 2/3, 1, 4/3, . . . , N.

On each interval ej we now have four non-zero functions:

ψj−1(x) = − 1
2 (3t− 1)(3t− 2)(t− 1),

ψj− 2
3
(x) = 9

2 (3t− 2)t(t− 1),

ψj− 1
2
(x) = − 9

2 (3t− 1)t(t− 1),

ψj(x) = 1
2 (3t− 1)(3t− 2)t.

These functions are shown in Figure 3.3. Again the basis functions correspond-
ing to the interior points have their support in a single interval ej . Obviously,
the dimension of the approximation space P3(ΩN ) is 3N + 1.

Figure 3.3: Third order Lagrange.
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Remark:
For the same spaces Pk(ΩN ), k = 1, 2, 3, we can also choose different basis
functions. One possibility is to use a hierarchical basis. This means that we
start with the basis for the lower dimensional approximating space (smaller k
or smaller N) and that we extend this basis to a basis of the current approxi-
mating space. For instance, we make such a basis for k = 2 by starting with the
N + 1 basis functions already used as basis for the case k = 1. To this set we
add one quadratic basis-function, for each interval ej . We can take for instance
ψj−1/2. Similarly the basis for k = 3 can be formed by adding one cubic basis
function per interval to the (hierarchical) basis that was constructed for k = 2.

3.4.3 The construction of the discrete equations

As an example of a finite element discretisation we discuss the discretisation
of a two-point boundary-value problem (TPBVP). We consider the following
problem

−(a2ux)x + a1ux + a0u = s in Ω,

u = 0 on Γ,

where Ω = [a, b], Γ = ∂Ω and a2, a1, a0 and s are functions on Ω. To apply the
finite element method we first have to formulate the problem in its the weak
form, so we seek an approximation for the function u ∈ H1

0 (Ω) that satisfies

(a2ux, vx) + (a1ux, v) + (a0u, v) = (s, v), ∀ v ∈ H1
0 (Ω). (3.44)

For our finite element discrete approximation we choose

Sh = {u ∈ Pk(ΩN ) | u(a) = u(b) = 0} ⊂ H1
0 (Ω),

and we take our weighting functions to be the same space, so Vh = Sh.

With Pk(ΩN ) = Span {ψi} we can write uh(x) =
∑

j cjψj(x). This yields
the discrete system of kN + 1 equations

∑

j

cj

∫

Ω

a2ψ
′
jψ
′
i + a1ψ

′
jψi + a0ψjψidx =

∫

Ω

sψidx,

one equation for every weighting function ψi. Here the prime denotes differentia-
tion with respect to x. The integration interval can be split into the subintervals
ej . We get

∑

j

cj{
∑

k

∫

ek

a2ψ
′
jψ
′
i + a1ψ

′
jψi + a0ψjψidx} =

∑

k

∫

ek

sψidx,
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where we notice that the contributions from most of the subintervals vanish
Thus the discrete equations are a linear system

∑

j

mijcj = si, (3.45)

in which

mij =
∑

k

∫

ek

a2ψ
′
jψ
′
i + a1ψ

′
jψi + ψjψidx,

si =
∑

k

∫

ek

sψidx.

From equation (3.45) the coefficients cj are to be solved, to obtain the discrete
solution

uh(x) =
∑

j

cjψj(x).

The matrix (mij) is called the stiffness matrix and the vector (si) the load
vector. (mij) is composed of contributions from the separate intervals ek. These
contributions vanish if ek is not a subset of the support of both ψi and ψj . The
contribution of ek to (mij) or (si) is called the elementary stiffness matrix or
the elementary load vector corresponding to this interval.

In practice the linear system is built up by scanning every element in the
partition and adding the elementary stiffness matrix and elementary load-vector
to the full stiffness matrix or load-vector. This means that the matrix and vector
elements are not computed one by one. This technique is practical not only for
one-dimensional, but also for two and three-dimensional problems. It is called
the assembly of the stiffness matrix and load vector.

Now we show explicitly how such a matrix/vector is drawn up for a two-
point boundary-value problem. For simplicity we take the coefficients a2, a1

and a0 constant. Define

m2,k,i,j =

∫

ek

ψ′jψ
′
idx,

m1,k,i,j =

∫

ek

ψ′jψidx,

m0,k,i,j =

∫

ek

ψjψidx,

then the element matrix entries are

mij =
∑

k

mk,i,j ,

with
mk,i,j = a2m2,k,i,j + a1m1,k,i,j + a0m0,k,i,j .
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Example 3.4.4

If we take piecewise linear basis-functions as in (3.43), for which ψk−1 = 1 − t,
ψk = t, ψ′k−1 = − 1

hk
and ψ′k = 1

hk
, we get

mk,i,j =
a2

hk

(

1 −1
−1 1

)

+ a1

(

− 1
2

1
2

− 1
2

1
2

)

+ a0hk

(

1
3

1
6

1
6

1
3

)

. (3.46)

Note that for convenience we have given only the essential part of the matrix:
the elements (k − 1, k − 1), (k, k − 1), (k − 1, k) and (k, k); all other elements
vanish. 6

The elementary stiffness matrices for higher order piecewise polynomials can
be computed in a similar way.

Use of quadrature rules

The computation of the matrix entries is more laborious when the coefficients
a2, a1 and a0 are not (piecewise) constant. Only in special cases we can compute
the integrals mk,i,j exactly. In most cases it is necessary to compute the integral
using a quadrature rule:

∫ b

a

f(x) dx ≈
l
∑

m=0

wmf(xm),

where wm is the weight for quadrature node xm. Replacing the integral by
a summation causes a new error, so that the accuracy of the quadrature may
influence the accuracy of the discretisation. We usually want to use quadrature
rules that preserve the order of accuracy of the discretisation method. The
requirements for such a quadrature rule are discussed in section 3.5.

An interesting quadrature in combination with Lagrangian interpolation is
the method that uses the same nodal points for the integration. Assume that
the approximation uses polynomials of degree l (so Vh = Pl(ΩN )) and take yk,m,
m = 0, . . . , l as the nodes in ek:

xk−1 = yk,0 < yk,1 < · · · < yk,l = xk.

Or rather,
yk,m := xk+ m

l
−1,

so that
ψi(yk,m) = δi,k+ m

l
−1.

The elementary matrix entry becomes (k = 0, · · · , N and i = ni + mi

l − 1,
j = nj +

mj

l − 1 where ni, nj = 0, · · · , N , mi,mj = 0, · · · , l)

mk,i,j ≈
l
∑

m=0

wm

{

a2(yk,m)ψ′j(yk,m)ψ′i(yk,m)

6Be aware of the boundaries however, see a next section.



76 P.W. Hemker

+ a1(yk,m)ψ′j(yk,m)ψi(yk,m) + a0(ym)ψj(yk,m)ψi(yk,m)
}

=

l
∑

m=0

wm

{

a2(yk,m)ψ′j(yk,m)ψ′i(yk,m) (3.47)

+ a1(yk,m)ψ′j(yk,m)δi,k+m/l−1 + a0(yk,m)δj,k+m/l−1δi,k+m/l−1

}

=

l
∑

m=0

wm

{

a2(yk,m)ψ′j(yk,m)ψ′i(yk,m)
}

+a1(yk,mi
)ψ′j(yni,mi

)wmi
+ a0(xi)δi,jwmi

.

Example 3.4.5

In case of piecewise linear approximation (l = 1) and the trapezoidal rule
(w0 = w1 = 1

2 ), we get

mk,i,j ≈ a2(xk−1) + a2(xk)

2hk

(

1 −1
−1 1

)

(3.48)

+
1

2

(

−a1(xk−1) a1(xk−1)
−a1(xk) a1(xk)

)

+
hk

2

(

a0(xk−1) 0
0 a0(xk)

)

.

We observe that the zero order term contribution is a diagonal matrix, which
is different from formula (3.46) for constant coefficients. Using the quadrature
also for the elementary load vector, we obtain

sk,i ≈
hk

2

(

s(xk−1)
s(xk)

)

.

Remark:
It is known that for an accurate quadrature we better take the nodes within
each element [xj−1, xj ] not equidistant. To obtain the most accurate quadrature
(and assuming that the endpoints of the interval are be nodal points) the nodes
should be placed as for Lobatto quadrature. These points, then, may determine
the nodal points for the Lagrange interpolation.

Example 3.4.6
As a last example, we give the construction of the element matrix based on
piecewise quadratic functions and the Simpson quadrature (l = 2, w0 = w2 = 1

6 ,
w1 = 2

3 ). For simplicity we choose a2(x) piecewise constant on the partitioning
ΩN . We obtain

mk,i,j ≈ a2,k

6hk





14 −16 2
−16 32 −16
2 −16 14





+
1

6





−3a1(xk−1) 4a1(xk−1) −a1(xk−1)
−4a1(xk− 1

2
) 0 4a1(xk− 1

2
)

a1(xk) −4a1(xk) 3a1(xk)



 (3.49)
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+
hk

6





a0(xk−1) 0 0
0 4a0(xk− 1

2
) 0

0 0 a0(xk)



 .

For a1 and a0 also piecewise constant this formula simplifies to

mk,i,j ≈ a2,k

6hk





14 −16 2
−16 32 −16
2 −16 14



+
a1,k

6





−3 4 −1
−4 0 4
1 −4 3



+

+
a0,khk

6





1 0 0
0 4 0
0 0 1



 . (3.50)

Again the contribution of the zero-order term is a diagonal matrix. The ele-
mentary load-vector follows after direct computation, using the same Simpson
quadrature

sk,i ≈
h

6





s(xk−1)
4s(xk− 1

2
)

s(xk)



 . (3.51)

For our two-point boundary-value problem and piecewise second and higher-
order functions the shape of the complete matrix and right-hand vector is given
in Figure 3.4.

