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QUANTUM SPEEDUP FOR GRAPH SPARSIFICATION, CUT
APPROXIMATION, AND LAPLACIAN SOLVING\ast 

SIMON APERS\dagger AND RONALD DE WOLF\ddagger 

Abstract. Graph sparsification underlies a large number of algorithms, ranging from approx-
imation algorithms for cut problems to solvers for linear systems in the graph Laplacian. In its
strongest form, ``spectral sparsification"" reduces the number of edges to near-linear in the number of
nodes, while approximately preserving the cut and spectral structure of the graph. In this work we
demonstrate a polynomial quantum speedup for spectral sparsification and many of its applications.
In particular, we give a quantum algorithm that, given a weighted graph with n nodes and m edges,
outputs a classical description of an \epsilon -spectral sparsifier in sublinear time \widetilde O(

\surd 
mn/\epsilon ). This contrasts

with the optimal classical complexity \widetilde O(m). We also prove that our quantum algorithm is optimal
up to polylog-factors. The algorithm builds on a string of existing results on sparsification, graph
spanners, quantum algorithms for shortest paths, and efficient constructions for k-wise independent
random strings. Our algorithm implies a quantum speedup for solving Laplacian systems and for
approximating a range of cut problems such as min cut and sparsest cut.
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1. Introduction and summary. The complexity of many graph problems nat-
urally scales with the number of edges in the graph. As depicted in Figure 1, graph
sparsification aims to reduce this number of edges, while preserving certain quantities
of interest. When considering, for instance, the approximation of cut problems such
as min cut or sparsest cut, the aim is to sparsify the graph while approximately
preserving its cut values. This was first shown to be possible in the pioneering work
of Karger [62] and later Bencz\'ur and Karger [18]. They introduced the concept of
cut sparsifiers, which are reweighted subgraphs that \epsilon -approximate all cuts in the
graph. We can then solve cut problems in the hopefully sparser subgraph, yielding an
approximate solution to the original problem. Quite surprisingly, they showed that
for any undirected graph with n nodes and m edges, there always exists a cut sparsi-
fier with as few as \widetilde O(n/\epsilon 2) edges, and moreover this sparsifier can be constructed in
time \widetilde O(m). This result lies at the basis of \widetilde O(m)-time approximation algorithms for,
among others, min cut [62], min st-cut [65, 84, 89], sparsest cut, and balanced
separator [11, 89]. We refer the interested reader to [86, 90] for surveys on the many
applications of cut approximation.

In their breakthrough work on Laplacian solvers, Spielman and Teng [96] strength-
ened the notion of cut sparsifiers to so-called spectral sparsifiers. Rather than
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1704 SIMON APERS AND RONALD DE WOLF

Fig. 1. A sparsifier H of a graph G is a sparse, reweighted subgraph that preserves certain
quantities such as the cut values (cut sparsifier) or quadratic forms in the graph Laplacian (spectral
sparsifier).

preserving the cut structure, these reweighted subgraphs preserve the spectral struc-
ture or quadratic form of the Laplacian associated to the graph. More specifically, H
is an \epsilon -spectral sparsifier of G if

(1 - \epsilon )LG \preceq LH \preceq (1 + \epsilon )LG,

with LH and LG the Laplacian matrices associated to H, respectively, G. Since
the value of any cut can be expressed as a quadratic form in the Laplacian, any
spectral sparsifier is necessarily a cut sparsifier. More importantly it implies that
Laplacian systems, which are linear systems in the graph Laplacian, can be approxi-
mately solved using the Laplacian of the sparsified graph. Similar to the case for cut
sparsifiers, Spielman and Teng showed the existence and \widetilde O(m)-time construction of
\epsilon -spectral sparsifiers with \widetilde O(n/\epsilon 2) edges. This formed a critical cornerstone of their\widetilde O(m)-time solver for Laplacian systems (and faster solvers in later papers; see, e.g.,
[57]), and the string of results and algorithms that followed it, commonly referred
to as the ``Laplacian paradigm"" [98]. Some examples among these are faster algo-
rithms for learning [108, 109], computer vision and image processing [72], spectral
clustering [82, 102], computing random walk properties [33], and most recently the
breakthrough almost-linear time algorithm for maximum flow and other flow problems
[27]. The sparsification results of Spielman and Teng were later refined most notably
by Spielman and Srivastava [93] and Batson, Spielman, and Srivastava [14]. In [14],
the existence of spectral sparsifiers with only O(n/\epsilon 2) edges was proved, which later
inspired the resolution of the famous Kadison--Singer problem by Marcus, Spielman,
and Srivastava [78].

1.1. Main result and applications. In this work we give a quantum algorithm
for spectral sparsification, leading to the theorem below.

Theorem 1.1 (quantum algorithm for sparsification). Fix n, m and let \epsilon \geq \sqrt{} 
n/m. There exists a quantum algorithm that, given adjacency-list access to a

weighted and undirected n-node graph G with m edges, outputs with high probabil-
ity the explicit description of an \epsilon -spectral sparsifier of G with \widetilde O(n/\epsilon 2) edges in time\widetilde O(

\surd 
mn/\epsilon ).

The algorithm outputs an explicit classical description in the form of the list of\widetilde O(n/\epsilon 2) edges of the sparsifier together with their new weights. Note the assumption
\epsilon \geq 

\sqrt{} 
n/m. This is because sparsification is only useful when the number of edges of

the sparsifier (roughly n/\epsilon 2) is at most the number of edges m of the original graph
G. Note also that \widetilde O(

\surd 
mn/\epsilon ) \in \widetilde O(m) whenever \epsilon \geq 

\sqrt{} 
n/m, and hence our quantum

algorithm provides a speedup over classical algorithms, whose \widetilde O(m) runtime can be
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QUANTUM SPEEDUP OF SPARSIFICATION AND APPLICATIONS 1705

shown to be optimal.1 For dense graphs, where m \in \Omega (n2), this improves the time
complexity from \widetilde O(n2) classically to \widetilde O(n3/2) quantumly.

Our algorithm assumes coherent access to the input graph in the form of quan-
tum queries to the adjacency lists. This assumption is very standard and allows us
to talk about the query complexity of our algorithm. In order to also be able to
talk about ``time"" complexity, we also assume a QRAM (coherent RAM) memory of\widetilde O(

\surd 
mn/\epsilon ) classical bits to which we can do classical writes, and whose bits we can

query in superposition. Our algorithm uses just O(log n) ``actual"" qubits. The ``time""
(complexity) in the above theorem then measures the number of elementary gates,
input queries, and QRAM writes and queries. See section 2 for more details about
our computational model.

The algorithm builds on a range of quantum and classical results, the most impor-
tant of which are classical sparsification algorithms by Spielman and Srivastava [93]
and Koutis and Xu [73], a spanner algorithm by Thorup and Zwick [99], a quantum
algorithm for single-source shortest-path trees by D\"urr et al. [41] and an efficient
k-independent hash function by Christiani, Pagh, and Thorup [30].

We prove a matching lower bound, showing that the runtime of our quantum
algorithm is optimal up to polylog-factors. In fact, we show that even outputting a
weaker cut sparsifier requires the same number of queries.

Theorem 1.2 (quantum lower bound for sparsification). Fix n, m and let \epsilon \geq \sqrt{} 
n/m. Any quantum algorithm that, given adjacency-list access to a weighted and

undirected n-node graph G with m edges, explicitly constructs with high probability an
\epsilon -cut sparsifier of G has query complexity \widetilde \Omega (\surd mn/\epsilon ).

Our algorithm provides a direct speedup for many of the aforementioned appli-
cations. In Table 1 we illustrate this speedup for a number of cut approximation
problems. All bounds follow by combining our sparsification algorithm with the best
classical algorithms, applied to the sparsifier. As far as we know, this is the first
quantum speedup for these cut approximation problems.

We can also use a classical Laplacian solver on the sparsifier to find a speedup for
Laplacian solving, i.e., solving the linear system Lx = b, where L is the Laplacian of
the original graph.

Theorem 1.3 (quantum Laplacian solver). Fix n, m and let \epsilon \geq 
\sqrt{} 
n/m. There

exists a quantum algorithm that, given adjacency-list access to a weighted and undi-

Table 1
Classical and quantum time complexity of cut approximation problems. All quantum bounds fol-

low from combining our quantum sparsification algorithm with the corresponding classical algorithm.
Parameter \delta is an arbitrarily small but positive constant.

Classical Quantum (this work)

.878-max cut \widetilde O(m) [10] \widetilde O(
\surd 
mn)

\epsilon -min cut \widetilde O(m) [63] \widetilde O(
\surd 
mn/\epsilon )

\epsilon -min st-cut \widetilde O(m+ n/\epsilon 5) [84] \widetilde O(
\surd 
mn/\epsilon + n/\epsilon 5)

O(
\surd 
logn)-sparsest cut/bal.sep. \widetilde O(m+ n1+\delta ) [88] \widetilde O(

\surd 
mn+ n1+\delta )

1Because there is an \Omega (m) query lower bound for deciding whether a graph is connected or not
(see, for instance, [42, Theorem 4.9, k = 1] for a stronger statement), we have the same linear lower
bound for finding a cut sparsifier for a given graph, as well as for applications like approximating
min cut.
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1706 SIMON APERS AND RONALD DE WOLF

Table 2
Classical and quantum time complexity of Laplacian solving and some of its applications. All

classical bounds without reference follow from [97]. The quantum bounds essentially follow from
combining our quantum sparsification algorithm with the corresponding classical algorithm.

Classical Quantum (this work)

\epsilon -Laplacian/SDD Solving \widetilde O(m) [97] \widetilde O(
\surd 
mn/\epsilon )

\epsilon -Effective Resistance (single) \widetilde O(m) \widetilde O(
\surd 
mn/\epsilon )

\epsilon -Effective Resistances (all) \widetilde O(m+ n/\epsilon 4) [93] \widetilde O(
\surd 
mn/\epsilon + n/\epsilon 4)

O(1)-Cover Time \widetilde O(m) [39] \widetilde O(
\surd 
mn)

k bottom eigenvalues \widetilde O(m+ kn/\epsilon 2) \widetilde O(
\surd 
mn/\epsilon + kn/\epsilon 2)

Spectral (k-means) Clustering \widetilde O(m+ npoly(k)) \widetilde O(
\surd 
mn+ npoly(k))

rected n-node graph G with m edges and Laplacian L, outputs with high probability an
approximate solution \~x \in \BbbR n to the linear system Lx = b such that \| \~x - x\| L \leq \epsilon \| x\| L
in time \widetilde O(

\surd 
mn/\epsilon ).

In contrast to the well-known HHL algorithm [52], our algorithm outputs an
explicit classical description of \~x (i.e., a vector of n real entries), not an n-dimensional
quantum state. Here \| v\| L denotes the L-induced norm \| v\| L =

\surd 
v\dagger Lv = \| L1/2v\| ,

with v\dagger the complex transpose of vector v. This is the typical norm considered for
Laplacian solving. This speeds up the dependency on m with respect to classical
solvers [97], whose runtime is \widetilde O(m log(1/\epsilon )). Similar to the classical case, we show how
this also yields a quantum speedup for solving the more general class of symmetric,
weakly diagonally dominant (SDD) linear systems.

We also find quantum speedups for approximating effective resistances and ran-
dom walk commute times, creating an approximate ``resistance oracle"" which allows
us to query for the effective resistance of any node pair in time \widetilde O(1), for approximat-
ing the random walk cover time, and for approximating the bottom eigenvalues of the
Laplacian. Finally we discuss how a spectral sparsifier allows us to implement spectral
k-means clustering more efficiently, so that our quantum sparsification algorithm also
leads to a speedup for this task. We summarize our speedups in Table 2 and discuss
prior work on quantum algorithms for some of these problems in section 1.4. More
details are provided in (missing dot) section 7

1.2. Quantum algorithm. Our quantum sparsification algorithm starts from
the iterative sparsification algorithm by Koutis and Xu [73]. Their algorithm provides
a simple combinatorial counterpart to the usual algebraic treatment of spectral sparsi-
fication. It crucially relies on the growth of so-called spanners of the graph, which are
sparse subgraphs that approximately preserve all pairwise distances between nodes.
After growing a small number of disjoint spanners in the graph, and keeping these
edges, they downsample the remaining edge set by keeping every edge independently
with some fixed constant probability, and discarding the rest. This results in a spar-
sifier with approximately half the number of edges of the original graph. Repeating
this procedure a logarithmic number of times results in an \epsilon -spectral sparsifier with\widetilde O(n/\epsilon 2) edges.

