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1 Introduction

The area of communication complexity deals with the following type of distributed problem. There are two
separated parties, called Alice and Bob. Alice receives some input x ∈ X , Bob receives some y ∈ Y , and
together they want to compute some function f(x, y). As the value f(x, y) will generally depend on both
x and y, neither Alice nor Bob will have sufficient information to do the computation by themselves, so
they will have to communicate in order to achieve their goal. In this model, individual computation is free,
but communication is expensive and has to be minimized. How many bits do they need to communicate
between them in order to solve this? Clearly, Alice can just send her complete input to Bob, but sometimes
more efficient schemes are possible.

This model was introduced by Yao [Yao79] and has been studied extensively, both for its applications
(like lower bounds on Boolean circuits and on all sorts of data structures) and for its own sake. Kushilevitz
and Nisan [KN97] is the standard book about this area.

2 Deterministic protocols

First we sketch the setting for deterministic communication complexity. Alice and Bob want to compute
f : D → {0, 1}. We will usually consider D = X × Y with X = Y = {0, 1}n, so both inputs are n-bit
strings. Alice receives input x ∈ X , Bob receives input y ∈ Y , and their goal is to compute f(x, y) on these
inputs. Some often studied functions are:

• Equality: EQ(x, y) = 1 iff x = y

• Inner product: IP(x, y) = x · y (mod 2) =
∑

i xiyi (mod 2)
(for x, y ∈ {0, 1}n, xi is the ith bit of x and x ∧ y ∈ {0, 1}n is the bit-wise AND of x and y)

• Disjointness: DISJ(x, y) = NOR(x ∧ y). This function is 1 iff there is no i where xi = yi = 1
(viewing x and y as characteristic vectors of sets, the function is 1 iff the two sets are disjoint)

A communication protocol is a distributed algorithm where first Alice does some individual computation,
and then sends a message (of one or more bits) to Bob, then Bob does some computation and sends a
message to Alice, etc. Each message is called a round. After one or more rounds the protocol terminates
and both parties should know the outcome. The cost of a protocol is the total number of bits communicated
on the worst-case input. A deterministic protocol for f always has to output the right value f(x, y) for
all (x, y) ∈ D. Since we want both parties to know the final answer, we will assume that the last bit
communicated is the output. We use D(f) to denote the minimal cost among all deterministic protocols
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for f . Note that if X = {0, 1}n then always D(f) ≤ n + 1: the trivial protocol where Alice sends her
complete input to Bob gives Bob full information (he already has y), so he can compute f(x, y) and send it
back.

Many functions can be computed with very little communication. For instance, suppose f is the parity
function on 2n bits. Then Alice can just compute the parity of her n-bit x, send it over in 1 bit, Bob adds it
to the parity of his y, and sends back the 1-bit result. Similarly, if f is the majority function, then Alice can
just count the number of 1s in x and send over the result in log(n+ 1) bits.

2.1 Rectangles

A rectangle is a set R ⊆ X × Y that is of the form R = A × B with A ⊆ X and B ⊆ Y . For example,
if n = 2 and A = {00, 01}, B = {01, 10} then R = A × B = {(00, 01), (00, 10), (01, 01), (01, 10)} is a
rectangle. The following result is a fundamental property of deterministic protocols.

Lemma 1 If a deterministic protocol has communication c, then there exist 2c rectangles R1, . . . , R2c that
partition X × Y , such that the protocol gives the same output ai for each (x, y) ∈ Ri.

We omit the easy proof of this lemma, which is by induction on c. For example, suppose there is only one
k-bit message m going from Alice to Bob and then Bob returns the 1-bit output, then the 2k+1 rectangles
would be of the form Rm,a = Am × Ym,a, with m ∈ {0, 1}k and a ∈ {0, 1}, where Am is the set of
x’s for which Alice sends k-bit message m, and Ym,a is the set of y’s for which Bob returns output a when
receiving messagem. Note that if our protocol computes f correctly, then the rectangles are “monochrome”:
the protocol returns the same answer f(x, y) for all (x, y) ∈ Ri.

2.2 Lower bounds: the rank method

Let Mf be the |X| × |Y | matrix whose entries are defined by Mf (x, y) = f(x, y). This is called the
communication matrix of f . It can be viewed as a 2-dimensional truth table. We use rank(f) to denote the
rank of this matrix over the field of real numbers. For example, the communication matrix for the equality
function is the 2n×2n identity matrix, which has 1s on its diagonal and 0s elsewhere. Hence rank(EQ) = 2n.