Figure 3.4: Matrix and right-hand-side constructed by means of C0 piecewise
cubic polynomials.

Static condensation, lumping

The solution of the general matrix system (3.45) is not a topic we will discuss
here. See for instance [6]. We however make some remarks.
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First notice, that due to the relatively small support of the basis functions,
we have a linear system that is sparse: only a fairly limited amount of the matrix
elements is non-zero.

The use of Lagrange interpolation has a nice advantage. We can reduce the
set of equations in figure 3.4 to a tridiagonal form by so-called static conden-
sation. With this we mean the elimination of the unknowns belonging to the
internal nodes xi, for which the basis functions ψi have a support that is com-
pletely contained in a single element ek. The elimination of these unknowns is
a strictly local process that can be done elementwise: it causes no changes in
the contributions of other elements to the stiffness matrix and the load vector.
The same technique can be applied for 2- or 3-dimensional problems, for each
basis function ψi(x) that has its support completely in a single element ek.

Let a linear system be partitioned as
(

A11 A12

A21 A22

)(

x1

x2

)

=

(

b1
b2

)

and let the second set of variables and equations be available for elimination,
then after elimination we get the system

(A11 −A12A
−1
22 A21)x1 = b1 −A12A

−1
22 b2,

so there remains just a number of additional contributions in the matrix and
right-hand-side.

When all interior variables are eliminated in this way we get the tridiagonal
system of equations shown in figure 3.5.

x x

x x x
0

1

2

3

4

Figure 3.5: Matrix and right-hand side after lumping.

We have seen that the zero order (not differentiated) terms consist only of
diagonal elements if we use a quadrature. The technique in which these terms
are placed on the main diagonal is called lumping 7. This technique is interesting

7Originally the off-diagonal elements where added to the main diagonal without any ex-
planation.
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for two reasons:

1. The part a0(x)u(x) = s(x) of the equation is discretised pointwise. This
can be preferable when a0(x) or s(x) is strongly varying or dominating.

2. For an initial-boundary-value problem (IBVP), when there is time depen-
dence in the problem, we can use lumping together with the method of
semi-discretisation to reduce the IBVP to an explicit set of ordinary dif-
ferential equations. As an example we may consider a parabolic equation
of the form ϕt = Lϕ, where L is a differential operator in the space vari-
ables (for instance Lϕ = pϕxx + qϕx + rϕ+ s), then a semi-discretisation
with Sh = Vh = Span {ϕi} yields the following set of equations: find
ϕh(x, t) =

∑

j cj(t)ϕj(x) such that

(
∂

∂t
ϕh, ϕi) = (Lϕh, ϕi), ∀ϕi.

So we have to compute the set {cj(t)} for which

∑

j

dcj(t)

dt
(ϕj , ϕi) = (Lϕh(t, ·), ϕi), ∀ϕi.

The matrix (ϕj , ϕi) is called the mass matrix. By using the technique
“lumping” we can recast it to a diagonal matrix (ϕj , ϕi) = wiδij so that we
obtain an explicit set of ordinary differential equations for the coefficients
{ci(t)}:

dci(t)

dt
=

1

wi
(Lϕh(t, ·), ϕi), ∀ i.

Treatment of boundary conditions

Until now we have limited ourselves to problems with homogeneous Dirichlet
boundary conditions. In this section we treat also inhomogeneous and more
general boundary conditions.

First we handle inhomogeneous Dirichlet boundary conditions. Consider
Ω = [a, b] and the equation

Lu := −(a2ux)x + a1ux + a0u = s on Ω, (3.52)

u = g on Γ. (3.53)

The weak form of this problem can be written as: find a u ∈ H1(Ω) such that

u = g on Γ

and

B(u, v) := (a2ux, vx) + (a1ux, v) + (a0u, v) = (s, v), ∀v ∈ H1
0 (Ω).
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For theoretical purposes, this problem is easily reduced to the problem with
homogeneous boundary conditions by choosing a function g ∈ H1(Ω) (the ex-
tension of the g defined on Γ) that satisfies the boundary conditions 8. Defining
the function w := u− g we have w ∈ H1

0 (Ω) and w satisfies the equation

Lw = s− Lg,

or,
B(w, v) = (s, v) −B(g, v).

Thus the problem is reduced to the problem with homogeneous boundary con-
ditions. This gives existence and uniqueness.

In practice it is also easy to implement non-homogeneous Dirichlet boundary
conditions. Because the value of the function u at the boundary points is given
we have to compute less unknowns. This means that there are no discrete
equations needed for the boundary points.

We can handle Dirichlet boundary conditions in two ways. To show this, we
first assume the equations are constructed elementwise as shown in the previous
section (figure 3.4). The two approaches are as follows.

I) Replace the equations for the boundary points by equations that force the
boundary conditions. For example, in the stiffness matrix put 1 on the main
diagonal and 0 at the other entries of this row, and put the boundary value in
the right-hand-side. This forces the boundary value to be part of the solution.
In this way we get a linear system of equations of the original form, of which
the size corresponds with the total number of nodes.

II) In the other approach (see Figure 3.6) we eliminate the known “unknowns”
on the boundary. The set of equations is reduced, but more important is that
the right-hand-side has to be adjusted at a number of places. Now the size of the
system corresponds with the interior nodes. In practice, this is less convenient,
in particular if we have a combination of Dirichlet and Neumann conditions.
In this case, however, a symmetric operator B(u, v) guarantees a symmetric
stiffness matrix.

If we consider more general boundary conditions than Dirichlet boundary
conditions, we see that the whole procedure can be carried out in the same
manner as before. In the discrete operator and right-hand-side additional terms
will appear due to the boundary condition. See for instance the B(u, ϕ) and
the l(ϕ) of section 3.3.5. Every boundary integral gives a contribution to the
elementary matrix/right-hand-side at each boundary point. In practice we first
add all contributions from the interior elements to the stiffness-matrix and later
the contributions from the boundary segments are added. Also these boundary
integrals can be computed by quadrature.

8That we can actually find such a function puts an extra condition on the boundary
condition and on the smoothness of the boundary Γ. With γ0 the trace operator we have the
requirement that

γ0u = γ0g.
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Figure 3.6: Treatment of boundary conditions.

3.4.4 Other piecewise polynomial approximations in one

dimension

In every finite element method we use an approximation of the solution of the
form

uh(x) =
∑

j

cjϕi(x),

where the use of continuous, piecewise polynomial basis functions ϕi(x) with a
small support is preferred. Not only Lagrange interpolation but also Hermite
interpolation can be used. Here the functions ϕi(x) are not only determined by
their function values at the nodes, but also by the values of the derivatives. The
approximating basis functions thus may have larger smoothness, which gives us
the opportunity to solve problems which contain higher order derivatives. We
may find solutions in Hk

0 (Ω) for k > 1. For instance it allows the solution of
the homogeneous Dirichlet problem for the biharmonic operator ∆2:

∆2u = f in Ω,
u = ∂nu = 0 on Γ.

A polynomial of degree k needs k+ 1 (independent) values on an interval to be
defined correctly.

Definition 3.4.7 Let f be a function in Cm−1([a, b]), then the Hermite inter-
polate of f on a partition ΩN is the function p ∈ P2m−1(ΩN ) ∩ Cm−1([a, b]) for
which, for all xi ∈ ΩN and k = 0, 1, . . . ,m− 1,

Dkp(xi) = Dkf(xi).

Note that the Hermitian interpolation of a polynomial q of degree 2m− 1 is the
polynomial itself. Moreover it is not just an element of Cm−1([a, b]), but even
from C2m−1([a, b]).
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A usual Hermite-basis for a finite element method in one space dimension is
that of the cubic Hermite splines (m=2): on every interval [xi, xi+1] the P3(∆)-
function is determined by four parameters f(xi), f

′(xi), f(xi+1) and f ′(xi+1).
For every element ej = [xj , xj+1] there are four non-zero basis-functions: ϕ0,j ,
ϕ1,j , ϕ0,j+1 and ϕ1,j+1 such that Dkϕl,j(xi) = δklδij . Let t = (x− xj)/(xj+1 −
xj) then the form of these functions is on element ej

ϕ0,j(t) = (t− 1)2(2t+ 1),

ϕ0,j+1(t) = t2(3 − 2t),

ϕ1,j(t) = t(t− 1)2(xj+1 − xj),

ϕ1,j+1(t) = t2(t− 1)(xj+1 − xj).

Extending these functions to the entire interval [a, b] such that Dkϕl,j(xi) =
δklδij we get functions ϕj,k(x) ∈ H2([a, b]), because the derivatives are continu-
ous. Except for the functions that are associated with the boundary points, all
functions ϕl,j have a support that extends over two subintervals ek.

The smoothness of the approximating function uh(x) implies that it can be
used for solving fourth order elliptic problems like

auxxxx − buxx + cu = f, (3.54)

u(a) = u′(a) = u(b) = u′(b) = 0,

of which the corresponding variational formulation is as follows: find u ∈ H2
0 (Ω)

such that
∫

Ω

a uxxϕxx + b ux ϕx + cu ϕ dx =

∫

f ϕ dx,

for all ϕ ∈ H2
0 (Ω).

This problem can not be solved by Lagrangian interpolation because the
space spanned by the Lagrange interpolation polynomials {ϕi} is not in H2(Ω).

The discrete set of equations for the two point boundary value problem
discretised with Hermite interpolation polynomials has a block-tridiagonal form
(see Figure 3.7).