The gist of our quantum speedup comes from a faster quantum algorithm for
constructing spanners. This algorithm follows essentially by pairing a classical spanner
algorithm by Thorup and Zwick [99] with the shortest-paths quantum algorithm by
D\"urr et al. [41]. More specifically we prove the theorem below, where we call a
graph H a spanner of G if it is a subgraph with O(n log n) edges, and the distance
between any pair of nodes in H is at most log n times their original distance in G.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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QUANTUM SPEEDUP OF SPARSIFICATION AND APPLICATIONS 1707

Our algorithm speeds up the classical \widetilde O(m)-time algorithm by Thorup and Zwick,
whose runtime is optimal.

Theorem 1.4. Fix n and m. There exists a quantum algorithm that, given
adjacency-list access to a weighted and undirected n-node graph G with m edges,
outputs with high probability a spanner of G in time \widetilde O(

\surd 
mn).

We can now try to plug this faster spanner construction in the Koutis--Xu spar-
sification algorithm. The problem, however, is that we cannot output the ``interme-
diate"" sparsifiers, since after a constant number of iterations these still have \Omega (m)
edges, whereas we aim for a runtime that scales with

\surd 
mn. We overcome this issue

using two observations, which will allow us to describe the intermediate graphs only
implicitly.

First, we show that if we were given query access to a uniformly random string
of \widetilde O(m) bits, then we could implicitly mark the discarded edges and grow spanners in
the remaining, unmarked graph without significantly affecting the runtime. Second,
we get rid of this long random string by using the fact that any (k/2)-query quantum
algorithm cannot distinguish a uniformly random string from a k-wise independent
string, which only behaves uniformly randomly for subsets of at most k elements.
This is a known result and can be proven, for instance, using the polynomial method
[16]. Hence it suffices that we have access to a k-wise independent random string,
allowing us to use the rich literature on k-independent hash functions that aim to
simulate access to such random strings. Specifically we require the recent result by
Christiani, Pagh, and Thorup [30], which shows that in \widetilde O(k) time we can construct a
data structure that can simulate queries to a k-wise independent string, requiring only\widetilde O(1) time per query. Prior to their work, all algorithms required preprocessing time\widetilde O(k1+\delta ) for \delta > 0. Using their construction we can efficiently simulate the random
string, which leads to the following claim.

Claim 1.5. Consider any quantum algorithm with runtime q that uses a uniformly
random string. Then we can construct a quantum algorithm without random string
that has the same output distribution and has a runtime \widetilde O(q).

Combining these observations remedies the issue of having to store the intermedi-
ate graphs and leads to a speedup of the Koutis--Xu algorithm runtime to \widetilde O(

\surd 
mn/\epsilon 2)

quantum time.
We then further improve the runtime down to \widetilde O(

\surd 
mn/\epsilon ) by combining this

quantum sparsification algorithm with the sparsification toolbox of Spielman and Sri-
vastava [93]. In that work, they show that a graph can be sparsified very elegantly
by sampling edges with weights roughly proportional to their effective resistances.
Complementing this, they propose a near-linear time constructible ``resistance ora-
cle,"" which allows us to query for effective resistances in logarithmic time. We use
our quantum sparsification algorithm to construct an initial, rough sparsifier with a
constant error, in time \widetilde O(

\surd 
mn). We then construct an approximate resistance oracle

for this sparsifier, which effectively yields an approximate resistance oracle for the
original graph. Surprisingly, such rough approximation suffices for constructing an \epsilon -
spectral sparsifier using the Spielman--Srivastava sampling scheme. This finally allows
us to sample the \widetilde O(n/\epsilon 2) edges of the sparsifier in time \widetilde O(

\surd 
mn/\epsilon ), using Grover's

algorithm. This idea of using a ``poor"" spectral approximation to compute sampling
probabilities to obtain a better spectral approximation is also used in [34, 76].

1.3. Matching lower bound. We prove that the \widetilde O(
\surd 
mn/\epsilon )-runtime of our

quantum algorithm is optimal, up to polylog-factors, even when we wish to construct

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1708 SIMON APERS AND RONALD DE WOLF

a weaker cut sparsifier. The intuition behind this is that an \epsilon -cut sparsifier of a general
graph must contain \Omega (n/\epsilon 2) edges (and this is tight [14]). If we can appropriately
``hide"" these edges among the m edges of a graph, then a quantum search algorithm
requires \Theta (

\sqrt{} 
mn/\epsilon 2) = \Theta (

\surd 
mn/\epsilon ) queries to retrieve them.

Turning this intuition into a concrete lower bound, however, turns out to be
rather complicated. We start with a random graph construction by Andoni et al. [6].
This construction describes graphs on n nodes and \widetilde O(n/\epsilon 2) edges, so that any \epsilon -cut
sparsifier must contain a constant fraction of the edges. As such, the constructed
graphs are in fact already sparsifiers. We then carefully ``hide"" these sparsifiers in a
larger, denser graph, in such a way that a sparsifier of this graph must retrieve all
of the original, hidden sparsifiers. To prove a quantum lower bound for this search
problem, we describe it as the composition of the problem of finding a constant fraction
of the nonzero bits in a Boolean matrix with the OR-function. Finally, we combine
lower bounds for the individual problems using a composition theorem for adversary
bounds, applicable to the composition of a relational problem with a function. This
composition theorem was very recently proven by Belovs and Lee [17], prompted by
our question to them.

1.4. Prior work. We are not aware of any prior work on quantum speedups for
graph sparsification. In a very different line of work, though, spectral sparsification has
been studied in a quantum context with the goal of sparsifying Hamiltonian matrices,
which are used to describe many-body systems. Aharonov and Zhou [1] asked whether
the interaction graph of a many-body system can be sparsified while preserving its
spectrum, showing that this is not possible in general. More recently, Herbert and
Subramanian [53] considered the weaker notion of sparsifying the Hamiltonian matrix
and suggested that sparsification could indeed help in Hamiltonian simulation. They
do not consider quantum algorithms for effectively constructing such a sparsifier.

Research on quantum algorithms for cut approximation is also limited. There is
recent work by Hamoudi et al. [51] on quantum approximate minimization of sub-
modular functions, which can be used for cut approximation. However, their work
was more recently superseded by better classical algorithms [12]. Other recent work
by Brand\~ao, Kueng, and Stilck Fran\c ca [20] used quantum SDP solvers to approxi-
mate quadratic binary optimization problems, of which max cut is the most notable
instance. They do not succeed in finding a speedup for max cut, though, mainly
because their algorithm does not benefit from the special structure of this instance.

Concerning our speedup for Laplacian solving, we mention a range of papers on
quantum speedups for general linear system solving. Most famous is the work by
Harrow, Hassidim, and Lloyd [52], which was later refined in work by Ambainis [5]
and Childs, Kothari, and Somma [29]. They describe a quantum algorithm for solving
general linear systems Ax = b in time \widetilde O(dM\kappa log(1/\epsilon )), with dM the row sparsity and
\kappa the condition number of A. These algorithms are particularly relevant for sparse and
well-conditioned systems (in general, however, \kappa can be as large as O(n3wmax/wmin)
for graph Laplacians [97, Lemma 6.1]). Crucially, they only output a quantum state
that encodes the solution, rather than an explicit description as we do.

Quantum speedups for the problems of estimating effective resistances and spec-
tral gaps have also been studied in other work. Very recently and independently from
our work, Piddock [87] constructed a quantum walk algorithm that \epsilon -approximates
the effective resistance Rs,t using \widetilde O(

\sqrt{} 
mRs,t/\epsilon 

2) \in \widetilde O(
\surd 
mn/\epsilon 2) quantum walk steps.

He also argued how this could possibly be further improved to \widetilde O(
\sqrt{} 

mRs,t/\epsilon ) \in \widetilde O(
\surd 
mn/\epsilon ). While the quantum walk model is different from our model, this ten-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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QUANTUM SPEEDUP OF SPARSIFICATION AND APPLICATIONS 1709

tative bound would agree with our runtime. In addition, however, we can effectively
approximate all effective resistances simultaneously in the graph in the same com-
plexity. The problem was also studied in slightly different settings in [25, 56, 104].
A quantum walk algorithm for estimating the second bottom eigenvalue \lambda 2 of the
Laplacian in the adjacency-matrix model was studied by Jarret et al. [58]. They give
a multiplicative \epsilon -approximation of \lambda 2 in time \widetilde O(n/(

\surd 
\lambda 2\epsilon )), which is \widetilde O(n2/\epsilon ) in the

worst case. We improve the worst-case complexity to \widetilde O(
\surd 
mn/\epsilon ) \in \widetilde O(n3/2/\epsilon ).

We also mention some past and concurrent work on quantum speedups for cluster-
ing. One paper by Daskin [38] describes a quantum algorithm for spectral clustering,
but no direct speedup is found with respect to classical algorithms. Concurrent to our
work is a paper by Kerenidis and Landman [67] which describes a quantum algorithm
for outputting the centroids of a k-means spectral clustering. In contrast to our work,
they start from quantum access to a data set, which they then use to query an associ-
ated Laplacian. They find a quantum speedup under certain assumptions (e.g., that
the input data is appropriately clustered), and as such is incomparable to our quan-
tum algorithm. Less directly related, there exists a number of papers [3, 68, 77, 105]
on quantum speedups for k-means clustering and the construction of a neighborhood
graph. These tasks are complementary to our work on finding a spectral embedding,
given a similarity graph of the data. It does seem interesting to try and use these
algorithms to further speed up our spectral clustering algorithm.

Finally, we mention some classical work on sublinear algorithms for Laplacian
solving and spectral sparsification. First, the work by Andoni, Krauthgamer, and
Pogrow [7] describes a sublinear algorithm for Laplacian solving, with the aim of ap-
proximating a single coordinate of the output. Their algorithm is inspired by quantum
algorithms for linear system solving, and similarly only finds a speedup for sparse and
well-conditioned systems. The second work is by Lee [74], who proposes a classical
algorithm for spectral sparsification of unweighted graphs which is sublinear in m. He
succeeds in bypassing the \Omega (m) lower bound on classical sparsification by only achiev-
ing a weaker, additive error in the approximation. As such this work is incomparable
to ours.

1.5. Follow-up work. After the initial appearance of our results, a number of
works have appeared that build on our results.

Apers and Lee [9] used our quantum algorithm for graph sparsification to design
a quantum algorithm for finding an exact minimum cut in a graph. They obtain
quantum speedups when the ratio of the maximum weight over the minimum weight
is bounded, and show that the quantum algorithm is optimal under such a condition.
Using similar techniques and under similar constraints, Apers, Auza, and Lee [8]
proved a quantum speedup for finding the exact minimum s-t cut of a graph.

In a rather different setting, van Apeldoorn et al. [101] recently proved a quantum
speedup for approximate matrix scaling. Their algorithm builds on quantum approx-
imate counting and returns an \epsilon -approximate matrix scaling of an n\times n matrix with
m nonzero entries in time \widetilde O(

\surd 
mn/\epsilon 4). For entrywise positive matrices, the upper

bound was later improved to \widetilde O(n3/2/\epsilon 3) by Gribling and Nieuwboer [49]. Their al-
gorithm combines a second-order method for matrix scaling [35] with our quantum
algorithm for approximately solving Laplacian systems.

In another work, Cade, Labib, and Niesen [23] described a quantum algorithm
for motif clustering , which is a graph clustering method that is based on higher-
order patterns or motifs. For dense instances, their algorithm builds on our quantum
sparsification algorithm.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1710 SIMON APERS AND RONALD DE WOLF

Finally, a recent work by Chen and de Wolf [28] describes quantum algorithms
and quantum lower bounds for linear regression with norm constraints. The lower
bounds rely on a strategy similar to ours in that they use the composition property
of the adversary bound, which was recently proved by Belovs and Lee [17].

1.6. Open questions. Our work raises a number of interesting questions and
future directions, some of which we summarize below.

\bullet We prove a matching \widetilde \Omega (\surd mn/\epsilon ) lower bound on the quantum query com-
plexity of spectral sparsification. Can we extend this to a tight lower bound
for any of the resulting applications, e.g., for \epsilon -approximating the min cut or
effective resistance? Since these problems can be reduced to constructing an
\epsilon -spectral sparsifier, this would yield a stronger lower bound.

\bullet The runtime of our quantum algorithm is tight, up to polylogarithmic factors,
for sparsification of weighted graphs. Can we potentially improve the runtime
for unweighted graphs?