Suppose we have some c-bit deterministic protocol that computes f . By the previous section, this
partitions the input spaceX×Y into rectangles R1, . . . , R2c . Each input (x, y) that has f(x, y) = 1, occurs
in exactly one rectangle Ri for which ai = 1, hence we have

Mf =
∑
i:ai=1

Ri,

where we view Ri as a |X| × |Y | matrix with 1s on its elements and 0s elsewhere. Note that Ri is a matrix
of rank 1. Hence, using rank(A+B) ≤ rank(A) + rank(B), we get

rank(Mf ) = rank

( ∑
i:ai=1

Ri

)
≤
∑
i:ai=1

rank(Ri) =
∑
i:ai=1

1 ≤ 2c.

But that means that a lower bound on the rank of Mf implies a lower bound on the communication! We
have proved:

Theorem 1 D(f) ≥ log rank(f).
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For example, for equality we have rank(EQ) = 2n and hence D(EQ) ≥ n. This means that the trivial
protocol for equality is optimal! (up to 1 bit, but the argument can be refined to get an n+ 1 lower bound.)
Similarly, we can show that the matrices for disjointness and for inner product have full rank, and hence
deterministic protocols need to communicate n bits to compute those functions as well. Also, if you pick a
function f : {0, 1}n × {0, 1}n → {0, 1} at random (by choosing all values f(x, y) at random), then with
high probability this will have rank(f) = 2n and hence requires maximal communication.

3 Randomized protocols

In a randomized protocol, Alice and Bob may flip coins and the protocol has to output the right value f(x, y)
with probability ≥ 2/3 for all (x, y) ∈ D. We can either allow Alice and Bob to toss coins individually
(private coin) or jointly (public coin). We will opt for private coin flips here. This makes not much difference:
a public coin can save at most O(log n) bits of communication [New91], compared to a protocol with a
private coin. We use R(f) to denote the minimal cost among all randomized protocols (with private coin)
that compute function f .

3.1 An efficient protocol for the Equality problem

In one of the previous lectures we already described an efficient randomized protocol for testing if two
polynomials are equal or not: just choose a random point from a sufficiently large field, and see if the two
polynomials are equal on that point. Alice and Bob view their inputs x = x0 . . . xn−1 and y = y0 . . . yn−1

as the coefficients of single-variate polynomials of degree at most n− 1:

A(z) =
n−1∑
i=0

xiz
i and B(z) =

n−1∑
i=0

yiz
i.

Consider some field F of size q ≥ 3n. If x = y then A(z) = B(z) for all z ∈ F, but if x 6= y then
A(z) 6= B(z) for at least 2/3 of the z ∈ F (by Schwartz-Zippel). Hence if Alice sends Bob a randomly
chosen z ∈ F and the value A(z), then with probability at least 2/3, Bob can give the right answer by
computing B(z) and comparing it with A(z). The communication is only O(log n) bits, so we have proved
that R(EQ) = O(log n). Accordingly, randomized protocols for equality are exponentially more efficient
than deterministic protocols in this communication context.

3.2 Lower bounds: the discrepancy method

Randomized protocols flip coins, but we can fix these coins to obtain a deterministic protocol. Suppose
randomized protocol A uses c bits of communication and has success probability 2/3 on all inputs. Let
A(x, y, rA, rB) = 1 if the protocol gives the correct output f(x, y) on input x, y using specific coin flips rA
for Alice and rB for Bob, and A(x, y, rA, rB) = 0 otherwise. For each input x, y we have

ErA,rB [A(x, y, rA, rB)] ≥ 2/3,

where the expectation is taken over uniformly chosen strings rA and rB . Now let µ : X × Y → [0, 1] be a
probability distribution on the set of inputs for f . Then also

Eµ,rA,rB [A(x, y, rA, rB)] ≥ 2/3,
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where the expectation is taken over rA, rB , and x, y distributed according to µ. By the averaging principle,
there exists a way to fix rA and rB such that the success probability (under µ) of the resulting deterministic
protocol is at least 2/3. Accordingly, if we want to lower bound the randomized communication complexity
of a function, it suffices to find some “hard” input distribution µ, and to show that all deterministic protocols
that have error at most 1/3 under that distribution, need a lot of communication.

The reason the step to deterministic protocols is helpful, is that deterministic protocols partition the
input space into rectangles as we’ve seen before. Suppose we can show that all “large” rectangles in the
communication matrix have roughly as many 0s as 1s in them (weighed according to µ). Then the protocol
will make a large error on all large rectangles. Conversely, if we know the protocol does not make a large
error, most of its rectangles must have been “small”. But that can only be if the protocol partitions the input
set into many rectangles. Since the number of rectangles induced by the protocol is 2c, the communication
c must have been large. This idea leads to the following lower bound method. The discrepancy of rectangle
R = A×B under µ is the difference between the weight of the 0s and the 1s in that rectangle:

δµ(R) =
∣∣µ(R ∩ f−1(1))− µ(R ∩ f−1(0))

∣∣
The discrepancy of f under µ is the maximum over all possible rectangles:

δµ(f) = max
R

δµ(R).