Exercise 3.4.8
Consider the fourth order problem (Ω = [0, 1])

uxxxx − 2uxx + u = 1,

u(0) = u(1) = ux(0) = ux(1) = 0.

Prove that the analytic solution is

u(x) = 1 + ex(c1 + c2x) + e−x(c3 + c4x),

c1 = − (2e− 1)(e2 − 2e− 1)

e4 − 6e2 + 1
,

c2 =
(e− 1)(e2 − 2e− 1)

e4 − 6e2 + 1
,

c3 = −1 − c1,

c4 = c3 − c1 − c2.
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X XX XX X
X XX XX X

X XX XX X
X XX XX X

X XX XX X
X XX XX X

X XX XX X
X XX XX X

X XX X
X XX X

Figure 3.7: Block-tridiagonal matrix.

Make a uniform discretisation with h = 1/N , compute and solve the linear
system. This gives discrete approximations for u(xi) and u′(xi). Compute

max
i

|u(xi) − uh(xi)|

and

max
i

|u′(xi) − u′h(xi)|,

for N = 10, 20, 40. Compare the order of convergence you observe with the
order you expected.

Other piecewise polynomials that might be used are for instance the splines.
These are Pm(∆)∩Cm−1([a, b])-functions. Such functions have a single degree of
freedom for each interval and they have a maximum smoothness for a polynomial
of degree m. However, in general, the support of these basic spline stretches over
many adjacent elements. Application for a finite element method is therefore
unusual, because it means that many non-zero elements will appear in each row
of the stiffness matrix. In other words: the use of splines causes a non-sparse
system of linear equations (although in the one-dimensional case it will be a
band system).

3.4.5 Approximation in two dimensions

In the introduction to discretisation methods we have seen some possible repre-
sentations of a two-dimensional function. Not all of them are useful for the solu-
tion of second order elliptic problems by a (conforming) finite element method.
The most important which remain are shown in Figure 3.8. A dot indicates that
at this point we take the function value, a circle that we also take the value of
the derivative, two circles the value of two derivatives, etc.
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Figure 3.8: Some representations of a two-dimensional function.

Among these are the piecewise Lagrange interpolation polynomials on a trian-
gulation. Notice that the basis-functions defined by ϕi ∈ Pk(ΩN ) (functions
with |α| ≤ k) and ϕi(xj) = δij are indeed continuous.

Example 3.4.9
On the standard triangle shown in figure 3.9 we find basis functions for a P2(∆)
Lagrange approximation by

Φ1(x, y) = 2 (x+ y − 1) (x+ y − 1
2 ),

Φ2(x, y) = 2x (x− 1
2 ),

Φ3(x, y) = 2y (y − 1
2 ),

Φ4(x, y) = 4x y,

Φ5(x, y) = −4y (x+ y − 1),

Φ6(x, y) = −4x (x+ y − 1).

That the dimension of P2(∆) is indeed 6 can be easily seen because any element
is of the form

p(x, y) =
∑

|α|≤2

aα xα1 yα2 .

This is only possible for the set of values

α = (α1, α2) ∈ {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (1, 1)}.
To express the symmetry in this formulas more clearly, we may use barycentric
coordinates (r, s, t) defined by r = x, s = y and t = 1 − x− y. 9 Then we get

Φ1(r, s, t) = t (2t− 1),

Φ2(r, s, t) = r (2r − 1),

Φ3(r, s, t) = s (2s− 1), (3.55)

Φ4(r, s, t) = 4 r s,

Φ5(r, s, t) = 4 s t,

Φ6(r, s, t) = 4 r t.
9So: t = 0 ⇒ x + y = 1, r = 0 ⇒ x = 0 and s = 0 ⇒ y = 0. Which give the three

boundaries of the triangle.
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Figure 3.9: Lagrange for a triangle.

These functions are also used for isoparametrical elements, which we shall dis-
cuss in the following section.

The number of degrees of freedom for a general k-th order polynomial in 2 or 3
dimensions is exactly the number of points that can be distributed nicely over
a triangle or tetrahedron. If, on a rectangle or a parallelepiped, a number of
nodes is distributed in a regular way we will not be able to construct exactly
all k-th order polynomials. For a parallelepiped one usually takes polynomials
of the form Pk(x) · Pk(y) (so the tensor product of the two spaces) and for the
nodes one takes the Cartesian product of the one-dimensional partitions.

Example 3.4.10
We consider the bilinear interpolation on a rectangle. A bilinear basis function
is of the form

a+ bx+ cy + dxy,

or,

(a1 + a2x)(b1 + b2y).

The first form shows clearly that such a function has four degrees of freedom on
each rectangle and the second form shows that the space of bilinear functions
is the product of the two spaces of linear functions.

Having four degrees of freedom, such a bilinear function is completely deter-
mined by the function values at the vertices of the rectangle.

Note that in two dimensions, on triangles, the piecewise Hermite interpolation
polynomials are continuous, but are not in C1(Ω). If we want to find a piecewise
polynomial in C1(Ω), then we have to use a relatively intricate construction. One
of the more simple ones is a P5(Ω)-function which has 21 degrees of freedom for
each triangle (the Argyris triangle, cf [4, p. 71], see Figure 3.10).
Note that the function u along a boundary is a 5th order function determined
by its function value and first and second order derivatives at the vertices and
the value of ∂u

∂n
(n is the outward unit normal) at the edges midpoints.

The construction of the discrete equations and the treatment of the boundary
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Figure 3.10: The Argyris triangle.

conditions is in principle similar to the one-dimensional case: the matrix and
the right-hand-side will be build up elementwise. To handle the boundary con-
ditions we have to compute boundary integrals. When basis functions φj(x)
have a support that is completely contained in a single element, then we can
eliminate the corresponding variables by static condensation. When computing
the elementary matrices we again use a quadrature and also the combination
of the elementary basis-functions for Lagrange interpolation and an associated
quadrature can lead to lumping.

3.4.6 Isoparametric elements

By triangulation of the domain, the solution of a problem on polygonal areas
can be performed in a relatively simple way. However when there is a curved
boundary we can approximate it by means of isoparametric elements. To define
these elements we first introduce the following

Definition 3.4.11 Let v = {z1, . . . , zNk
} be a set of Nk points in R

2. Then v
is called a k-unisolvent set if for every sequence of real numbers (α1, . . . , αNk

)
there is precisely one polynomial of degree ≤ k such that

Pk(zi) = αi, i = 1, . . . , Nk.

Examples of this are: for k = 1: the vertices of a triangle; k = 2: the vertices
and the midpoints of the edges. Examples for k > 2 are easily found.

An isoparametric element of degree k = 2 is defined as follows. Let v =
{~z1, ~z2, . . . , ~z6} be a 2-unisolvent set in R

2. The matching isoparametric ele-
ment is

I∆ = {(x, y)|(x, y)T =

6
∑

i=1

~ziΦi(r, s, t); 0 ≤ r, s, t ≤ 1; r + s+ t = 1},

where r, s and t are the barycentric coordinates as introduced in Section 3.4.5
and Φi the functions defined in (3.55). On the isoparametric element we now
have a parametrisation in r, s, t, with r + s+ t = 1, and basis functions can be
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defined on this element like it was done in case of triangular elements

uh(x)|I∆
=

6
∑

i=1

aiΦi(r, s, t).

We see that with k-th order isoparametric elements the boundary is approxi-
mated by piecewise k-th order polynomials.

The dependent and independent variables (u and (x, y) respectively) are
both parametrised by the same type of functions. This is the reason to call
these elements isoparametric elements.

3.5 Error estimates for the finite element method

In this section we derive error estimates for the finite element method. First
we will give the discrete version of the Generalised Lax-Milgram theorem. It
gives the uniqueness of the solution to the discrete equation and it gives a first
estimate of the error.

This theorem is in fact only applicable when we use finite dimensional sub-
spaces of our original Hilbert spaces. We have a more general case when we
don’t have such subspaces or when the operators in the variational equation are
replaced by approximations (for instance by quadrature). We give also error
estimates for this case.

The error estimates depend on how good we can interpolate elements of
Banach spaces in subspaces of these Banach spaces, so we have to discuss the
interpolation theory in Banach spaces, preceded by a necessary discussion of
the formalism of the finite element method. This will give us estimates in the
Sobolev norms ‖.‖m,q,Ω. We will also give an estimate in the L2-norm, but for
this we need additional requirements on the problem we consider.

We also discuss pointwise convergence and superconvergence, i.e the phe-
nomenon that at some particular points the accuracy of the approximation is
better than the global error estimates indicate. Finally we study the influence
of the use of particular quadrature rules on Banach space interpolation and on
superconvergence.

3.5.1 The discrete version of the Generalised Lax-Milgram

In Section 3.3.2 we saw that -under certain conditions- a variational problem
has a solution, which is bounded by the right-hand-side of the equation. This
Generalised Lax-Milgram Theorem 3.3.18 can be applied not only to continuous
problems, but also to the associated discrete problems, with trial functions in
Sh ⊂ S and test functions in Vh ⊂ V . Taking these discrete spaces as subspaces
of the continuous spaces we obtain a so called conforming finite element methods.