\bullet Graph sparsification is a key technique in efficient algorithms for calculating
minimum cuts [62, 63], and the use of fast Laplacian solvers played a key in the
recent resolution of the long-standing question of computing maximum flows
in graphs in almost-linear time [27, 31, 65, 84, 89]. In follow-up work to this
one, Apers and Lee [9] used our quantum algorithm for graph sparsification
to obtain a quantum speedup for finding a minimum cut in a graph. We leave
it as an open question whether a quantum speedup for finding a maximum
flow can be obtained as well.

\bullet Spectral sparsification of graphs and Laplacians has been extended in different
directions such as sparsification of hypergraphs [13, 92], sparsification of sums
of positive semidefinite matrices [91, 92], and sparsification in a streaming
setting [60, 66]. It is also closely related to concepts such as spectral sketching
[6] and linear data regression using leverage scores [40]. It seems likely that
we can also find quantum speedups for these related problems. Similarly
we might hope to solve more ``quantum"" tasks, such as sparsifying density
operators or POVMs.

1.7. Road map. To round up the introduction, we give a road map of the main
parts of our paper. Section 2 introduces some necessary preliminaries on graphs, the
computational model, and the quantum algorithmic routines that we use. It also
describes the classical sparsification algorithm that our quantum algorithm is based
on. In section 3 we describe a first ``rough"" quantum sparsification algorithm, and
we show how to simulate its access to a random string using \bfitk -wise independent
hash functions. We improve the error dependency of the algorithm in section 4. In
section 5 we describe a quantum algorithm for constructing graph spanners, which
our sparsification algorithms are based on. In section 6 we prove a lower bound
that matches the performance of our quantum algorithm, and finally in section 7 we
elaborate on the applications of our quantum algorithm for sparsification.

2. Preliminaries. Throughout the paper we say that something holds ``with
high probability"" if it holds with probability at least 1 - O(1/n).

2.1. Computational model and quantum algorithms. We assume as our
computational model a quantum-accessible classical control system that

1. can run quantum subroutines on at most O(logN) qubits, where N is the
size of the problem instance;
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QUANTUM SPEEDUP OF SPARSIFICATION AND APPLICATIONS 1711

2. can make quantum queries to the input; and
3. has access to a quantum-read/classical-write RAM (QRAM)2 of \widetilde O(

\surd 
mn/\epsilon )

classical bits, where a single QRAM operation corresponds to either classically
writing a bit to the QRAM or making a quantum query (a read operation)
to bits stored in QRAM, possibly in superposition.

In this model, an algorithm has time complexity T if it uses at most T elementary
classical and quantum gates, quantum queries to the input, and QRAM operations.
The query complexity of an algorithm only measures the number of queries to the
input. If we only care about query complexity, the assumption of having QRAM may
be dropped at the expense of a polynomial increase in the number of gates.

An important quantum subroutine in our work is Grover's algorithm [50] for
searching sets of marked elements, which is summarized in the claim below.

Claim 2.1 (repeated Grover search). Let f : [N ] \rightarrow \{ 0, 1\} be a function that
marks a set of elements S = \{ i \in [N ] | f(i) = 1\} . Then there is a quantum algorithm
that finds S with probability at least 2/3 in \widetilde O(

\sqrt{} 
N | S| ) elementary operations and

queries to f , and uses O(logN) qubits and a QRAM of \widetilde O(| S| ) bits.
We also use a quantum algorithm for finding shortest-path trees by D\"urr et al.

[41], but the quantum routines in this algorithm can be reduced to Grover search.

2.2. Graphs, queries, and spanners. We consider weighted and undirected
graphs G = (V,E,w) with | V | = n nodes and | E| = m edges, and edge weights
w : E \rightarrow \BbbR \geq 0. We are given adjacency-list access to G, as is considered in, e.g., [41,
47]. This allows us to query for the degree of a node, its kth neighbor (according
to some unknown but fixed ordering), or the weight of an edge. This model is more
restrictive than both the ``general graph model,"" which in addition allows for adja-
cency matrix queries [46], and the ``sparse-access model,"" in which the neighbors are
ordered lexicographically, as is commonly assumed in quantum algorithms for linear
system solving and Hamiltonian simulation [29, 52].

We define the distance \delta G(u, v) between nodes u and v with respect to G as

\delta G(u, v) = min
u - v path P

\sum 
e\in P

1

we
.

This definition is in accordance with the interpretation of G as an electrical net-
work, in which an edge e corresponds to a link of conductance we (and hence resistance
or ``cost"" 1/we), as is common in the literature on spectral sparsification. A span-

2 Another name for this type of memory is ``coherent RAM."" We feel a QRAM containing a
classical k-bit string z and allowing efficient queries of the form | i, b >\mapsto \rightarrow | i, b\oplus zi > (where i \in [k]
and b \in \{ 0, 1\} ) is a reasonable generalization of classical RAM; if one believes in classical RAM and in
quantum superposition, then QRAM is quite natural. Like classical RAM, the physical hardware of
such a QRAM necessarily requires the size to be at least proportional to k because it contains k bits
of information, but answering a query would have a cost proportional to log k, even when querying
multiple stored bits in superposition. This could be realized, for instance, by laying out the k bits
as the leaves of a binary tree of depth log k; the log k bits of the binary representation of an address
i \in [k] would chart a path from the root to the addressed bit zi, allowing for efficient lookup of the
addressed bit. Note that running this on a superposition of different addresses i would involve going
down different paths in superposition, but would still only use a superposition of O(log k) qubits.
Assuming such a QRAM is very common in quantum algorithms for graph problems. It should be
noted, though, that the notion of QRAM is a bit controversial, because (1) the term is sometimes
used in the literature for a different and stronger kind of memory (allowing for efficient conversion
of a classically stored unit vector of k numbers into the corresponding state of log k qubits), and
(2) implementing it on noisy hardware might require O(k) work to error-correct a quantum query,
rather than O(log k) work.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/2

2/
22

 to
 1

92
.1

6.
18

4.
89

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1712 SIMON APERS AND RONALD DE WOLF

ner of G is a sparse subgraph H that approximately preserves all pairwise distances.
Specifically, we will call H a t-spanner of G if for any pair u, v \in V it holds that

\delta G(u, v) \leq \delta H(u, v) \leq t\delta G(u, v).

Note that the first inequality is trivially satisfied since H is a subgraph. It is well
known that every weighted graph has a (2k  - 1)-spanner with O(n1+1/k) edges [4].
Throughout the paper we will use the shorthand spanner to denote a t-spanner with
t = 2 log n and \widetilde O(n) edges. An r-packing of spanners of G is an ordered set H =
(H1, H2, . . . ,Hr) of r edge-disjoint spanners such that Hj is a spanner for G - \cup i<jHi,
which is the remaining graph after removal of the edges of all previous spanners. Note
that such an r-packing always exists for every r, though once G  - \cup i<jHi has no
edges left anymore, the subsequent spanners Hj , Hj+1, . . . ,Hr in the packing will all
be empty.

The Laplacian L of a weighted graph G is given by L = D  - A, with A the
weighted adjacency matrix (Aij) = wij and D the diagonal weighted degree matrix
(Dii) =

\sum 
j wij . Alternatively, we can rewrite the Laplacian as

L =
\sum 
e\in E

we\chi e\chi 
T
e ,

where we let \chi e = \chi u  - \chi v denote a vector associated to the edge e = (u, v), with
\chi u, \chi v indicator vectors of the nodes u, v (we fix an arbitrary orientation of the edges).
If G is connected, then LG has a trivial kernel consisting only of the all-ones vector.
Moreover, LG is a real, symmetric, diagonally dominant matrix with nonnegative
diagonal entries and is hence positive semidefinite.

2.3. Spectral sparsification using spanner packings. A cut sparsifier H
of a graph G is a sparse, reweighted subgraph that preserves the value of all cuts.
Specifically, H is called an \epsilon -cut sparsifier if for any S \subseteq V it holds that

(1 - \epsilon )valG(S) \leq valH(S) \leq (1 + \epsilon )valG(S),(2.1)

where valG(S) =
\sum 

i\in S,j /\in S w(i,j) denotes the total weight of the edges leaving S.
A spectral sparsifier H of a graph G is a sparse, reweighted subgraph that pre-

serves the quadratic form xTLGx associated to the Laplacian LG of G for any vector
x \in \BbbC n. Specifically, H is called an \epsilon -spectral sparsifier if for any x \in \BbbC n it holds that

(1 - \epsilon )xTLGx \leq xTLHx \leq (1 + \epsilon )xTLGx.(2.2)

Alternatively, we can rewrite this as (1 - \epsilon )LG \preceq LH \preceq (1 + \epsilon )LG, where A \preceq B
denotes that B - A is positive semidefinite. This condition implies, for instance, that
all eigenvalues of H \epsilon -approximate the eigenvalues of G [15], and all cuts in H \epsilon -
approximate those in G. To see the latter, consider a subset S \subseteq V and let \chi S denote
the indicator on S; then

\chi T
SLG\chi S =

\sum 
(u,v)=e\in E

we(\chi S(u) - \chi S(v))
2 = valG(S).

This shows that the cut value can be described by a quadratic form in the Lapla-
cian, and hence (2.2) implies that (1  - \epsilon )valG(S) \leq valH(S) \leq (1 + \epsilon )valG(S) for all
S \subseteq V . Any \epsilon -spectral sparsifier is therefore also an \epsilon -cut sparsifier.

Spectral sparsifiers can be constructed by using spanners to identify the ``impor-
tant"" edges in the graph. This was first noticed by Kapralov and Panigrahy [61],
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QUANTUM SPEEDUP OF SPARSIFICATION AND APPLICATIONS 1713

and further refined by Koutis and Xu [73]. We will build on the latter work, which
describes a very elegant approach for constructing spectral sparsifiers from spanner
packings. Their algorithm iteratively invokes the routine described below, which cre-
ates a spectral sparsifier with approximately half the number of edges of the original
graph.

Algorithm 2.1 H = Half Sparsify(G, \epsilon ).

1: construct an O(log2(n)/\epsilon 2)-packing of spanners of G
2: let P be their union and set H = P
3: for each edge e /\in P do
4: with probability 1/4, add e to H with weight 4we

5: end for
6: return H

Theorem 2.2 ([73, Theorem 3.2]). The graph H = Half Sparsify(G, \epsilon ) is, with
probability at least 1 - 1/n2, an \epsilon -spectral sparsifier of G with at most m/2+ \widetilde O(n/\epsilon 2)
edges.

Now consider a fixed \epsilon > 0. If we iterate T \in O(log(m/n)) times the routine
Half Sparsify(G, \epsilon \prime ), with \epsilon \prime \in O(\epsilon /T ), then we retrieve with high probability an
\epsilon -spectral sparsifier with \widetilde O(n/\epsilon 2) edges. By [6] this is optimal up to log-factors.
Classically the complexity is dominated by the construction of \widetilde O(1/\epsilon 2) spanners,
each of which requires time \widetilde O(m) [99], giving a total time complexity \widetilde O(m/\epsilon 2).

3. Quantum sparsification algorithm. In this section we describe our quan-
tum algorithm for constructing spectral sparsifiers. The algorithm is based on the
scheme by Koutis and Xu. We use as a black box a quantum algorithm for construct-
ing a spanner in time \widetilde O(

\surd 
mn), whose description we postpone to section 5.

Algorithm 3.1 H = Quantum Sparsify(G, \epsilon ).
1: let \{ w\prime 

e = we\} and \ell = \lceil log(m/n)\rceil 
2: for i = 1, 2, . . . , \ell do

3: create an O(log2(n)/\epsilon 2)-packing of spanners of G\prime = (V,E,w\prime ), let Pi denote
its union

4: for each edge e /\in Pi do
5: if ri(e) = 1 then set w\prime 

e = 4w\prime 
e else set w\prime 

e = 0
6: end for
7: end for
8: use repeated Grover search to find H = \{ e \in E | w\prime 

e > 0\} 

As we already mentioned in the introduction, we cannot simply plug this quantum
spanner algorithm into the Koutis and Xu algorithm. Indeed, after a single iteration
of their algorithm this would require outputting a graph with up to m/2 edges, which
is much too costly since we aim at a runtime that scales as

\surd 
mn. We resolve this issue

in two stages. First, we assume that we have access to a random string of length \widetilde O(m).
We use this string to mark edges that have been discarded at some iteration by 0-bits,
which we later use to implicitly set their weight equal to zero. By its construction,
the spanner algorithm can then construct a spanner in the remaining graph. At the
end we use Grover search to explicitly retrieve the remaining \widetilde O(n/\epsilon 2) edges, whose
union forms the spectral sparsifier. We then get rid of the random string. To this end
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1714 SIMON APERS AND RONALD DE WOLF

we use efficient k-independent hash functions that allow us to simulate queries to a
k-wise independent random string. This suffices since by standard results a k-query
quantum algorithm cannot distinguish 2k-wise independent strings from a uniformly
random one.