If f has small discrepancy, that means that all “large” rectangles are roughly balanced. Suppose a deter-
ministic protocol partitions the input space into rectangles R1, . . . , R2c . Suppose it has success probability
2/3. The best thing that the protocol can do if it has to give one output ai for all inputs in the rectangle Ri,
is to set ai to the bit-value with highest weight in that rectangle. This contributes µ(Ri ∩ f−1(ai)) to the
success probability, and µ(Ri ∩ f−1(1− ai) to the failure probability. Hence the overall success probability
is
∑

i µ(Ri ∩ f−1(ai)), and the overall error probability is
∑

i µ(Ri ∩ f−1(1 − ai)). Since the difference
between these two has to be at least 2/3− 1/3 = 1/3, we have

1/3 ≤
2c∑
i=1

µ(Ri ∩ f−1(ai))−
2c∑
i=1

µ(Ri ∩ f−1(1− ai))

≤
2c∑
i=1

|µ(Ri ∩ f−1(ai))− µ(Ri ∩ f−1(1− ai))| =
2c∑
i=1

δµ(Ri) ≤ 2cδµ(f).

This is a lower bound on the communication: c ≥ log(1/3δµ(f)). Accordingly, a distribution µ where
δµ(f) is small gives a lower bound on the communication of deterministic protocols for f under µ, and then
the same lower bound applies to randomized protocols. We have proved

Theorem 2 For every input distribution µ we have R(f) ≥ log(1/3δµ(f)).

3.3 Discrepancy of the inner product function

Now consider the inner product function, defined by IP(x, y) = x · y (mod 2). We will show that its
discrepancy under the uniform distribution is very small. We analyze the 2n × 2n matrix M whose (x, y)
entry is (−1)x·y. This is just the communication matrix for IP, with 0s replaced by 1s, and 1s replaced by
−1s. Lindsey’s lemma shows that large rectangles in M are quite balanced:
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Lemma 2 (Lindsey) For every rectangle R = A × B, the absolute value of the sum of M -entries in that
rectangle is at most

√
|A| · |B| · 2n.

Proof. It is easy to see that M is symmetric and M2 = 2nI . This implies, for every vector v,

‖Mv ‖2 = vTMTMv = 2nvT v = 2n‖ v ‖2.

Let vA ∈ {0, 1}2
n

and vB ∈ {0, 1}2
n

be the characteristic (column) vectors of the sets A and B. The sum
of M -entries in R is

∑
a∈A,b∈BMab = vTAMvB . We can bound this using Cauchy-Schwarz:

|vTAMvB| ≤ ‖ vA ‖ · ‖MvB ‖ = ‖ vA ‖ ·
√

2n‖ vB ‖ =
√
|A| · |B| · 2n.

2
Let µ(x, y) = 1/22n be the uniform input distribution. Note that the discrepancy of the rectangle R

under µ is exactly the difference of +1’s and −1’s in R, divided by 22n. By Lindsey’s lemma, this is
δµ(R) ≤

√
|A| · |B|/23n/2. Because |A| and |B| are each at most 2n, it follows that the discrepancy of the

inner product function under the uniform distribution is δµ(IP) ≤ 2−n/2. Hence Theorem 2 implies a lower
bound of n/2− log(3) bits on the randomized communication complexity of IP.

Also for the disjointness function one can prove a linear randomized lower bound, but that requires a
new technique (beyond the scope of this introduction), because its discrepancy cannot be made very small:
δµ(DISJ) ≥ 1/(2n+ 1) for every input distribution µ.

4 Application: lower bound on the area-time tradeoff in chips

Communication complexity has many applications in other computational settings, in particular for proving
lower bounds. These applications all have the same flavor: show that, as part of its task, your model is
actually computing some communication problem f(x, y). Lower bounds on the communication complexity
of f then imply lower bounds for the model at hand. We give a simple example here.

Suppose we have a chip that computes a function f : {0, 1}m → {0, 1}. Abstractly, the chip can be
viewed as a planar rectangle with m input ports and one output port. Its width a and height b are measured
in units ∆, which is the minimal width of a wire. The area is A = ab. The chip works in cycles. In each
cycle, ports can do local computation, and can send a bit (across some wire) to another port. The time T is
the number of cycles that the chip uses for its computation. Now make some imaginary “cut” in the chip,
call themA input ports on the left “Alice” (and call theirmA bits x), and call themB input ports on the right
“Bob” (with mB-bit input y). We can make the cut so that only O(

√
A) wires go between left and right.

Note that the chip solves the communication complexity problem f(x, y) using only O(T
√
A) many bits of

communication: in each cycle it only sends O(
√
A) bits between left and right. Hence the communication

complexity D(f) (for our specific split into A- and B-variables) gives a lower bound on T
√
A.
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