In the following theorem we show that the discrete solution obtained in this
way is “quasi-optimal”. This means that, apart from a constant factor, it is (in
the S-norm) not worse than the best approximation of the solution u ∈ S in the
discrete space Sh.
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Theorem 3.5.1 (Discrete Generalised Lax-Milgram)
Let the requirements of the Generalised Lax-Milgram Theorem 3.3.18 be sat-
isfied. So, let X1 and X2 be two Hilbert spaces and let F : X1 ×X2 → R be
a bilinear functional that is bounded and sub-coercive. Further, let X1

h ⊂ X1

and X2
h ⊂ X2 be linear subspaces, such that

∀xh ∈ X1
h ∃zh ∈ X2

h, zh 6= 0 |F (xh, zh)| ≥ γh‖xh‖ ‖zh‖,

and
∀zh ∈ X2

h, zh 6= 0 ∃xh ∈ X1
h |F (xh, zh)| > 0.

Finally, let f ∈ (X2)′, and u0 ∈ X1 be the solution of

F (u0, v) = f(v) for all v ∈ X2.

Then there exists a unique uh ∈ X1
h, the solution of the discrete problem

F (uh, vh) = f(vh) for all vh ∈ X2
h,

and the following error estimate holds

‖uh − u0‖X1 ≤
[

1 +
‖F‖
γh

]

inf
xh∈X1

h

‖u0 − xh‖X1 . (3.56)

Proof: Let R : X1 → X2 be the Riesz mapping as used in the proof of the
Generalised Lax-Milgram Theorem 3.3.18

(Ru, v)X2 = F (u, v), for all u ∈ X1, v ∈ X2,

and let S : X1
h → X2

h be the analogue mapping for X1
h and X2

h, i.e.,

(Suh, vh)X2 = F (uh, vh), for all uh ∈ X1
h, vh ∈ X2

h.

Then ‖R‖ = ‖F‖ and ‖S−1‖ ≤ γ−1
h .

Let P 1
h : X1 → X1

h and P 2
h : X2 → X2

h be orthogonal projections

X1 R−→ X2

P 1
h ↓ ↓ P 2

h.

X1
h

S−→ X2
h

i) Consider point (5) in the GLM theorem. With v0 ∈ X2 such that f(v) =
(v0, v)X2 for all v ∈ X2 (Riesz) and vh ∈ X2

h such that f(v) = (vh, v)X2 for all
v ∈ X2

h (Riesz) we have (v0 − vh, P
2
hv) = 0 for all v ∈ X2; so Corollary 3.3.4

gives that P 2
h (v0 − vh) = 0. It follows that P 2

hv0 = P 2
hvh = vh, so vh = P 2

hv0.
From Lax Milgram we know that u0 = R−1v0 and uh = S−1vh, so that

uh = S−1P 2
hRu0.

ii) For every xh ∈ X1
h we have Sx1

h = P 2
hRx

1
h because, for all vh ∈ X2

h,

(P 2
hRx

1
h, vh) = (Rx1

h, P
2
hvh) = (Rx1

h, vh)

= F (x1
h, vh) = (Sx1

h, vh).
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We want to know how well the discrete solution approximates the solution of
the continuous problem, so we are interested in ‖uh − u0‖. First we look at

‖uh − P 1
hu0‖ = ‖S−1P 2

hRu0 − P 1
hu0‖

≤ ‖S−1‖ ‖P 2
hRu0 − SP 1

hu0‖
= ‖S−1‖ ‖P 2

hRu0 − P 2
hRP

1
hu0‖

≤ ‖S−1‖ ‖P 2
h‖ ‖R‖ ‖u0 − P 1

hu0‖
(∗)
= ‖S−1‖ ‖R‖ ‖u0 − P 1

hu0‖.

In (∗) we used that ‖P 2
h‖ = 1 by Corollary 3.3.4. Hence

‖uh − u0‖ ≤ ‖uh − P 1
hu0‖ + ‖P 1

hu0 − u0‖
≤ {1 + ‖S−1‖‖R‖} ‖u0 − P 1

hu0‖.

From this easily follows

‖uh − u0‖X1 ≤ {1 + ‖F‖/γh} inf
xh∈X1

h

‖u0 − xh‖X1 .

Corollary 3.5.2
Given a problem that satisfies the conditions of the Generalised Lax Milgram
Theorem, then for a conforming finite element method a sufficient condition for
convergence is the existence of a family of subspaces (X1

h) of X1 such that, for
each u ∈ X1,

lim
h→0

inf
xh∈X1

h

‖u− xh‖ = 0.

So the problem we were facing is reduced to an approximation problem: evaluate
the distance d(u,X1

h) = infxh∈X1
h
‖u − xh‖ between a function u ∈ X1 and a

subspace X1
h ⊂ X1. Thus, if we can prove that d(u,X1

h) = O(hk), for some
k > 0, we have as an immediate consequence that

‖u− uh‖ = O(hk)

We then will call k the order of convergence.

The norm in which the error is measured is more or less induced by the
problem: the conditions on coercivity and continuity are stated in the X1-norm.
For an elliptic problem of order 2m this will usually be the Hm(Ω)-norm. This
will be discussed later.

Measuring the error in other norms (and especially the L2-norm) requires a
further analysis of the problem.
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3.5.2 More general error estimate

In this section we study an error estimate for more general problems. We can
approximate both the bilinear form B and the linear form f by discrete versions
Bh and fh. These discrete operators will work on some spaces Vh and Sh that
are now not necessarily contained in V and S. This means we have to expect a
supplementary consistency error in our estimates. The estimate thus obtained
will also be valid for non-conforming finite element methods.

We consider a solution u∗ ∈ S ⊂ S∗ (S∗ a normed linear space) of the
problem: find u ∈ S such that

B(u, v) = f(v), ∀v ∈ V. (3.57)

Let Bh : S∗× V ∗ → R and fh : V ∗ → R. We also consider the discrete problem
associated with (3.57): find uh ∈ Sh such that

Bh(uh, vh) = fh(vh), ∀vh ∈ Vh, (3.58)

in which Sh ⊂ S∗ and Vh ⊂ V ∗, but not necessarily Sh ⊂ S, Vh ⊂ V .
Note that we have assumed no relation between B and Bh or f and fh.

What can we say about ‖uh − u∗‖S∗?

Theorem 3.5.3 Assume there exists a uh ∈ Sh that satisfies equation (3.58).
Let Bh : S∗ × V ∗ → R be bounded with ‖B‖ = Mh, so that

∃Mh > 0 ∀s ∈ S∗, v ∈ V ∗ |Bh(s, v)| ≤Mh‖s‖S∗‖v‖V ∗ .

Let Bh : Sh × Vh → R be coercive:

∃αh > 0 ∀sh ∈ Sh ∃vh ∈ Vh αh‖sh‖S∗‖vh‖V ∗ ≤ |Bh(sh, vh)|.

Then the following estimate is valid

‖uh − u∗‖S∗ ≤
[

1 +
Mh

αh

]

inf
sh∈Sh

‖u∗ − sh‖S∗

+
1

αh
sup

vh∈Vh

|Bh(u∗, vh) − fh(vh)|
‖vh‖V ∗

. (3.59)

Proof: In the proof norms are either ‖.‖S∗ or ‖.‖V ∗ .
Because Bh is coercive we know that for each sh ∈ Sh there exists a wh ∈ Vh

such that

αh‖uh − sh‖ ‖wh‖ ≤ |Bh(uh − sh, wh)|
= |Bh(u∗ − sh, wh) −Bh(u∗, wh) +Bh(uh, wh)|
≤ |Bh(u∗ − sh, wh)| + |Bh(uh, wh) − Bh(u∗, wh)|
≤ Mh‖u∗ − sh‖ ‖wh‖ + |Bh(u∗, wh) − fh(wh)|,
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because uh is a solution to (3.58). It follows that for arbitrary sh ∈ Sh

‖uh − sh‖ ≤ Mh

αh
‖u∗ − sh‖ +

1

αh

|Bh(u∗, wh) − fh(wh)|
‖wh‖

.

Now choose an arbitrary sh ∈ Sh then

‖uh − u∗‖ ≤ ‖uh − sh‖ + ‖sh − u∗‖

≤
[

1 +
Mh

αh

]

‖u∗ − sh‖ +
1

αh

|Bh(u∗, wh) − fh(wh)|
‖wh‖

.

From this the theorem follows.

We see that the error is determined by

1. the conditioning of the discrete problem: Mh/αh;

2. the interpolation error: infsh
‖u∗ − sh‖S∗ ;

3. the consistency error: |Bh(u∗, vh) − fh(vh)|.

Remarks:

• In the proof of the theorem we have not used the fact that u∗ is a solution
to (3.57). However we can expect the consistency error to be rather big if
we choose a u∗ that is not a solution.

• The conditioning of the problem can also be formulated as: there exist
αh > 0 and Mh > 0 so that for all sh ∈ Sh

αh‖sh‖Sh
≤ sup

vh∈Vh

|Bh(sh, vh)|
‖vh‖Vh

≤Mh‖sh‖Sh
.

• If the discrete spaces are embedded in continuous spaces , i.e. if Sh ⊂ S
and Vh ⊂ V , and if Bh is the restriction of a B : S × V → R and fh the
restriction of a f : V → R to these subspaces, i.e. if

Bh(uh, vh) = B(uh, vh) and fh(vh) = f(vh), ∀uh ∈ Sh, ∀vh ∈ Vh,

then

Bh(u∗, wh) − fh(wh) = B(u∗, wh) − f(wh) = 0, ∀wh ∈ Vh.

It follows that in this case the estimate is reduced to the result from
Theorem 3.5.1. A difference is the fact that for the present estimate we
have assumed the existence of the solution u∗.

It turns out from theorem 3.5.3 that, apart from studying interpolation theory
for Banach spaces, we also have to study the approximation of bilinear and linear
operators. In this we will restrict ourselves to errors caused by quadrature. See
Section 3.5.6.
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3.5.3 The formalisation of the finite element method

We do not want to describe the theory of interpolation by piecewise polynomials
in all detail (for instance: we will prove few theorems) but we will show some of
the main results in the next section. To gain some insight in the derivation of
these results, we show in this section a formal way to introduce finite elements.