3.1. Using a random string. We first assume access to a family of indepen-
dent, random strings ri \in \{ 0, 1\} m, with indices i \in [log(m/n)], such that all bits are
independent and equal to 1 with probability 1/4. For different indices i, the strings
ri will function as consecutive ``sieves"" of the edge set.

Algorithm 3.1 describes the sparsification algorithm using such random strings.
A critical remark is that steps 4 and 5 of the algorithm are only performed implicitly,
as mentioned before. Rather than keeping an explicit list of updated edge weights,
we maintain an implicit ``weight oracle."" Only when an edge weight is queried does
this weight oracle calculate its weight by consulting the necessary random strings. We
show how to do this efficiently in the proof of Theorem 3.1.

Theorem 3.1. Given access to independent, uniformly random strings ri \in 
\{ 0, 1\} m for i \in [log(m/n)], algorithm Quantum Sparsify(G, \epsilon ) returns with prob-
ability 1  - O(log(n)/n2) an \epsilon -spectral sparsifier of G with \widetilde O(n/\epsilon 2) edges. There is
a quantum algorithm that implements it in time \widetilde O(

\surd 
mn/\epsilon 2) and using a QRAM of\widetilde O(

\surd 
mn/\epsilon 2) bits.

Proof. Correctness easily follows from Theorem 2.2: in every iteration we ``half-
sparsify"" the remaining graph (induced by all edges of weight we > 0). The proba-
bility that all log(m/n) iterations succeed is 1 - O(log(n)/n2). Below we discuss how
steps 4 and 5 can be implemented efficiently, so that the runtime of the for-loop is
dominated by the construction of \widetilde O(1/\epsilon 2) spanners. By Theorem 5.3 this takes time\widetilde O(

\surd 
mn/\epsilon 2). By standard results [81], the repeated Grover search routine in the final

step takes time \widetilde O(
\surd 
mn/\epsilon ), which is the time needed to find n/\epsilon 2 edges among m

edges.
What remains to prove is that there exists an efficient oracle that keeps track of

the weight updates in steps 4 and 5. Consider the ith iteration. Given an edge e,
let k denote the number of spanners before this iteration in which e occurs so far. If
k = 0, return w\prime 

e = 4iwe if (ri ri - 1 . . . r1)(e) = 1, and w\prime 
e = 0 if (ri ri - 1 . . . r1)(e) = 0.

If k > 0, let j < i denote the last spanner packing in which it occurs. Now return
w\prime 

e = 4i - kwe if (ri ri - 1 . . . rj+1)(e) = 1, and w\prime 
e = 0 otherwise. This takes \widetilde O(1)

searches through the set of spanners (which we may assume is sorted) and at most
O(i) \in \widetilde O(1) evaluations of the random oracle.

The space complexity of the algorithm requires O(log n) qubits and a QRAM of\widetilde O(n/\epsilon 2) bits. The number of qubits follows from the space complexity of the quantum
spanner algorithm and the Grover search routine. The classical space complexity is
dominated by the output size.

3.2. Using k-independent hash functions. In order to get rid of the random
strings \{ ri\} , we build on the following fact, which is an easy consequence of the
polynomial method [16]. It seems that this was first used in the proof of [22, Theorem
19] and is stated explicitly in, for instance, [107, Theorem 3.1].

Fact 1. The output distribution of a quantum algorithm making q queries to
a uniformly random string is identical to the same algorithm making q queries to a
2q-wise independent string.
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QUANTUM SPEEDUP OF SPARSIFICATION AND APPLICATIONS 1715

As a consequence, we can replace the uniformly random strings of length m by
a k-wise independent string with k \in \widetilde O(

\surd 
mn/\epsilon 2). Surely we also cannot explicitly

construct a k-wise independent string of length \widetilde O(m) in time \widetilde O(
\surd 
mn/\epsilon 2), but we can

use hash functions to simulate queries to such a string. A family of hash functions
F = \{ h : [u] \rightarrow [r]\} for u, r \in \BbbN is called k-independent if, for any subset S \subseteq [u]
of size | S| \leq k and a uniformly random function h in the family, the image of h on
S behaves uniformly randomly in [r]| S| . This implies that the image of a random
member of F , which we will refer to as a k-independent hash function, describes
a k-wise independent string over [r]u. Elegant constructions of such functions have
long been known, the most famous example being random degree-k polynomials, as
proposed by Carter and Wegman [24]. Crucial to our cause, however, is that we
can evaluate the hash function in \widetilde O(1) time, potentially allowing \widetilde O(k) preprocessing
time. Fortunately, such a result was established very recently by Christiani, Pagh, and
Thorup [30], who proved the theorem below. We note that this is a purely classical
construction.

Theorem 3.2 ([30]). It is possible to construct in time \widetilde O(k) a data structure
of size \widetilde O(k) that allows one to simulate queries to a k-independent hash function in\widetilde O(1) time per query.

With k = 2q and [r] = \{ 0, 1\} , we can combine this with Fact 1 to give the corollary
below.

Corollary 3.3. Consider any quantum algorithm with runtime q that makes
queries to a uniformly random string. We can simulate this algorithm with a quantum
algorithm with runtime \widetilde O(q) without random string, using an additional QRAM of\widetilde O(q) bits.

This shows that we can efficiently simulate the random string in Algorithm 3.1,
leading to at most a polylogarithmic overhead in the runtime. The classical space
complexity of the algorithm does increase from \widetilde O(n/\epsilon 2) to \widetilde O(

\surd 
mn/\epsilon 2). The following

theorem is immediate by combining Theorem 3.1 with Corollary 3.3.

Theorem 3.4. There exists a quantum algorithm that, given adjacency-list access
to a weighted and undirected graph G, constructs with high probability an \epsilon -spectral
sparsifier of G with \widetilde O(n/\epsilon 2) edges in time \widetilde O(

\surd 
mn/\epsilon 2). The algorithm uses O(log n)

qubits and a QRAM of \widetilde O(
\surd 
mn/\epsilon 2) bits.

4. Refined quantum sparsification algorithm. In the last section we pro-
posed a quantum algorithm for constructing an \epsilon -spectral sparsifier in time \widetilde O(

\surd 
mn/\epsilon 2).

Here we show how to improve the runtime of this algorithm to \widetilde O(
\surd 
mn/\epsilon ), which we

will later show is optimal up to polylog-factors. The improvement essentially follows
from combining our previous algorithm with the seminal results on spectral sparsifi-
cation by Spielman and Srivastava [93]. In that work, they first showed that sampling
edges with probabilities approximately proportional to their effective resistances re-
sults in a spectral sparsifier (the Koutis--Xu algorithm is derived from their result).
Then they showed how Laplacian solvers could be used to efficiently estimate these ef-
fective resistances. We will use our quantum sparsification algorithm to first construct
a ``rough"" \epsilon -sparsifier, for some constant \epsilon , which we only use to approximate the ef-
fective resistances in the original graph. Surprisingly such approximation suffices to
implement the Spielman--Srivastava sampling scheme on the original graph. We then
use a quantum sampling routine to efficiently implement this sampling scheme, finally
leading to an \epsilon -spectral sparsifier for arbitrary \epsilon > 0 in time \widetilde O(

\surd 
mn/\epsilon ). This idea
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1716 SIMON APERS AND RONALD DE WOLF

of using a ``poor"" spectral sparsifier for computing sampling probabilities to obtain a
better spectral sparsifier is also present in, for instance, [34, 76].

4.1. Spielman--Srivastava toolbox and quantum sampling. Here we for-
mally introduce the main tools that we use. These are an efficiently constructible
``resistance oracle"" and a sparsification algorithm based on this oracle from [93], and
a quantum sampling routine for implementing this sparsification algorithm.

4.1.1. Approximate resistance oracle. The effective resistance in a graph
G between a pair of nodes s and t is defined as the effective resistance between s
and t after replacing every edge e by a resistor of value 1/we. It can be expressed
algebraically as Rs,t = (\chi s  - \chi t)

TL+
G(\chi s  - \chi t), where L+

G is the pseudoinverse of
LG (i.e., the inverse of its image). A Laplacian solver hence allows one to efficiently
compute Rs,t. Spielman and Srivastava proved that in some sense one can efficiently
compute all effective resistances in roughly the same time. More specifically, they
showed that it is possible to construct in near-linear time a data structure of size\widetilde O(n/\epsilon 2) that allows one to efficiently approximate Rs,t for any s, t.

Theorem 4.1 ([93]). Consider a weighted and undirected graph G. There is an\widetilde O(m/\epsilon 2)-time algorithm which computes a (24 log(n)/\epsilon 2)\times n matrix Z such that with
probability at least 1 - 1/n, for every pair s, t \in V , it holds that

(1 - \epsilon )Rs,t \leq \| Z(\chi s  - \chi t)\| 2 \leq (1 + \epsilon )Rs,t.

Hence the matrix Z represents a data structure which allows us to \epsilon -approximate
Rs,t for any pair s, t by calculating the 2-norm distance between two columns, each

of dimension \widetilde O(1/\epsilon 2).

4.1.2. Spectral sparsification with edge scores. In the same paper, Spiel-
man and Srivastava proved the following theorem, which shows that a spectral sparsi-
fier can be constructed by independently keeping edges with weights roughly
proportional to their effective resistances.

Theorem 4.2 ([93]). Let 2Re \geq \widetilde Re \geq Re/2 for each edge e \in E, and let
pe = min(1, Cwe

\widetilde Re log(n)/\epsilon 
2) for some universal constant C. Then keeping every

edge e independently with probability pe, and rescaling its weight with 1/pe, yields
with probability at least 1  - 1/n an \epsilon -spectral sparsifier of G with O(n log(n)/\epsilon 2)
edges.

Note that
\sum 

e pe \gg 1 is the expected number of edges of the sparsifier. Since\sum 
e weRe = n  - 1 [19, Theorem 25], this yields the claimed number of edges. Also

note that by slightly tweaking our estimate \~Re, we can ensure that the sampling
probabilities pe have an O(log n)-bit description. We will use this later on.

We note that, in fact, Spielman and Srivastava describe a slightly different scheme.
They propose to draw \widetilde O(n/\epsilon 2) independent and identically distributed edge samples
from the edge set, with probability proportional to their effective resistance. It is well
known that both schemes give the same performance bound; see, e.g., [43, Remark 1].

4.1.3. Quantum sampling. Assuming access to an approximate resistance ora-
cle that gives approximations \widetilde Re to Re, we wish to implement the Spielman--Srivastava
sparsification scheme. While classically this requires time \widetilde O(m+

\sum 
e pe), we can use

quantum algorithms to do so more efficiently.

Claim 4.3. Assume we have query access to a list of probabilities \{ pe\} e\in E , each of
which is described with \widetilde O(1) bits of precision. Then there is a quantum algorithm that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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QUANTUM SPEEDUP OF SPARSIFICATION AND APPLICATIONS 1717

Algorithm 4.1 H = Quantum Sparsify(G, \epsilon ).
1: use quantum sparsification (Theorem 3.4) to construct a (1/100)-spectral

sparsifier H of G
2: create a (1/100)-approximate resistance oracle of H using Theorem 4.2, yielding

estimates \{ \widetilde Re\} 
3: use quantum sampling (Claim 4.3) to sample a subset of the edges, keeping every

edge with probability pe = min(1, Cwe
\widetilde Re log(n)/\epsilon 

2)

samples a subset S \subseteq E, such that S contains every e independently with probability
pe, in expected time \widetilde O(

\sqrt{} 
m(
\sum 

e pe)) and using a QRAM of \widetilde O(
\sqrt{} 

m(
\sum 

e pe)) bits.

Proof. Let \ell \in \widetilde O(1) denote the number of bits to describe each of the probabilities
pe. We can assume access to a uniformly random \ell m \in \widetilde O(m)-bit string r, since by
Corollary 3.3 this implies that there also exists a quantum algorithm with no random
string. For all e, we can derive from this random string a random \ell -bit number
qe \in [0, 1] such that qe \leq pe with probability exactly pe. We can implement the
mapping | e > | 0 > \mapsto \rightarrow | e > | qe > in time \widetilde O(1).

We combine this with a query to the list of probabilities to implement the mapping
| e > | 0 > | 0 > \mapsto \rightarrow | e > | pe > | qe >. Now we use repeated Grover search to find all edges
e such that qe \leq pe---for every edge e, this set contains e with probability exactly pe.
By Claim 2.1 this routine takes time \widetilde O(

\sqrt{} 
m(
\sum 

e pe)) in expectation, which proves the
lemma.