Let Ω ⊂ R
d be an open bounded domain with a Lipschitz continuous bound-

ary ∂Ω. A partition ∆h of Ω is defined as

∆h = { Ωe |
⋃

e

Ωe = Ω, Ωei
∩ Ωej

= ∅ if i 6= j,

Ωe 6= ∅, ∂Ωe Lipschitz continuous}.
Let u ∈ Cm(Ω) with m ≥ 0. For a local finite element approximation of u on
Ωe ∈ ∆h we choose a set of functions Pe = {φe

j}j=1,···,Ne
and we approximate u

on Ωe by

uh(x) =

Ne
∑

j=1

ae
jφ

e
j(x) for x ∈ Ωe.

As a rule we choose {φe
j} such that

1. there exists a set of nodal points of Ωe: {bej | bej ∈ Ωe, i = 1, · · · , Ne} and

2. there exists a set of derivatives Dαi , where αi are multi-integers, such that

Dαiφe
j(b

e
i ) = δij . (3.60)

Usually we choose {φe
j} such that it contains all polynomials of degree k

Pk(Ωe) ⊂ Span(φe
j).

We formalise the above construction.

Definition 3.5.4 Let P be a set of real-valued functions defined over a domain
Ω. Let L be a finite set of linearly independent linear functionals li, i = 1, · · · , N
over P . Then L is P -unisolvent if for every set of scalars αi, i = 1, · · · , N , there
is a unique p ∈ P such that

li(p) = αi.

Corollary 3.5.5
Let L be a P -unisolvent set then there exists a unique set of piecewise polyno-
mials {pj , j = 1, · · · , N , pj ∈ P} such that,

li(pj) = δij . (3.61)

Example 3.5.6
Take Ω = [0, 1] and make a partition 0 = x1 < x2 < · · · < xN+1 = 1. Let
Ωi = [xi, xi+1], PΩi

= P1(Ωi) and LΩi
= {li, li+1}, with li(f) = f(xi) and

li+1(f) = f(xi+1). Then {LΩi
} is a {PΩi

}-unisolvent set: take any two numbers
α and β then there is one and only one polynomial p ∈ PΩi

such that

p(xi) = α and p(xi+1) = β.



Version: September 13, 2004 93

Definition 3.5.7 A finite element is a triple {Ωe, Pe, Le} in which

Pe = {φe
j ∈ C∞(Ωe), j = 1, · · · , Ne}

are the basis functions of the finite element and the Pe-unisolvent set

Le = {lei ∈
[

Cm(Ωe)
]′
, i = 1, · · · , Ne}

gives the degrees of freedoms of the finite element.

Definition 3.5.8 A global finite element approximation of a function u on Ω is
defined by

uh(x) =
N
∑

j=1

ajφj(x)

for x ∈ Ω, where we choose the set P = {φj} such that

1. there exists a partition ∆h = {Ωe}e of Ω;

2. for every Ωe ∈ ∆h there is a finite element {Ωe, Pe, Le};

3. by L = ∪eLe we denote the set of degrees of freedom of the global ap-
proximation. The number of (different) elements in L is N =dim(L), so
N ≤∑eNe, and N is the total number of degrees of freedom;

4. by P we denote the set of basis functions of the global approximation; P
is the set of N functions given by

P = {φj | ∃e 3 , φj |Ωe
∈ Pe ; lk(φm) = δkm} .

The P -unisolvent set L of degrees of freedom implies a natural P -interpolation
of a Cm(Ω)- function

Π : Cm(Ω) → Span(P ). (3.62)

This Π is defined as

v → Πv =
∑

j

lj(v)φj . (3.63)

Π is a projection because li(Πv) = li(v) for all li ∈ L and any v ∈ Cm(Ω).

Usually we take the same type of Le and Pe on every Ωe in ∆. So we take
a set of finite elements {Ωe, Pe, Le}, that are all is equivalent to a reference
or master element (Ω̂, P̂ , L̂). Then all finite elements are constructed from
(Ω̂, P̂ , L̂) by an affine or isoparametric transformation. Error estimates for the
master element are then easily transferred to every element.
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3.5.4 Interpolation theory and applications

Interpolation theory in Sobolev spaces

In Section 3.5.3 we saw the construction of an interpolation operator Π :
Cm(Ω) → Span(P ). It is clear that a function on an area Ω is approximated
better if more degrees of freedom are available. This can be done either by
making the elements Ωe smaller or by taking a higher order of approximation.

In this section we choose for the first option and study the quality of the
approximation if we take smaller and smaller elements Ωe. In fact, we consider
a sequence {∆h}h→0 of partitions, in which h denotes the largest diameter of
the elements Ωe ∈ ∆h. Further we assume that the refinement of the whole area
will take place in a regular way so that also the smallest of the inscribed circles
of the elements in the partition will be O(h).

On each partition ∆h we assume a global finite element approximation and
we denote by Sh = Span(P ) the space of approximating functions. In this
way we also introduce a sequence of projections {Πh}h→0 with Πh : Cm(Ω) →
Sh. With an appropriate choice of the functionals in L (imposed by Sobolev’s
Lemma), the operator Πh : W l,p(Ω) → Sh can be defined

Πhu =
∑

j

lj(u)φj .

We are interested in the behaviour of the error of approximation ‖u−Πhu‖ for
h → 0. A result is given in theorem 3.5.18 below. The proof of this theorem
and a number of preceding lemmas will not be given explicitly. They can be
found in [4], or its more recent version [18].

The plan of our treatment is as follows. First we define on each element
in the partition a projection operator which shall be used for the approxima-
tion. Assuming that all elements are similar to one another (and thus there
will be a unique reference element) we can find estimates for these projection
operators on each element. From this we can find error estimates for the global
approximation. We apply this to analyse a second-order problem in detail.

Definition 3.5.9
Let Ωe be a bounded polygon then define

he = diam(Ωe),

ρe = sup{diam(S); S a ball contained in Ωe},
meas(Ωe) =

∫

Ωe
dx.

Definition 3.5.10 Two open subsets Ω and Ω̂ of R
n are affine-equivalent if

there is an invertible affine mapping

F : x̂ ∈ R
n → F (x̂) = Bx̂+ b ∈ R

n

such that Ω = F (Ω̂).
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If we denote the outer and the inner diameter by respectively h and ρ, then we
find

‖B‖ ≤ hΩe
/ρΩ̂ and ‖B−1‖ ≤ hΩ̂/ρΩe

.

Usually we have the following correspondences between points and functions

x̂ ∈ Ω̂ → x = F (x̂) ∈ Ω, (3.64)

(v̂ : Ω̂ → R) → (v = v̂ ◦ F−1 : Ω → R). (3.65)

So we have
v̂(x̂) = v(x).

Analogously we define the affine-equivalence of two finite elements and all finite
elements in a partitioning are affine equivalent to a master element (Ω̂, P̂ , L̂) if
for each Ωe ∈ ∆h there exists an affine mapping Fe such that for this element

• x = Fe(x̂),

• ψe
j (x) = ψ̂j(x̂),

• lei (ψ
e
j (x)) = l̂i(ψ̂j(x̂)).

Before we give the basic error theorems we recall the definitions of the norms
and semi-norms with which we work.

|v|m,p,Ωe
:=





∑

|α|=m

∫

Ωe

|Dαv|p dx





1
p

,

‖v‖m,p,Ωe
:=





∑

l≤m

|v|pl,p,Ωe





1
p

=





∑

|α|≤m

∫

Ωe

|Dαv|p dx





1
p

,

|v|m,∞,Ωe
:= max
|α|=m

{ess.supx|Dαv(x)|},

‖v‖m,∞,Ωe
:= max
|α|≤m

{ess.supx|Dαv(x)|}.

Lemma 3.5.11 Assume the integers k ≥ 0 and m ≥ 0 and the numbers p, q ∈
[1,∞] are such that the Sobolev spaces W k+1,p(Ω̂) and Wm,q(Ω̂) satisfy the
inclusion

W k+1,p(Ω̂) ↪→Wm,q(Ω̂).

Further let Π̂ ∈ L(W k+1,p(Ω̂);Wm,q(Ω̂)) be a polynomial preserving mapping:

∀p̂ ∈ Pk(Ω̂), Π̂p̂ = p̂.

For every open set Ωe that is affine-equivalent to Ω̂ define the mapping Πe by

(Πev)ˆ= Π̂v̂,
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with v̂ ∈ W k+1,p(Ω̂) and v ∈ W k+1,p(Ωe) corresponding as in (3.65). Then
there exists a constant C = C(Π̂, Ω̂) such that for all affine-equivalent sets Ωe

and all v ∈W k+1,p(Ωe)

|v − Πev|m,q,Ωe
≤ C(meas(Ωe))

1/q−1/p hk+1
e

ρm
e

|v|k+1,p,Ωe
,

with he, ρe and meas(Ωe) as in definition 3.5.9.

We specialise this immediately to affine-equivalent finite element families. We
formulate a number of requirements on the spaces we use:

1. we have a set of degrees of freedom L̂ which uses derivatives up to certain
order s. By Sobolev’s Lemma, this sets requirements on the Sobolev
spaces. This gives condition (3.66),

2. the projections will be measured in a weaker norm ‖ · ‖m,q,Ωe
: condition

(3.67),

3. the approximating functions will at least have to include all polynomials
up to certain order: condition (3.68).

Lemma 3.5.12 Let (Ω̂, P̂ , L̂) be a master element for which s is the largest
derivative in L̂. If for some k ≥ 0, m ≥ 0 and p, q ∈ [1,∞]

W k+1,p(Ω̂) ↪→ Cs(Ω̂), (3.66)

W k+1,p(Ω̂) ↪→Wm,q(Ω̂), (3.67)

Pk(Ω̂) ⊂ P̂ ⊂Wm,q(Ω̂), (3.68)

then there is a C = C(Ω̂, P̂ , L̂) such that for affine-equivalent finite elements
(Ωe, Pe, Le) and all v ∈W k+1,p(Ωe)

|v − Πev|m,q,Ωe
≤ C(meas(Ωe))

1/q−1/p hk+1
e

ρm
e

|v|k+1,p,Ωe
.

Obviously, the term
hk+1

e

ρm
e

appearing in this lemma is undesirable, so we would

like to dispose of the ρe. This can be done provided the elements do not become
”flat” in the limit: for he → 0 we want that ρe = O(he).

Definition 3.5.13 A sequence of partitionings {∆h} of finite elements {(Ωe, Pe, Le)}h
10 is regular if the following two conditions are satisfied:

1. There exists a constant σ such that

∀e, he

ρe
≤ σ.

10Note that we use e as a kind of parameter of the family.
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2. The diameter h = maxΩe∈∆h
he tends to zero.

Remark:
The regularity of the elements can also be stated in a more geometrical sense:
let θΩ denote the smallest angle in an element Ω, then there must be a θ0 > 0
such that

∀Ω ∈ Fh, θΩ ≥ θ0 > 0.

For regular families we can convert the error estimate 3.5.12 in estimates for
the associated norms.

Lemma 3.5.14 Let there be given a regular affine family of finite elements
(Ωe, Pe, Le) whose reference element (Ω̂, P̂ , L̂) satisfies conditions (3.66), (3.67)
and (3.68). Then there exists a constant C = C(Ω̂, P̂ , L̂) such that for all
members Ω of the family and all v ∈W k+1,p(Ω),

‖v − Πev‖m,q,Ωe
≤ C(meas(Ωe))

1/q−1/p hk+1−m
e |v|k+1,p,Ωe

.

Thus, we can give an error estimate on each element in a partition ∆h of our
domain Ωe. Assuming the family is affine-equivalent we would like to give
an error estimate for the global finite element approximation. The assumptions
above have to be applied in an even more strict sense: on each level of refinement.

Assumptions:
(H1) We consider a regular family of finite elements Fh. That is, there exists a
constant σ > 0 such that

∀Ωe ∈ ∪hFh,
he

ρe
≤ σ.

and
h = max

Ωe∈Fh

he → 0 .

(H2) All the finite elements (Ωe, Pe, Le), Ωe ∈ ∪hFh are affine-equivalent to
a single reference element (Ω̂, P̂ , L̂).

(H3) All the elements are of class C0.
To summarise the result we define a norm and a semi-norm for piecewise

smooth functions on a given partitioning ∆h.

Definition 3.5.15 For functions that are (together with their derivatives up to
order m) integrable on the elements Ωe ∈ ∆h, we introduce the following norm
and seminorm if p <∞

‖v‖m,p,∆h
:=

{

∑

Ωe∈∆h

‖v‖p
m,p,Ωe

}
1
p

,
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|v|m,p,∆h
:=

{

∑

Ωe∈∆h

|v|pm,p,Ωe

}
1
p

.

In case p = 2 we drop the p in the subscripts. We denote the space of functions
with finite norm ‖.‖m,∆h

by Hm
∆h

.
If p = ∞ we define

‖v‖m,∞,∆h
:= max

Ωe∈∆h

‖v‖m,∞,Ωe
,

|v|m,∞,∆h
:= max

Ωe∈∆h

|v|m,∞,Ωe
.

Example 3.5.16
The norm ‖ · ‖m,p,∆h

on the partitioning ∆h of Ω is not the same as the norm
‖ · ‖m,p,Ω on Ω itself. This is seen as follows. Take Ω = [a, b] and consider the
piecewise linear function in figure 3.11. This function is an element of H1(Ω),

Figure 3.11: Piecewise H2-function.

but it is not in H2(Ω). If we take however a partition ∆h such that the elements
Ωe correspond with the smooth parts of the function, it is piecewise H2, so in
H2

∆h
(Ω).

A number of approximation results is summarised in the following lemma.

Lemma 3.5.17 Let Fh be a regular family of finite elements satisfying (H1),
(H2) and (H3) that are all affine equivalent with the master element (Ω̂, L̂, P̂ ).
Let the requirements (3.66), (3.67) and (3.68) be satisfied for every element.
Consider the global interpolation operator

Πh : W k+1,p(Ω) → Sh ⊂Wm,p(Ω)

defined by
Πh|Ωe

= Πe

then there is a constant C = C(Ω̂, L̂, P̂ ) > 0, such that,

|v − Πev|m,p,Ωe
≤ C hk+1−m

e |v|k+1,p,Ωe
,

and
|v − Πhv|m,p,∆h

≤ C hk+1−m |v|k+1,p,∆h
.
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From this easily follows

‖v − Πev‖m,p,Ωe
≤ C hk+1−m

e |v|k+1,p,Ωe
, (3.69)

and
‖v − Πhv‖m,p,Ω ≤ C hk+1−m |v|k+1,p,Ω. (3.70)

Remark:
If the functions v and Πhv are not sufficiently smooth estimate (3.70) is not
valid, but we still have

‖v − Πhv‖m,p,∆h
≤ C hk+1−m |v|k+1,p,∆h

.

As a direct consequence of this lemma we can state the basic interpolation
theorem that can be applied to elliptic problems. We thus take p = q = 2.

Theorem 3.5.18 Under conditions as in lemma 3.5.17, for a regular family of
finite element approximations, the following error estimate is valid

‖u− Πhu‖m,Ω ≤ C hk+1−m |u|k+1,∆h
.

Here C is independent of h, 0 ≤ m ≤ k + 1, u ∈ Hk+1(Ω) and Πh is the
interpolation operator that leaves invariant all polynomials of degree k or less.

Definition 3.5.19 The spaces Sh, based on a regular family Fh of finite el-
ements, such that the requirements of lemma 3.5.12 are satisfied for p =
2, i.e.they are k-th degree piecewise polynomials in Hm(Ω), are denoted by

Sk,m
h (Ω), 0 ≤ m ≤ k + 1.

The spaces Sk,m
h (Ω) contain all k-th order piecewise polynomials and are subsets

ofHm(Ω). By the preceding theorem we know that for a sequence {Sk,m
h (Ω)}h→0,

h ≤ h0, u ∈ Hr(Ω), r ≥ 0 and 0 ≤ s ≤ min(r,m) there exists a uh ∈ Sk,m
h (Ω)

and a constant C ≥ 0, independent of h, such that

‖u− uh‖s ≤ C hσ ‖u‖r,

where σ = min(k + 1 − s, r − s).

Corollary 3.5.20
Under the same conditions as in theorem 3.5.18, let u be the solution to a
second order elliptic problem and let uh be the associated discrete solution.
Then

‖u− uh‖1,Ω = O(hk).

Sufficient for convergence for a second order problem is thus k = 1, or approxi-
mation by piecewise linear functions.
Proof: Because we consider a second order problem we have m = 1 and the
theorem follows by combining theorem 3.5.1 and theorem 3.5.18.
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Inverse inequalities

We now treat a property of piecewise polynomial spaces that has no immediate
use at this point. However it is an easy consequence of the foregoing and we
will use it in section 3.5.6.

Definition 3.5.21 (H4) A family Th of triangulations satisfies an inverse as-
sumption if there exists a ν such that

∀ T ∈ ∪hTh,
h

hT
≤ ν.

In fact an inverse assumption implies that the elements can not differ too much
in size, which in turn implies that functions in the approximation space have
derivatives that will not ”blow up”, unless the function itself ”blows up”.

It is clear that this assumption is by no means restrictive in practice: the
’usual’ finite element spaces satisfy an inverse assumption.

For such families of spaces we establish the following equivalence between
semi-norms. Note that σ appears in the regularity assumption (H1).

Theorem 3.5.22 Let there be given a regular family of triangulations Th in
R

d, satisfying an inverse assumption. Let 0 ≤ m ≤ k, p, q ∈ [1,∞], and

P̂ ⊂W k,p(Ω̂) ∩Wm,q(Ω̂),

then ∃C = C(ν, σ, k,m, p, q) such that for all vh ∈ Vh

|vh|k,p,∆h
≤ C

meas(Ωh)max{0,1/q−1/p}hk−m
|vh|m,q,∆h

, (3.71)

with the usual adaptation if p or q is ∞.
Proof: See [4, p. 141].

Example 3.5.23
Assume Vh ∈ W l,r for some (l, r), then the above inequalities can be given for
the seminorms |.|l,r,Ω. For instance suppose assumption (H3) is valid and that

P̂ ⊂ H1(Ω), then

|vh|0,∞,Ω ≤ C

hn/2
|vh|0,Ω,

and

|vh|1,Ω ≤ C

h
|vh|0,Ω. (3.72)

If P̂ ⊂W 1,∞(Ω), then

|vh|1,∞,Ω ≤ C

h
|vh|0,∞,Ω.
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Example 3.5.24
We can also easily give inequalities for the norms: for instance, from (3.72) we
find

‖vh‖1,Ω ≤ C

h
|vh|0,Ω. (3.73)

This can be applied for the following case. Take Ω = [a, b]. Consider S1,1
h (Ω),

the space of piecewise linear functions on a regular partition ∆h, then (3.73) is
valid for each vh ∈ S1,1

h (Ω).