4.2. Refined quantum sparsification. Now we will combine the Spielman--
Srivastava toolbox, the quantum sampling routine, and our quantum sparsification
algorithm from the last section to improve the runtime of the latter from \widetilde O(

\surd 
mn/\epsilon 2)

to \widetilde O(
\surd 
mn/\epsilon ).

Theorem 4.4 (quantum spectral sparsification). Quantum Sparsify(G, \epsilon ) re-
turns with high probability an \epsilon -spectral sparsifier H with \widetilde O(n/\epsilon 2) edges and has
runtime \widetilde O(

\surd 
mn/\epsilon ). The algorithm uses O(log n) qubits and a QRAM of \widetilde O(

\surd 
mn/\epsilon )

bits.

Proof. First we prove correctness. Since H is a spectral sparsifier of G, and
effective resistances correspond to quadratic forms in the inverse of the Laplacian, we
know that the effective resistances of H approximate those of G: (1  - 1/100)RG

s,t \leq 
RH

s,t \leq (1+1/100)RG
s,t for all s, t \in V . By Theorem 4.1 we know that the approximate

resistance oracle yields estimates \{ \widetilde RH
s,t\} such that (1  - 1/100)RH

s,t \leq \widetilde RH
s,t \leq (1 +

1/100)RH
s,t. Combining these inequalities shows that

(1 - 1/100)2RG
s,t \leq \widetilde RH

s,t \leq (1 + 1/100)2RG
s,t.

If we now keep each edge with probability pe = min(1, Cwe
\widetilde RH
e log(n)/\epsilon 2), then by

Theorem 4.2 with probability 1 - 1/n we find an \epsilon -spectral sparsifier withO(n log(n)/\epsilon 2)
edges. Combining this success probability with those of the quantum sparsification
algorithm and the construction of the resistance oracle, we find a total success prob-
ability of at least (1 - 1/n)3 = 1 - O(1/n).

The bound on the runtime follows from summing the \widetilde O(
\surd 
mn) runtime of the

quantum sparsification algorithm, the \widetilde O(n) runtime for creating the resistance ora-
cle of the sparsifier with \widetilde O(n) edges, and the \widetilde O(

\sqrt{} 
m(
\sum 

e pe)) expected runtime of
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1718 SIMON APERS AND RONALD DE WOLF

Fig. 2. A t-spanner H of a graph G is a sparse subgraph that preserves all shortest-path
distances between pairs of vertices up to a stretch factor t. Equivalently, for any edge e = (x, y) in
G there exists a path between x and y of distance at most t/we in H.

the quantum sampling routine (as remarked after Theorem 4.2, we can assume that
the probabilities pe have an O(log n)-bit description). Since\sum 

e

pe \leq 
C log(n)

\epsilon 2

\sum 
e

we
\widetilde RH
e \leq (1 + 1/100)2C log(n)

\epsilon 2

\sum 
e

weR
G
e ,

and
\sum 

e weR
G
e = n  - 1 [19, Theorem 25], we have that

\sum 
e pe \in \widetilde O(n/\epsilon 2), and so the

expected runtime of the sampling routine is \widetilde O(
\surd 
mn/\epsilon ). Moreover, by the Chernoff

bound the runtime of the latter routine will indeed be \widetilde O(
\surd 
mn/\epsilon ) with probability

at least 1  - 1/n. Hence we can abort the algorithm whenever the runtime exceeds
this bound, and the algorithm will still succeed with high probability, while the total
runtime becomes \widetilde O(

\surd 
mn/\epsilon ) in the worst case.

5. Quantum algorithm for building spanners. The Koutis--Xu sparsifica-
tion algorithm identifies ``important"" edges by growing spanners inside the graph. In
this section we propose a quantum algorithm for growing spanners, speeding up the
best classical algorithms.

Recall from section 2 that a t-spanner of a graph G = (V,E,w) is a subgraph
H = (V,EH \subseteq E,w) that preserves all pairwise distances between nodes up to a
stretch factor t. For every pair u, v \in V , it should hold that

\delta G(u, v) \leq \delta H(u, v) \leq t\delta G(u, v),

where we recall that \delta G(u, v) = minu - v path P

\sum 
e\in P 1/we. We illustrate this in

Figure 2. A spanner preserves the original weights on its edges. This is in contrast to
spectral sparsifiers which are necessarily reweighted. A classic result by Alth\"ofer et
al. [4] shows that, for any parameter k > 0, any n-node graph has a (2k - 1)-spanner
with O(n1+1/k) edges. We refer the interested reader to the classic book by Peleg [83]
or the very recent survey by Ahmed et al. [2].

There exists a range of classical algorithms for constructing spanners. We will
make use of one by Thorup and Zwick [99], which follows from their work on ``ap-
proximate distance oracles."" The main bottleneck of their algorithm is the growth of
shortest-path trees in subgraphs. We speed up this bottleneck by using the quantum
algorithm of D\"urr et al. [41] for growing a shortest-path tree in time \widetilde O(

\surd 
mn).

5.1. Thorup--Zwick algorithm. The spanner algorithm from [99] makes use
of shortest-path trees (SPTs). An SPT T (v) from a node v spanning a subset C is
defined as a tree, rooted at v and spanning C, so that the distance in this tree from
v to any node in C is the same as their distance in the original graph G.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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QUANTUM SPEEDUP OF SPARSIFICATION AND APPLICATIONS 1719

Algorithm 5.1 H = Spanner(G, k).
1: let A0 = V and Ak = \emptyset 
2: for i = 1, 2, . . . , k do
3: if i < k, let Ai contain each element of Ai - 1, independently, with probability

n - 1/k

4: for v \in Ai - 1  - Ai do
5: grow shortest-path tree T (v) from v spanning C(v) = \{ w \in V | \delta (w, v) <

\delta (w,Ai)\} 
6: add T (v) to H
7: end for
8: end for

Fig. 3. The spanner algorithm by Thorup and Zwick [99]. In each iteration, the algorithm
grows a shortest-path tree T (v) from a vertex v until it spans some subset C(v).

The Thorup--Zwick algorithm, presented in Algorithm 5.1, randomly partitions
the node set into k layers \{ Ai\} , which are increasingly sparsified. The nodes in these
layers function as ``hubs"" for the nearby nodes. SPTs are then grown that allow
efficient routing along these hubs. The resulting spanner consists of the union of
these SPTs. In the algorithm below, we set \delta (w, \emptyset ) = \infty for any w \in V .

Figure 3 illustrates the use of SPTs inside the algorithm. Apart from the cor-
rectness of the algorithm, we will require some additional bounds on the size of the
intermediate clusters C(v). We extract the following theorem from the analysis by
Thorup and Zwick.

Theorem 5.1 ([99]).
\bullet The output graph H of Spanner(G, k) is a (2k  - 1)-spanner of G.
\bullet The expected number of edges in H is O(\BbbE (

\sum 
v | C(v)| )) \in O(kn1+1/k).

\bullet The expected number of edges with at least one node in the clusters is

\BbbE 

\Biggl( \sum 
v

| E(C(v))| 

\Biggr) 
\in O(kmn1/k).

Setting k = 1/2 + log n, as we will do later on, this yields a 2 log n-spanner with
an expected number of edges O(n log n).
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1720 SIMON APERS AND RONALD DE WOLF

5.2. Quantum spanner algorithm. We can use a quantum algorithm from
D\"urr et al. [41] to speed up the construction of the SPT T (v), spanning C(v). We
slightly generalize their algorithm to deal with ``forbidden edges,"" which are encoded
by associating a weight we = 0 to them (which corresponds to an infinite resistance
or cost). Such edges will correspond to edges going outside of C(v), as well as edges
that have already been discarded by our sparsification algorithm.

In Appendix A we prove the following statement. We define the connected com-
ponent of a node v0 as the smallest subset Cv0 \subseteq V such that v0 \in Cv0 and either
E(Cv0 , V \setminus Cv0) = \emptyset or max\{ we | e \in E(Cv0 , V \setminus Cv0

)\} = 0. This implies that there is
no path of finite distance between v0 and any node outside Cv0 .

Proposition 5.2. Assume adjacency-list access to a weighted and undirected
graph G = (V,E,w). Let v0 be a source node and Cv0 its connected component. Then
there exists a quantum algorithm that outputs, with probability at least 1 - \delta , an SPT
from v0 that spans Cv0 . It has a runtime \widetilde O(

\sqrt{} 
| Cv0 | | E(Cv0

)| log(n/\delta )) and requires

O(log n) qubits and a QRAM of \widetilde O(| Cv0 | ) bits.
From this we can speed up the spanner construction rather straightforwardly. To

see this, note that the runtime of the Thorup--Zwick algorithm is dominated by the
task of growing the SPTs T (v), spanning the local clusters C(v), for all nodes v \in V .
By setting we = 0 for any edge reaching out of C(v), this task corresponds to an
SPT on the connected component of v. If we use the above quantum algorithm to
accelerate this, the total runtime becomes

\widetilde O\biggl( \sum 
v

\sqrt{} 
| C(v)| | E(C(v)| 

\biggr) 
\in \widetilde O\Biggl( \sqrt{} \sum 

v

| C(v)| 
\sqrt{} \sum 

v

| E(C(v)| 

\Biggr) 
,

where the containment follows from the Cauchy--Schwarz inequality. By Theorem 5.1
we know that \BbbE (

\sum 
v | C(v)| ) \in O(kn1+1/k) and \BbbE (

\sum 
v | E(C(v))| ) \in O(kmn1/k). By

Markov's inequality this implies that with probability close to 1 the runtime is

\widetilde O\Bigl( \sqrt{} kn1+1/k
\sqrt{} 
kmn1/k

\Bigr) 
\in \widetilde O\bigl( kn1/k

\surd 
mn
\bigr) 
.

What remains to be shown is how we (implicitly) set we = 0 for all edges reaching
out of C(v). To that end we follow the idea of Thorup and Zwick of connecting a
new source node s to every node in Ai, with edges of infinite weight, and construct
an SPT from s to V . It is easy to see that this returns the shortest path from any
node w /\in Ai to Ai, allowing us to calculate \delta (w,Ai). Using the standard quantum
SPT algorithm of [41] we can construct this SPT in time \widetilde O(

\surd 
mn), and we do this

whenever we construct a new Ai. Now assume that the quantum SPT algorithm at
some point wishes to choose an edge (w,w\prime ), with w part of the SPT constructed so
far, and w\prime an adjacent node. Then by design this must be a cheapest border edge of
the SPT constructed so far, and \delta (v, w\prime ) = \delta (v, w)+\delta (w,w\prime ). Hence we know \delta (v, w\prime )
and can simply check whether \delta (v, w\prime ) < \delta (w,Ai), setting the weight of the edge equal
to zero if this is not the case. This proves the following theorem.

Theorem 5.3. There is a quantum algorithm that outputs in time \widetilde O(kn1/k
\surd 
mn)

with high probability a (2k - 1)-spanner of G of size O(kn1+1/k). The algorithm uses
O(log n) qubits and a QRAM of \widetilde O(kn1+1/k) bits.

Setting k = log n+1/2, we find an \widetilde O(
\surd 
mn) quantum algorithm for constructing

2 log n-spanners, as required by our sparsification algorithm.
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QUANTUM SPEEDUP OF SPARSIFICATION AND APPLICATIONS 1721

6. Matching lower bound: A hidden sparsifier. In this section we prove
that the runtime of our quantum algorithm for spectral sparsification is optimal, up
to polylog-factors. In fact, we show that even constructing a weaker cut sparsifier
requires the same complexity. The following is a rephrasing of Theorem 1.2 from the
introduction.

Theorem 6.1. Fix n, m and let \epsilon \geq 
\sqrt{} 

n/m. Consider the problem of outputting,
with high probability, an explicit description of an \epsilon -cut sparsifier of a weighted, undi-
rected graph G with n nodes and m edges, given adjacency-list access to G. The
quantum query complexity of this problem is \widetilde \Omega (\surd mn/\epsilon ).