Motivated by this we come to the following definition, suited for the function
spaces Sk,m

h (Ω).

Definition 3.5.25 A family of piecewise polynomial spaces {Sk,m
h (Ω)}h→0 has

the inverse property if

∃C : ∀s ≤ m, hm ‖uh‖m ≤ C hs ‖uh‖s, ∀uh ∈ Sk,m
h (Ω).

Error estimate in the L
2-norm

In Section 3.5.4 we saw that under conditions we can assure that ‖u−uh‖1,Ω =
O(hk). This means that at least ‖u− uh‖0,Ω = O(hk). In this section we show
that, under mild additional assumptions, ‖u− uh‖0,Ω = O(hk+1).

Theorem 3.5.26 (Aubin-Nitsche Lemma)
Let Lu = f be a problem of order 2m and let Vh ⊂ V = Hm(Ω). The continuous
problem is to find u such that B(u, v) = f(v) for all v ∈ V . The discrete problem
is: find uh such that B(uh, vh) = f(vh) for all vh ∈ Vh. Assume that for all
g ∈ H−s there is a solution to LT z = g (the adjoint problem), such that

‖z‖2m−s ≤ C ‖g‖−s , s ∈ [0,m] ,

(the regularity of the adjoint problem). Then

‖u− uh‖s,Ω ≤ C hm−s ‖u− uh‖m,Ω. (3.74)

Proof: Define the error e = uh − u. For any 0 ≤ s ≤ m:

‖e‖s = sup
g∈H−s

|g(e)|
‖g‖−s

,

We first evaluate |g(e)|. Let z be the solution to the adjoint problem B(w, z) =
g(w), for all w ∈ Hs(Ω). In particular B(e, z) = g(e), or, as B(e, vh) = 0 for all
vh ∈ Vh,

B(e, z − vh) = g(e).

So

|g(e)| ≤ ‖B‖ ‖e‖m inf
vh∈Vh

‖z − vh‖m.
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Now, provided r ≤ k + 1 −m,

|g(e)| ≤ ‖B‖ ‖e‖m C hr‖z‖m+r,

due to theorem 3.5.18. If we put r = m− s and provided 2m− s ≤ k + 1,

|g(e)| ≤ ‖B‖ ‖e‖m C hm−s ‖z‖2m−s

≤ ‖B‖ ‖e‖m C hm−s ‖g‖−s,

because of the regularity of the adjoint problem. So, if we compute the error in
the s-norm, we get

‖e‖s = sup
g∈H−s

|g(e)|
‖g‖−s

≤ C hm−s ‖e‖m.

Corollary 3.5.27
For the error in L2-norm for a second order problem we get

‖u− uh‖0,Ω ≤ C hk+1|u|k+1,∆h
,

provided k ≥ 1.

Remarks:

• The regularity of the adjoint problem is not very restrictive. For example
in case of a symmetric problem it is a trivial matter.

3.5.5 Pointwise error estimate and superconvergence

In this section we restrict ourselves to a second order linear ordinary differential
equation on Ω = [a, b] ⊂ R

Ly ≡ − d

dx
(a2(x)

d

dx
y) + a1(x)

d

dx
y + a0(x)y = s(x), (3.75)

with a2(x) 6= 0 and homogeneous Dirichlet boundary conditions

y(a) = y(b) = 0.

We will use the Greens function for equation (3.75): i.e. the function G(x; ξ)
such that 11

y(x) = −
∫ b

a

G(x; ξ) s(ξ) dξ, (3.76)

11The function G is the resolvent kernel of the differential equation.
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for any function s(x). A priori, it is not clear that such a function G(x; ξ) can
exist, but we will construct it. Therefore, let ϕ1 and ϕ2 be two independent
solutions to the adjoint (transposed) equation

LT y ≡ − d

dx
(a2(x)

d

dx
y) − d

dx
(a1(x)y) + a0(x)y = 0,

with boundary conditions ϕ1(a) = 0, ϕ′1(a) = 1, ϕ2(b) = 0 and ϕ′2(b) = 1.

Now G(x; ξ) is constructed as

G(x; ξ) =

{

ϕ1(x)ϕ2(ξ)/z(x) if x < ξ
ϕ1(ξ)ϕ2(x)/z(x) if ξ < x,

(3.77)

where12

z(x) := a2(x) (ϕ1(x)ϕ
′
2(x) − ϕ′1(x)ϕ2(x)) .

Remark:
It is easily seen that this function z(x) satisfies the equation a2z

′ + a1z = 0. So
z has a unique sign. If z ≡ 0 then ϕ1 and ϕ2 are linearly dependent. (In that
particular case the homogeneous problem has a non-trivial solution and G(x, ξ)
does not exist.)

By substitution of (3.76) in (3.75), it is not hard to verify that G(x; ξ) is the
Green’s function indeed. Other properties of this Greens function G(x; ξ) are:

1. G(x; ·) ∈ H1
0 (Ω) ∩ C2( (a, x) ∪ (x, b) ),

2. LTG(x; ·) ≡ 0 on (a, x) ∪ (x, b),

3.

jumpξ=x

∂

∂ξ
G(x; ξ) := lim

h→0

∂G(x; ξ + h)

∂ξ
− lim

h→0

∂G(x; ξ − h)

∂ξ
=

1

a2(x)
.

If xi is a nodal point in a partition ∆h of Ω, then G(xi, ·) can be approxi-

mated well in Sk,1
h (Ω). Under this condition we see that

inf
vh∈Sk,1

h

‖G(xi; ·) − vh‖m,∆h
≤ C hk+1−m ‖G(xi; ·)‖k+1,∆h

.

So, for m = 1

inf
vh∈Sk,1

h
(Ω)

‖G(x; ·) − vh‖1 ≤
{

C hk |G|k+1,∆h
if x = xi,

C h0 |G|1 if x 6= xi.
(3.78)

The last estimate is true because in this case G(x; ·) is not piecewise Hk+1 on
∆h, but it still is continuous, so in H1.

12The determinant ϕ1ϕ′

2
− ϕ′

1
ϕ2 =

∣

∣

∣

ϕ1 ϕ′

1

ϕ2 ϕ′

2

∣

∣

∣
is called the Wronskian.
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Theorem 3.5.28 If equation (3.75) is discretised by a finite element method

with Sh = Vh = Sk,1
h (Ω), then we have the pointwise error estimate

|y(x) − yh(x)| ≤
{

C h2k if x = xi ∈ ∆h,

C hk if x 6∈ ∆h.
(3.79)

Proof: y ∈ H1
0 (Ω) is the solution to B(y, v) = f(v), ∀v ∈ H1

0 (Ω). Similarly

yh ∈ Sk,1
h (Ω) is the solution to B(yh, vh) = f(vh), ∀vh ∈ Sk,0

h (Ω), so for e :=

y − yh we have B(e, vh) = 0 ∀vh ∈ Sk,1
h (Ω). Now

y(x) = −
∫ b

a

G(x; ξ) f(ξ) dξ = −
∫

G(x; ξ)Ly(ξ)dξ = −B(y,G(x; ·)),

and analogously for yh, so

e(x) = −B(e,G(x; ·))
= −B(e,G(x; ·) − vh), ∀vh ∈ Sk,1

h (Ω).

This gives
|e(x)| ≤ ‖B‖ ‖e‖1 inf

vh

‖G(x; ·) − vh‖1.

Because B is bounded, ‖e‖1 = O(hk) and (3.78) the theorem follows.

The phenomenon that the order of accuracy of an approximation at particular
points is better than the estimate in a global norm, is called superconvergence.

Remark:
If this same problem is tackled with functions in S3,2(Ω), there will be no super-
convergence. Then estimate (3.78) fails to be better at the points of ∆h.

3.5.6 The influence of the quadrature rule

In the previous sections we have given estimates for the error ‖y− yh‖, that we
obtain when we solve the discrete equation instead of the continuous equation.
As we have seen in section 3.4.3 it may be so that we have to compute the
integrals in the discrete equations using a quadrature rule. So we not only have
the error ‖y−yh‖ but also an additional error ‖yh−ỹh‖ (which can be associated
with the consistency error of theorem 3.5.3). This could disturb all the error
estimates we have given so far. In order to take this into account we require that
the additional error should be at most of the same order as the discretisation
error. This will lead to some requirement for accuracy of the quadrature rule.

In this section we will formulate these requirements for two cases: first we
show under which conditions the global error estimate is preserved (as in the-
orem 3.5.18) and further we discuss the how we can preserve the pointwise
superconvergence of theorem 3.5.28.
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Definition 3.5.29 A quadrature rule of the form

∫

Ω

f dx ≈
∑

i

wi f(xi)

is called to be of degree t if it integrates any polynomial f of degree t exactly.

Theorem 3.5.30 Given a repeated quadrature rule of degree t, applied to a
partition ∆h, then there exists, for f ∈ C(Ω) ∩W t+1,p(Ωe), ∀Ωe, a piecewise
polynomial Πhf of degree t such that it interpolates f on the nodes, i.e.

f(xi) = Πhf(xi)

and such that

‖f − Πhf‖m,p,∆h
≤ C ht+1−m |f |t+1,p,∆h

.

Proof: Take a (t + 1)-points interpolating polynomial of degree t on every
Ωe: each of this gives the estimate of lemma 3.5.17. Provided the set of nodes
contains the quadrature points the estimate is valid.