Note that sparsification is only meaningful under the constraint \epsilon \geq 
\sqrt{} 

n/m, since
for \epsilon \in O(

\sqrt{} 
n/m) the sparsifier would have at least as many edges as the original

graph. We prove this lower bound by ``hiding"" a sparsifier in a larger graph, and
then proving a quantum lower bound for finding the sparsifier. More specifically, we
use a random graph construction by Andoni et al. [6] such that any cut sparsifier
must contain a constant fraction of the edges of the graph. We then hide a number
of copies of this random graph by embedding it in a larger, denser graph. Finally we
show that finding a constant fraction of the edges of the initial random graph requires\widetilde \Omega (\surd mn/\epsilon ) queries. To prove this lower bound, we combine a quantum lower bound for
the OR-function with an information-theoretic lower bound for the problem of finding
nonzero bits in a Boolean matrix. We can combine these separate lower bounds by
using a composition theorem for adversary bounds, applicable to the composition of
a relational problem with a function. Prompted by our question, such a composition
theorem was very recently proven by Belovs and Lee [17].

6.1. Hiding a sparsifier. We use a random graph construction of Andoni et
al. [6] for which a sparsifier must output a constant fraction of its edges. We then
carefully hide a number of copies of this graph in a larger graph, which will later allow
for the reduction of a query problem to the construction of a sparsifier.

6.1.1. An unsparsifiable graph. Andoni et al. [6] construct a communication
problem that is described by a family of random graphs on 2/\epsilon 2 nodes with 1/(2\epsilon 4)
edges. They show that for a constant fraction of the inputs (> 3/5), the communi-
cation problem requires the communication of \Omega (1/\epsilon 4) bits. On the other hand, for
at least a 2/3-fraction of the inputs, the communication problem can be solved by
communicating an \epsilon -cut sparsifier. This shows that for at least a (3/5 - 1/3) > 1/4-
fraction of the inputs, the description of an \epsilon -cut sparsifier requires \Omega (1/\epsilon 4) bits.
Using a slightly more refined argument, they even show that the number of edges of
the sparsifier for these instances must be \Omega (1/\epsilon 4).

Fix any \epsilon > 0. Let B\epsilon be any bipartite graph with 1/\epsilon 2 nodes on each side, and
every left node connected to a corresponding subset of half of the right nodes. From
Andoni et al. [6, Theorem 3.3] we can extract the following theorem. Indeed, if the
claim would not hold, then we could violate their communication lower bound by
communicating an \epsilon -cut sparsifier.

Theorem 6.2 ([6]). For at least a 1/4-fraction of all graphs B\epsilon , any \epsilon -cut
sparsifier must contain \Omega (1/\epsilon 4) edges.

It follows that at least a 1/4-fraction of all graphs B\epsilon cannot be significantly
sparsified. Similarly to [6], we will also consider larger families of disjoint copies of
B\epsilon . We can easily prove the following corollary using the Chernoff bound.
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1722 SIMON APERS AND RONALD DE WOLF

Corollary 6.3. Consider the disjoint union of \ell distinct copies of B\epsilon . There
exists a constant \eta > 0, independent of \ell , such that for at least a 9/10-fraction of all
such graphs it holds that any \epsilon -cut sparsifier must contain at least \eta \ell /\epsilon 4 edges.

6.1.2. Embedding the sparsifier. Fix n,m \leq n2/4 and \epsilon \geq 
\sqrt{} 
n/m. Consider

\ell = \epsilon 2n/2 independent copies B(k) of B\epsilon , yielding a graph with n nodes. We wish to
``hide"" this graph in a larger, denser graph. To this end, we use an m-bit string x to
(redundantly) describe the resulting graph, which we denote by B(x). The description
x consists of \ell = \epsilon 2n/2 matrices x(k) of dimension 1/\epsilon 2 \times 1/\epsilon 2,

x(k) = \{ x(k)
i,j | i, j \in [1/\epsilon 2]\} , k \in [\epsilon 2n/2].

Every matrix x(k) is used to describe the bipartite adjacency matrix of the corre-
sponding copy B(k). Rather than bits, however, the entries x

(k)
i,j correspond to smaller

strings of N = 2\epsilon 2m/n bits each, with at most one nonzero bit per string. We say
that an input x is valid if it is of this form. The presence of an edge between the ith
left node and the jth right node in B(k) is determined by the presence of a nonzero
bit in the string x

(k)
i,j , i.e., by OR(x

(k)
i,j ). The bipartite adjacency list of the kth copy

B(k) is hence described as

adj(B(k)) = OR(x(k)) = OR

\left(    
\left[    
00010 00000 00000 10000
00100 00000 00100 00000
00000 01000 00001 00000
00000 00000 00010 01000

\right]    
\right)    =

\left[    
1 0 0 1
1 0 1 0
0 1 1 0
0 0 1 1

\right]    ,

where we give concrete values to the bits in x(k) for illustration. In the next section we
prove a lower bound on the identification of a constant fraction of the 1-bits in a valid
input x. In this section we show how to embed the corresponding graph B(x) in a
larger, denser graph G(x), so that an \epsilon -cut sparsifier of G(x) must identify a constant
fraction of the edges of B(x). This identifies a constant fraction of the 1-bits of the
input x, so that the aforementioned lower bound effectively yields a lower bound for
the construction of a sparsifier. We must take particular care in embedding B(x)
in G(x) so as not to reveal additional information about x. For example, we must
prevent the degrees of G(x) from revealing anything about the location of 1-bits in
the input. We do this essentially by ensuring that a query to the adjacency list of
G(x) can be performed using a single query to x.

Initially, the oblivious (input-independent) mother graph G = G1 \cup G2 is the
disjoint union of two bipartite graphs G1 = (L1 \cup R1, E1) and G2 = (L2 \cup R2, E2).
The first graph G1 is a multigraph consisting of \ell = \epsilon 2n/2 disjoint copies B(k) of the
complete bipartite graph on 1/\epsilon 2 nodes, containing N = 2\epsilon 2m/n parallel copies of
each edge (we will get rid of these multiedges later). As such, G1 has exactly n nodes
and m (sometimes parallel) edges. We match every edge of G1 to a unique input bit
by matching the parallel copies of edge (i, j) in B(k) to the input bits in the string

x
(k)
i,j . The second bipartite graph G2 has at most n nodes and exactly m edges, but no

multiedges (we do not need to further specify this graph at this point). We formally
match every single copy of an edge in G1 to a unique edge in G2, so that every input
bit now corresponds to a unique edge in G1 and a unique edge in G2. While doing so,
we ensure that all edges leaving a left or right node of G1 are matched to edges in G2

whose left (resp., right) ends are distinct. We will later clarify why this is important
and defer a proof that this is possible for some choice of G2 to Appendix B. At this
point, all edges in G have zero weight.
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QUANTUM SPEEDUP OF SPARSIFICATION AND APPLICATIONS 1723

Fig. 4. Matching input bits to edges in G1 and G2 for n = 8, m = 16, and \epsilon = 1/
\surd 
2 (we set

G2 to be the complete bipartite graph for illustration only). The dashed red edges depict a pair of

matched edges, which correspond to input bit x
(2)
1,2(l). If x

(2)
1,2(l) = 1, these edges are kept in G(x); if

x
(2)
1,2(l) = 0, they are ``flipped"" with the dotted edges.

Next we take the input x into account, turning G into G(x). To this end, we
``flip"" edge pairs conditioned on the input bit. Specifically, consider a bit x(i) that
corresponds to edges (l, r) in G1 and (l\prime , r\prime ) in G2. If x(i) = 1, then we keep these
edges as they are, except that we give (l, r) a unit weight. If x(i) = 0, then we ``flip""
the edges: we replace (l, r) and (l\prime , r\prime ) by edges (l, l\prime ) and (r, r\prime ). This is illustrated in
Figure 4. We see now that if two outgoing edges from l were matched to edges with
the same left end l\prime in L2, then this could create the edge (l, l\prime ) twice. Similarly if two
incoming edges from r were matched to the same right ends r\prime , this could create the
edge (r, r\prime ) twice. Our matching ensures that this can never happen.

Now consider a pair l \in L1 and r \in R1, corresponding to the edge (i, j) in B(k).
Then G(x) will contain a unique, unit-weight edge between l and r if and only if the

string x
(k)
i,j has a unique nonzero bit. As a consequence, G(x) restricted to the node

set L1 \cup R1 exactly describes B(x). Moreover, we can perform a single query to the
adjacency list of G(x) using a single query to x, as we prove in the lemma below.

Lemma 6.4. Fixn,m \leq n2/4 and \epsilon \geq 
\sqrt{} 
n/m, and consider a valid input x \in 

\{ 0, 1\} m. Then G(x) has at most 2n nodes and exactly 2m edges, and any query to its
adjacency list can be simulated using a single query to x. G(x) has B(x) as a subgraph
with unit edge weights, and all remaining edges have zero weight.

Proof. We only prove the claim about the query access, as all other claims follow
easily from the construction. A degree query is trivially simulated, since G(x) has the
same degrees as G. To simulate a neighbor query, say that we wish to query the kth
entry of the adjacency list of node l \in L1 in G1 for some k \in [2m/n]. By construction,
this corresponds to a known edge (l, r) in G1, a corresponding edge (l\prime , r\prime ) in G2, and
a unique input bit x(i). We query the input bit x(i). If it equals 1, then G(x) has the
unit-weight edge (l, r), and hence we return r \in R1 and weight 1. If it equals 0, then
we flipped the edges and G(x) has the edge (l, l\prime ), and so we return the node l\prime \in L1

and weight 0. The same reasoning applies to queries from all other nodes of G(x).

We will also use the claim below, which follows easily from the fact that only the
subgraph B(x) of G(x) has unit-weight edges, and all remaining edges have weight
zero.

Claim 6.5. Any \epsilon -cut sparsifier of G(x) contains an \epsilon -cut sparsifier of B(x).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1724 SIMON APERS AND RONALD DE WOLF

Proof. Let H be any \epsilon -cut sparsifier of G(x). Then we can simply remove all
edges from H that are not in B(x) (and necessarily have zero weight) to yield an
\epsilon -cut sparsifier for B(x).

Combining this claim with Corollary 6.3, we can deduce that for at least 9/10
of all valid inputs x, any \epsilon -cut sparsifier of G(x) must identify a constant fraction
(specifically, at least \eta n/\epsilon 2) of the edges of B(x). Since the presence of an edge in

B(x), say (li, rj) in copy B(k), reveals that string x
(k)
i,j has a nonzero entry, we find

the following corollary.

Corollary 6.6. For at least a 9/10-fraction of all valid inputs x, it holds that any
\epsilon -cut sparsifier of G(x) must identify a constant 2\eta -fraction of the nonzero strings.

6.2. Finding the sparsifier. Now we wish to prove a lower bound on identifying
nonzero strings, thereby proving a lower bound on the complexity of sparsifying G(x).
To this end, we first formalize the new problem.

Definition 6.7. The problem FindBitsr,c takes as input an r\times c Boolean matrix,
with each row containing exactly c/2 nonzero bits. A correct output consists of the
indices of a 2\eta -fraction of the nonzero bits.

Note that this is a relational problem: for every input there are many different
possible correct outputs. Formally, a relational problem f corresponds to a set f \subseteq 
S \times T , where S \subseteq \{ 0, 1\} M is the set of possible inputs and T denotes the set of
possible outputs. Output t is deemed a correct output for f on input x \in S if and
only if (x, t) \in f . For our relational problem FindBitsr,c, S is the allowed set of r\times c
Boolean input matrices, and each t \in T corresponds to a set of \eta rc indices of that
matrix. Output t is correct for input matrix x if all indices in t correspond to 1-bits
in x.

Using information theory, we can prove a lower bound on the bounded-error
quantum query complexity of this problem, i.e., on the number of queries to x required
by a quantum algorithm that returns a correct output with probability at least 2/3.

Claim 6.8. The bounded-error quantum query complexity of FindBitsr,c on any

constant fraction of its valid inputs is \widetilde \Omega (rc).
Proof. This lower bound follows from combining an information-theoretic lower

bound on how much information the algorithm extracts about its input, with Holevo's
quantum information bound. More precisely, we examine the mutual information
I(A;B) between a uniformly random input matrix A and an output B for FindBitsr,c
that is correct with probability at least 2/3. We refer the reader to the textbook of
Cover and Thomas [36] for precise definitions. By Holevo's theorem [54], this mutual
information lower bounds the quantum query complexity times O(log(rc)).3

We lower bound I(A;B) = H(A) - H(A| B) by lower bounding H(A) and upper
bounding H(A| B). To lower bound H(A), let S denote the set of all inputs, consisting
of all r\times c Boolean matrices with all row sums equal to c/2, and let S\prime \subseteq S denote any
constant fraction subset of S (say | S\prime | = \beta | S| for some \beta > 0). Then A corresponds
to a uniformly random element of S\prime , and we have

3 This is a fairly standard argument. We can consider a communication protocol where the
T -query quantum algorithm implements each quantum query using one round of O(log(rc)) qubits
of communication to and from another party that holds A (by sending the query and answer regis-
ters back and forth), thus learning I(A;B) bits of information about A while only communicating
O(T log(rc)) qubits. It now follows from [54] that T \in \Omega (I(A;B)/ log(rc)).
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QUANTUM SPEEDUP OF SPARSIFICATION AND APPLICATIONS 1725

H(A) = log | S\prime | = log(\beta | S| )

= log

\biggl( 
\beta 

r\prod 
j=1

\biggl( 
c

c/2

\biggr) \biggr) 
= r log

\biggl( 
c

c/2

\biggr) 
+ log \beta \geq r(c - O(log c)).

To upper bound H(A| B), we use that with probability at least 2/3 the output B
is correct, revealing a 2\eta -fraction of the nonzero entries of A and hence significantly
reducing the entropy of A. Let E denote an indicator bit which equals 1 if B is a
correct output, and 0 otherwise. Then we can bound

H(A| B) \leq H(A| B,E) +H(E)

= Pr(E = 1)H(A| B,E = 1) + Pr(E = 0)H(A| B,E = 0) +H(E)

\leq 2

3
H(A| B,E = 1) +

1

3
rc+ 1.

We now want to upper bound H(A| B,E = 1). Fix integers \{ d(j)\} j\in [r] such that\sum 
j d(j) = \eta rc, and condition on the event D\{ d(j)\} that B reveals d(j) entries of the

jth row of A. Let S\{ d(j)\} \subseteq S\prime denote the set of inputs which are compatible with
\{ d(j)\} . We can bound

H(A| B,E = 1, D\{ d(j)\} ) \leq log | S\{ d(j)\} | \leq log

\biggl( r\prod 
j=1

\biggl( 
c - d(j)

c/2 - d(j)

\biggr) \biggr) 

=

r\sum 
j=1

log

\biggl( 
c - d(j)

c/2 - d(j)

\biggr) 
\leq 

r\sum 
j=1

(c - d(j)) = r(1 - \eta )c.

This upper bound holds irrespective of the specific setting of \{ d(j)\} . Hence,
taking the expectation over all possible settings of \{ d(j)\} , we obtain

H(A| B,E = 1) = \BbbE \{ d(j)\} 
\bigl[ 
H(A| B,E = 1, D\{ d(j)\} )

\bigr] 
\leq r(1 - \eta )c.

Our lower bound on H(A) and upper bound on H(A| B) together imply

I(A;B) \geq 2

3
r(\eta c - O(log c)) - 1 \in \Omega (rc),

which finalizes our proof.

Next we will compose the relational problem FindBitsr,c with r \times c copies of the
ORN -function on N bits each, so that every single input bit of FindBitsr,c is now
described by an ORN . We denote this composed problem as FindBitsr,c \circ ORrc

N . To
ensure that the input of the composed problem is a valid input for FindBitsr,c, we
must restrict it to r\times c matrices of strings, each carrying N bits, so that exactly c/2
strings per row have one nonzero entry, and the remaining strings only have zeros.

The composed problem FindBitsr,c \circ ORrc
N corresponds to the composition of

a relational problem (multiple outputs are correct for FindBitsr,c) and a function.
Bounds on the quantum query complexity of the composition of two functions are
well understood [55]. When the outer problem is a relational problem, however, no
such result seemed to be known. Fortunately, prompted by our question, Belovs and
Lee [17] very recently proved the following theorem.
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1726 SIMON APERS AND RONALD DE WOLF

Theorem 6.9 (Corollary 27 of [17]). Let f \subseteq S \times T , with S \subseteq \{ 0, 1\} M , be a
relational problem with bounded-error quantum query complexity L. Assume that f
is efficiently verifiable, in the sense that there is a bounded-error quantum algorithm
that, given some t \in T and oracle access to x \in S, verifies whether (x, t) \in f using
o(L) queries to x. Let g : D \rightarrow \{ 0, 1\} , with D \subseteq \{ 0, 1\} N , be a Boolean function whose
bounded-error quantum query complexity is Q. Then the bounded-error quantum query
complexity of the relational problem f \circ gM , restricted to inputs x \in \{ 0, 1\} NM such
that gM (x) \in S, is \Theta (LQ).

We instantiate this by setting f to the relational problem FindBitsr,c, with S
a 9/10-fraction of its valid inputs. By Claim 6.8 its bounded-error quantum query
complexity is L \in \widetilde \Omega (rc). Using Grover's algorithm, we can efficiently verify an output,
using O(

\surd 
rc) \in o(L) queries to f 's M -bit input. We let g be the function ORN

restricted to the set D of all N -bit inputs of Hamming weight 0 or 1; its bounded-
error quantum query complexity is \Theta (

\surd 
N). Plugging this into Theorem 6.9 yields

the following corollary.

Corollary 6.10. Solving the problem FindBitsr,c \circ ORrc
N has bounded-error

quantum query complexity \widetilde \Omega (rc\surd N). This holds even when the inputs are restricted
to a constant fraction of the valid inputs.

Finally, using the graph embedding of the previous section, we show in the claim
below how to solve this composed relational problem by constructing a cut sparsifier
of an associated graph. Combining this with the lower bound from Corollary 6.10
then yields our lower bound for finding a cut sparsifier (Theorem 6.1).

Claim 6.11. Fix n, mlet \epsilon \geq 
\sqrt{} 

n/m, and set r = n/2, c = 1/\epsilon 2 (number of
potential neighbors) and N = 2\epsilon 2m/n. For at least a 9/10-fraction of all valid inputs
x, we can reduce the problem (FindBitsr,c \circ ORrc

N )(x) to finding an \epsilon -cut sparsifier of
G(n,m, \epsilon , x). Specifically, any T -query quantum algorithm that sparsifies G(n,m, \epsilon , x)
with success probability at least 2/3 can solve (FindBitsr,c \circ ORrc

N )(x) with success
probability at least 2/3 on at least a 9/10-fraction of its valid inputs using O(T )
queries.

Proof. Consider a valid input x \in \{ 0, 1\} m and the associated graph G(x) =
G(n,m, \epsilon , x) as defined in section 6.1.2. For a 9/10-fraction of these inputs, we know
by Corollary 6.6 that we can solve (FindBitsr,c \circ ORrc

N )(x) by constructing an \epsilon -
cut sparsifier of G(x). Moreover, by Lemma 6.4 we can query the adjacency list of
G(x) using a single query to x. Hence, if we output with probability at least 2/3
an \epsilon -cut sparsifier of G(x) using T queries to its adjacency list, then we also solve
(FindBitsr,c \circ ORrc

N )(x) with probability at least 2/3 using T queries to x.

7. Applications. In this section we nonexhaustively list some applications of
our quantum sparsification algorithm, proving speedups in cut approximation and
Laplacian solving. Given the broad applicability of sparsification in classical algo-
rithms, we expect that more applications will follow.

7.1. Cut approximation. A range of cut approximation algorithms have a
near-linear runtime in the number of edges in the graph. In the following we dis-
cuss a number of these algorithms, and show how our quantum algorithm for cut
sparsification allows us to speed them up.

7.1.1. max cut. The max cut problem for a weighted graph G = (V,E,w)
asks for a cut (S, Sc) that maximizes the total weight valG(S) of the cut. Its decision

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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QUANTUM SPEEDUP OF SPARSIFICATION AND APPLICATIONS 1727

version is one of the 21 problems famously shown to be NP-complete by Karp [64]. The
best current approximation factor of this problem is roughly .8785, as was famously
proven by Goemans and Williamson [45] using an SDP relaxation. Khot et al. [69]
showed that this approximation factor is optimal under the unique games conjecture.

In later work, Arora and Kale [10] showed how to solve the Goemans--Williamson
SDP in time \widetilde O(m), using, among other things, the cut sparsification algorithm by
Bencz\'ur and Karger [18]. We find a quantum speedup by replacing the Bencz\'ur--
Karger algorithm by our quantum sparsification algorithm. Specifically we construct
an \epsilon -spectral sparsifier H for some small but constant \epsilon > 0 in time \widetilde O(

\surd 
mn/\epsilon ). Since

all cuts are preserved up to a multiplicative error \epsilon , we can apply the Arora--Kale
algorithm on H to retrieve a max cut approximation factor of at least .8785(1 - \epsilon ).
Choosing \epsilon sufficiently small we find the following claim.

Claim 7.1. There exists a quantum algorithm that outputs a .878-approximate
max cut of a weighted graph in time \widetilde O(

\surd 
mn).

We note that for unweighted graphs, max cut can be approximately solved classi-
cally in time \widetilde O(n). If we wish to output the max cut bipartition, then this is trivially
optimal both for classical and quantum algorithms, and hence no quantum speedup
is possible. The \widetilde O(n) classical algorithm follows from the fact that for unweighted
graphs a trivial sparsification procedure suffices to approximately preserve the max
cut value (pick \widetilde O(n) edges uniformly at random---see, for instance, [100, section 2]).
In the adjacency list model, this can be done classically in time \widetilde O(n). For weighted
graphs this approach no longer works, as in this case the edges have to be sampled
with probability proportional to their edge weights. This cannot be done classically
in time o(m) since we could, for instance, hide a single heavy edge among m light
edges. From all the cut problems we consider, this is the only one for which a classical
sublinear algorithm with multiplicative error exists---albeit only for the unweighted
case.

7.1.2. min cut. Given a weighted graph G = (V,E,w), the min cut problem
asks for a cut (S, Sc) with minimum weight valG(S). Up to polylog-factors in the
runtime, the current best algorithm is by Karger [63]. It builds on cut sparsification
to output an exact min cut of the graph with high probability in time \widetilde O(m). Running
this algorithm on our \epsilon -cut sparsifier with \widetilde O(n/\epsilon 2) edges thus requires time \widetilde O(n/\epsilon 2)
and returns an \epsilon -approximate min cut.

Claim 7.2. There exists a quantum algorithm that outputs an \epsilon -approximate min
cut of a weighted graph in time \widetilde O(

\surd 
mn/\epsilon ).

We leave as an open question whether this algorithm can be improved to also
output an exact min cut, similar to the algorithm in [63].

7.1.3. min st-cut. Given a weighted graph G = (V,E,w), the min st-cut
problem requires one to output a cut C = (S, Sc) with minimum value valG(S),
such that s \in S and t /\in S. The current best algorithms for approximate min st-cut
build on the max-flow min-cut theorem, which states that the value of the min st-cut
equals the value of a maximum st-flow. Combining classical cut sparsification with
the recent \widetilde O(m/\epsilon 3) solver for \epsilon -approximate max flows by Peng [84], this yields an\widetilde O(m+n/\epsilon 5) time algorithm for min st-cut. We obtain the following claim by running
this algorithm on our cut sparsifier with \widetilde O(n/\epsilon 2) edges.

Claim 7.3. There exists a quantum algorithm that outputs an \epsilon -approximate
minimum st-cut of a weighted graph in time \widetilde O(

\surd 
mn/\epsilon + n/\epsilon 5).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1728 SIMON APERS AND RONALD DE WOLF

7.1.4. sparsest cut and balanced separator. Given a weighted graph G =
(V,E,w), the sparsest cut problem asks for a cut C = (S, Sc) which minimizes the
ratio valG(S)/(| S| | Sc| ). The balanced separator problem asks in addition that
the cut be ``balanced,"" i.e., \mu \leq | S| /| V | \leq 1/2 for some constant \mu > 0. Exactly solv-
ing either of these problems is NP-hard, and optimally trying to approximate them has
led to an interesting line of research [11, 75]. Currently the best polynomial-time clas-
sical algorithm for both problems achieves an O(

\surd 
log n)-approximation factor in time\widetilde O(m+ n1+\delta ) for an arbitrary positive constant \delta . This is achieved by combining cut

sparsification, work by Sherman [88] which shows that an O(
\surd 
log n)-approximation

can be calculated by solving \widetilde O(n\delta ) max flows, and the \widetilde O(m/\epsilon 3) max flow algorithm
by Peng [84] for constant \epsilon > 0. Applying these algorithms to our \epsilon -cut sparsifier for
constant \epsilon > 0, we get the claim below.

Claim 7.4. There is a quantum algorithm that outputs an O(
\surd 
log n)-approximate

sparsest cut or balanced separator of a weighted graph in time \widetilde O(
\surd 
mn+n1+\delta ) for an

arbitrary constant \delta > 0.