Corollary 3.5.31
When a quadrature rule of degree t is used the quadrature error is O(ht+1):

∫

Ωe

|f − Πhf | dx ≤ C ht+1
∑

|α|=t+1

∫

Ωe

|Dαf(x)| dx. (3.80)

Example 3.5.32
A t+ 1-point Newton-Coates formula has degree t. An n-points Gauss quadra-
ture has degree 2n− 1; an n-point Lobatto formula has degree 2n− 3.

In the following we will restrict ourselves to second order elliptic problems, and
we use a quadrature of degree t, we will assume that all the coefficients in the
partial differential equation are (piecewise) Ct+1(Ω)-functions.

In order to study the influence of the quadrature on the accuracy of the FEM
we have to distinguish three different problems:

1. the continuous problem
find y ∈ S such that B(y, v) = f(v), for all v ∈ V ;

2. the discrete problem
find yh ∈ Sh such that B(yh, vh) = f(vh) for all vh ∈ Vh;

3. the discrete problem with quadrature
find ỹh ∈ Sh such that Bh(ỹh, vh) = fh(vh), for all vh ∈ Vh.
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Here fh is a linear and Bh is a bilinear functional in which the integrals (see
Section 3.4.3) are replaced by a repeated quadrature rule of degree t on the
partition ∆h.

To compute the additional error we first have to make an estimate of the
amount by which fh deviates from f , and Bh deviates from B.

Lemma 3.5.33 When using a quadrature rule of degree t we have

|f(vh) − fh(vh)| ≤ C ht+1‖vh‖k,∆h
(3.81)

and
|B(ỹh, vh) −Bh(ỹh, vh)| ≤ C ht+1 ‖ỹh‖k,∆h

‖vh‖k,∆h
. (3.82)

Proof: We only give the proof for fh and f , the other goes analogously. Using
the operator Πh, as introduced in Theorem 3.5.30, we have

E := |f(vh) − fh(vh)| =
∑

e

|
∫

Ωe

((fv) − Πh(fv)) dx|.

Using (3.80) we have

E ≤ C ht+1
∑

e

∫

Ωe

|Dt+1(fv)| dx,

so, by Leibniz’ rule and the fact that vh ∈ Vh,

E ≤ C ht+1
k
∑

l=0

∑

e

∫

Ωe

|(Dt+1−lf)(Dlvh)| dx ≤ C ht+1 ‖vh‖k,∆h
.

The following theorem states the conditions under which the accuracy as given
in theorem 3.5.18 is preserved.

Theorem 3.5.34 Let S = V = H1(Ω), ∆h a regular partition of Ω and assume
Sh and Vh satisfy the inverse property. Further, let B : Sh×Vh → R be bounded
and coercive and let fh and Bh be the approximations of f and B obtained by
quadrature t ≥ 2k − 2. Then

‖y − ỹh‖1,Ω = O(hk).

Proof: Let yh be the solution of the discrete problem and ỹh the solution to
the discrete equation with quadrature. We seek a upper bound of ‖yh − ỹh‖ by
considering

‖yh − ỹh‖1 ≤ 1

γh
sup

vh∈Vh

|B(yh − ỹh, vh)|
‖vh‖1

,
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in which γh is the (discrete) coercivity constant of B.
So compute

|B(yh − ỹh, vh)| ≤ |B(yh, vh) −Bh(ỹh, vh)| + |Bh(ỹh, vh) −B(ỹh, vh)|
i
= |f(vh) − fh(vh)| + |Bh(ỹh, vh) − B(ỹh, vh)|
ii
≤ C ht+1 ‖vh‖k,∆h

+ C ht+1 ‖ỹh‖k,∆h
‖vh‖k,∆h

iii
≤ C ht+2−k ‖vh‖1 +

C ht+2−k ‖vh‖1 {‖yh‖k,∆h
+ ‖yh − ỹh‖k,∆h

}
iiii
≤ C ht+2−k ‖vh‖1 {1 + ‖yh‖k,∆h

} +

C ht+3−2k ‖vh‖1 ‖ỹh − yh‖1,∆h
.

We used (i) that yh is a solution of the discrete problem and ỹh is the solution
to the discrete problem with quadrature, (ii) the estimates of Lemma 3.5.33
for the quadrature, (iii) the fact that Vh has the inverse property and (iiii) that
Sh has the inverse property.

Thus,

‖yh − ỹh‖1{1 − C ht+3−2k} ≤ C ht+2−k {1 + ‖yh‖k,∆h
}.

Provided h is small enough (C ht+3−2k < 1), we have

‖yh − ỹh‖1 ≤ C ht+2−k {1 + ‖yh‖k,∆h
}. (3.83)

To preserve the accuracy t should satisfy both t+ 2− k ≥ k and t+ 3− 2k > 0,
both of which are satisfied if t ≥ 2k − 2.

For the superconvergence as treated in Section 3.5.5 we now answer the same
question: what should be the degree of the quadrature to preserve the pointwise
superconvergence accuracy?

Theorem 3.5.35 Let the two point boundary value problem (3.75) be discre-

tised by a finite element method with Sh = Vh = Sk,1
h (Ω), and let the quadrature

rule be of degree t, with t ≥ 2k − 1, then

|y(x) − ỹh(x)| =

{

O(h2k), x ∈ ∆h,
O(hk), x 6∈ ∆h.

Proof: We introduce Gi = G(xi, ·), xi a nodal point, and consider

|yh(xi) − ỹh(xi)| = |B(yh − ỹh, Gi)|.

First

B(yh − ỹh, Gi) = B(yh − ỹh, Gi − vh) +B(yh − ỹh, vh)
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= B(yh − ỹh, Gi − vh) +B(yh, vh) −Bh(ỹh, vh)

+Bh(ỹh, vh) −B(ỹh, vh)

= B(yh − ỹh, Gi − vh) + f(vh) − fh(vh)

+Bh(ỹh, vh) −B(ỹh, vh),

so, using the continuity of B

|B(yh − ỹh, Gi)| ≤ M ‖yh − ỹh‖1 ‖Gi − vh‖1 + |f(vh) − fh(vh)|
+|Bh(ỹh, vh) − B(ỹh, vh)|

≤ M ‖yh − ỹh‖1 ‖Gi − vh‖1 + C ht+1 ‖vh‖k,∆h

+C ht+1 ‖ỹh‖k,∆h
‖vh‖k,∆h

(3.83)

≤ M C ht+2−k {1 + ‖yh‖k,∆h
} ‖Gi − vh‖1

+C ht+1 ‖vh‖k,∆h
{1 + ‖yh‖k,∆h

}
≤ M C ht+2−k {1 + ‖yh‖k,∆h

} ‖Gi − vh‖1

+C ht+1 ‖Gi − vh‖k,∆h
{1 + ‖yh‖k,∆h

}
+C ht+1 ‖Gi‖k,∆h

{1 + ‖yh‖k,∆h
}

(3.78)

≤ C ht+1 ‖Gi‖k,∆h
+ C ht+1 ‖Gi‖k,∆h

≤ C ht+1 ‖Gi‖k,∆h
.

According to theorem 3.5.28 y(x) − yh(x) = O(h2k) in nodal points x = xi ∈
∆h, so we conclude that by the condition t+1 ≥ 2k also y(x)− ỹh(x) = O(h2k)
in nodal points.

Example 3.5.36
A Gaussian quadrature on k points or a Lobatto quadrature on k+1 points are
sufficiently accurate to preserve superconvergence.
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diffusive flux, 2
Dirac delta function, 59
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Euler equations, 6
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finite volume method, 28
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forward Euler method, 33
function spaces, 51
functionals, 53

Galerkin method, 28
Gauss’ theorem, 2
generalised derivative, 60
generalised function, 59
global discretisation error, 36
global finite element approximation,
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gradient, 2
Greens function, 102

Heaviside function, 60
Hermite interpolate, 81
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Hilbert space, 50
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IBVP, 79
initial-boundary-value problem, 79
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inner product space, 49
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inverse property, 101
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isoparametric elements, 86

Lagrange interpolation, 70
Laplace equation, 46
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linear functional, 53
linear operator, 53
linear space, 49
linearisation, 30
Lipschitz continuous, 51
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multi-integer, 51
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nodal points, 92
non-unique solution, 14
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numerical diffusion, 37

Oleinik, 15, 16
order of the differential equation, 1
ordinary differential equation, 1

parabolic, 5
partial differential equation, 2
partitioning, 19
PDE, 1
Petrov-Galerkin, 28
piecewise Lagrange interpolation, 70
piecewise polynomials, 21
Poincaré’s Lemma, 64
Poisson equation, 3
positive

strictly, 56
positive definite, 46
potential equation, 46
principle part, 3, 5, 46
projection Πh, 94, 98, 105

quadrature rule, 75
quasi-linear, 3
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reference element, 93
regular family, 97
regularity, 101

scalar field, 49
scalar product, 49
semi-discretisation, 31, 79
semi-norm, 49
separable, 50
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sesquilinear functional, 54
sesquilinear operator, 53
Sobolev space, 61
Sobolev’s Embeddings Theorem, 62
spectral method, 21
splines, 83
staggered grid, 22
standard hat functions, 71
static condensation, 78
steady equations, 4
stiffness matrix, 74
Stokes equations, 24
strictly positive, 56
sub-coercive, 56
superconvergence, 104
symmetric operator, 53
symmetric problem, 67

topology, 60
trace, 64
triangle inequality, 49

unisolvent set, 86
upwind approximation, 32

variational method, 26
vector space, 49
vertex centered, 21

wave equation, 3
weak solution, 11, 66
weak topology, 60
weakly convergent, 56
weighted residual method, 27
weighting function, 54
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