7.2. Quantum Laplacian solver. The complexity of the best known linear
system solver is \widetilde O(n\omega ), with \omega < 2.373 the matrix multiplication coefficient. Building
on a long line of work, Spielman and Teng [94] famously showed that the special case of
Laplacian systems can be solved in time \widetilde O(m) \in \widetilde O(n2), withm the number of nonzero
entries of the Laplacian. To this end they exploit the connection of Laplacians with
graphs, allowing for a combinatorial interpretation and treatment of the linear system.

More specifically, a Laplacian solver aims to solve a linear system LGx = b,
where LG is the Laplacian associated to some graph G. We denote the solution by
x = L+

Gb. The original motivation for spectral sparsification was in fact to create
better Laplacian solvers. Indeed, as follows from the lemma below, we can solve
the Laplacian system in the sparsifier and retrieve an approximation of the original
system. Here we use the A-induced norm \| v\| A =

\surd 
v\dagger Av = \| A1/2v\| for a positive

semidefinite matrix A, with v\dagger the Hermitian transpose of vector v.

Claim 7.5. Consider a linear system LGx = b, where LG is the Laplacian of a
weighted, undirected graph G. If H is an \epsilon -spectral sparsifier of G, with Laplacian
LH , then solving LHx = b yields an approximate solution to the original system:

\| L+
Hb - x\| LG

\leq 2\epsilon \| x\| LG
.

Proof. Since H is an \epsilon -spectral sparsifier of G, we have that (1  - \epsilon )LG \preceq LH \preceq 
(1 + \epsilon )LG. This implies that the nonzero eigenvalues of LGL

+
H (and hence also of

L
1/2
G L+

HL
1/2
G ) lie between 1/(1+\epsilon ) and 1/(1 - \epsilon ). With I the identity matrix restricted

to the image of LG and LH , this implies that \| L1/2
G L+

HL
1/2
G  - I\| \leq \epsilon /(1 - \epsilon ) \leq 2\epsilon for

\epsilon \leq 1/2. From this we can bound

\| L+
Hb - x\| LG

= \| L1/2
G L+

Hb - L
1/2
G x\| 

= \| L1/2
G L+

HLGx - L
1/2
G x\| 

= \| (L1/2
G L+

HL
1/2
G  - I)L

1/2
G x\| \leq \| L1/2

G L+
HL

1/2
G  - I\| \| L1/2

G x\| .

Since \| L1/2
G L+

HL
1/2
G  - I\| \leq 2\epsilon and \| L1/2

G x\| = \| x\| LG
, this proves the lemma.

This observation allowed Spielman and Teng to reduce the task of solving a po-
tentially dense Laplacian system to solving a very sparse one in the Laplacian of the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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QUANTUM SPEEDUP OF SPARSIFICATION AND APPLICATIONS 1729

sparsifier, having \widetilde O(n/\epsilon 2) edges. They then invoke other methods to efficiently solve
the sparse Laplacian system in additional time \widetilde O(n/\epsilon 2).

An immediate consequence is that we can use our quantum sparsification al-
gorithm to speed up Laplacian solving. We can create a sparsifier H with \widetilde O(n/\epsilon 2)
edges in time \widetilde O(

\surd 
mn/\epsilon ), and then use a classical Laplacian solver to solve the system

LHx = b in an additional time \widetilde O(n/\epsilon 2). This proves the proposition below.

Proposition 7.6 (quantum Laplacian solver). There exists a quantum algorithm
that, given adjacency-list access to a weighted and undirected graph G, outputs with
high probability an approximate solution \~x to the linear system LGx = b such that
\| \~x - x\| LG

\leq \epsilon \| x\| LG
in time \widetilde O(

\surd 
mn/\epsilon ).

The use of the LG-induced norm \| \cdot \| LG
is common in the study of Laplacian

solvers. If, however, an \epsilon -approximate solution in the regular 2-norm is desired,
then one can use that \| \~x  - x\| LG

\leq \epsilon \| x\| LG
implies that \| \~x  - x\| \leq \epsilon 

\surd 
\kappa \| x\| , with

\kappa = \lambda max/\lambda min the condition number of LG. Setting \epsilon = \delta /
\surd 
\kappa hence yields a \delta -

approximation in the 2-norm, and the runtime of the quantum Laplacian solver be-
comes \widetilde O(

\surd 
mn\kappa /\delta ). This factor-

\surd 
\kappa overhead would typically be too large, apart from

the case where the Laplacian is well-conditioned. A resolution to this issue follows
from improving the error-dependence of our quantum Laplacian solver down to poly-
logarithmic, which is one of the open questions that we mentioned in the introduction.

7.2.1. Solving SDD systems. Laplacian systems are special cases of the more
general class of real, symmetric, weakly diagonally dominant (SDD) systems Ax = b,
where A is such that

A = AT and Aii \geq 
\sum 
j \not =i

| Aij | \forall i \in [n].

A Laplacian system Lx = b is the special case of an SDD system where the off-
diagonals of L are nonpositive, and its row sums are equal to zero. It is well known
[48] that classically solving SDD systems can be reduced in time O(m) to solving
a Laplacian system. This implies that the near-linear time Laplacian solver in [97]
yields a near-linear time solver for the more general case of SDD systems as well.

Since we are aiming for a sublinear runtime in the quantum case, this classical
reduction is too costly. However, taking inspiration from the classical reduction, we
show in Appendix C that our quantum sparsification algorithm can approximately
reduce an SDD system to a much sparser SDD system in time \widetilde O(

\surd 
mn/\epsilon ). Using a

classical near-linear time SDD solver [97] on this sparser SDD system then yields the
following proposition. As is customary in quantum linear algebra routines [44], we
assume sparse access to the matrix A: given a query (i, k) \in [n]2, this returns the
index and value (j, Aij) \in [n]\times \BbbR of the kth nonzero element of the ith row Ai\cdot (and
an error symbol if there are less than k nonzero elements).

Proposition 7.7 (quantum SDD solver). There exists a quantum algorithm that,
given sparse access to an SDD matrix A, outputs with high probability an approximate
solution \~x to the linear system Ax = b such that \| \~x - x\| A \leq \epsilon \| x\| A in time \widetilde O(

\surd 
mn/\epsilon ).

7.2.2. Effective resistances and commute times. Electrical networks, con-
sisting of nodes \{ v \in V \} and resistors \{ re | e \in E\} , are conveniently described by
a weighted graph G = (V,E, \{ we = 1/re\} ) [19]. Certain quantities of the electrical
network can then be expressed using the Laplacian of G. One example is the effective
resistance Rs,t between a pair of nodes s and t, which we already encountered in
section 4. This can be expressed as a quadratic form in the inverse of the Laplacian:
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1730 SIMON APERS AND RONALD DE WOLF

Rs,t = (\chi s  - \chi t)
TL+(\chi s  - \chi t).

This effectively measures the dissipated power \scrE (js,t) of the electric flow that
results from injecting a unit current in s, and extracting it from t, as is described by
the demand vector js,t = \chi s  - \chi t. For a more general demand vector j \in \BbbR n, with
1T j =

\sum 
v\in V j(v) = 0, the dissipated power is defined analogously:

\scrE (j) = jTL+j.

Closely related to the effective resistance is the commute time of a random walk.
The random walk commute time Cs,t between nodes s and t is defined as the expected
number of steps the walk must take from s to reach t, and then return to s. By a
result of Chandra et al. [26] we know that Cs,t = 2WRs,t, with W =

\sum 
e we the total

edge weight in the graph.
Since the effective resistance and the dissipated power correspond to quadratic

forms in the inverse of the Laplacian, they can be \epsilon -approximated by calculating
the corresponding quantity in an \epsilon -spectral sparsifier. In addition, the total edge
weight WH of an \epsilon -cut sparsifier \epsilon -approximates the original edge weight W , so that
(1 - \epsilon )2CG

s,t \leq CH
s,t \leq (1+\epsilon )2CG

s,t and hence also the commute times are approximated.
Using our quantum sparsification algorithm, together with a classical Laplacian solver,
we can approximate any of these quantities in time \widetilde O(

\surd 
mn/\epsilon ).

Claim 7.8. Let j \in \BbbR n be a current demand vector, with 1T j = 0. Then
there exists a quantum algorithm that outputs an \epsilon -approximation to the dissipated
power \scrE (j) in time \widetilde O(

\surd 
mn/\epsilon ). In particular, if j = \chi s  - \chi t, then this yields an

\epsilon -approximation of the effective resistance Rs,t and the commute time Cs,t.

By a similar argument, we can create an \epsilon -spectral sparsifier and construct the
approximate resistance oracle of Spielman and Srivastava (see section 4.1.1) on this
sparsifier. By Theorem 4.1 we can construct this oracle in time \widetilde O(n/\epsilon 4) (which
corresponds to \widetilde O(m/\epsilon 2) when we input a sparsifier with m \in \widetilde O(n/\epsilon 2) edges). This
proves the following claim.

Claim 7.9. There exists an \widetilde O(
\surd 
mn/\epsilon + n/\epsilon 4)-time quantum algorithm that

outputs a (24 log(n)/\epsilon 2)\times n matrix Z such that with high probability, for any s, t \in V
it holds that

(1 - \epsilon )Rs,t \leq \| Z(\chi s  - \chi t)\| 2 \leq (1 + \epsilon )Rs,t.

After creating the matrix Z, we can hence \epsilon -approximate any effective resistance
Rs,t in time \widetilde O(1/\epsilon 2) simply by calculating the norm of the difference between two\widetilde O(1/\epsilon 2)-length columns of Z. Apart from its use for spectral sparsification, as we
demonstrated in section 4, such an oracle can also be used to obtain geometric em-
beddings of the graph; see, for instance, [103].

7.2.3. Cover time. The cover time \tau cov(G) of a weighted graph G denotes the
expected number of steps before a random walk has visited all nodes, starting from
the worst initial node. A classic bound on the cover time called Matthew's bound [79]
states that

max
s,t

Hs,t \leq \tau cov(G) \leq (1 + log(n))max
s,t

Hs,t,

with Hs,t the hitting time from node s to node t. Tighter characterizations were later
proven by Kahn et al. [59] and Ding, Lee, and Peres [39]. We extract the following
claims from the latter.
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QUANTUM SPEEDUP OF SPARSIFICATION AND APPLICATIONS 1731

Theorem 7.10 ([39, Theorems 1.6 and 4.14]).
\bullet If H is an O(1)-spectral sparsifier of G, then \tau cov(H) \in \Theta (\tau cov(G)).
\bullet There is an algorithm that outputs in time \widetilde O(m) with high probability an

O(1)-approximation of \tau cov(G).

We can easily derive the following claim by using our quantum sparsification
algorithm to construct an O(1)-spectral sparsifier, and then approximating the cover
time on this sparsifier using the algorithm from [39].

Claim 7.11. Let G be an unweighted, undirected graph. There exists a quantum
algorithm that outputs a constant-factor approximation to the cover time \tau cov(G) in
time \widetilde O(

\surd 
mn).

7.2.4. Eigenvalues and spectral clustering. The bottom eigenvalues and
eigenvectors of a graph Laplacian provide useful information about the graph, as is
shown by, e.g., Cheeger's inequality and spectral clustering [80], the PageRank algo-
rithm [21], and in fact the entire field of spectral graph theory [32, 37]. Laplacian
solvers allow one to efficiently approximate these eigenvalues and eigenvectors. Spiel-
man and Teng [97] (with a later refinement by Koutis, Levin, and Peng [70]) showed
that in time \widetilde O(m + kn/\epsilon 2) it is possible to compute (i) an \epsilon -approximation to the
k smallest eigenvalues \lambda 1, . . . , \lambda k of a Laplacian, and (ii) a set of k orthogonal unit
vectors v1, . . . , vk such that

vT\ell Lv\ell \leq (1 + \epsilon )\lambda \ell , 1 \leq \ell \leq k.(7.1)

This set of vectors approximates the subspace spanned by the k bottom eigen-
vectors of the Laplacians. Already for constant \epsilon > 0, such a set can be used for
spectral clustering. For the case of two clusters, this is explicitly discussed in [95] and
[97, section 7] for RatioCut. For k clusters, the most common approach is spectral
k-means clustering [80, 103]. Using the same analysis as in [85], one can show that a
set obeying (7.1) can be used to obtain the same performance [106].

Using our quantum sparsification algorithm, we find a direct speedup for this
task. To that end, note that it suffices to calculate the k smallest eigenvalues and
approximate eigenvectors of an \epsilon \prime -spectral sparsifier for, say, \epsilon \prime = \epsilon /10. This will
yield \epsilon -approximate eigenvalues and eigenvectors of the original graph; see, e.g., [97,
Proposition 7.3]. We can hence construct an (\epsilon /10)-spectral sparsifier with \widetilde O(n/\epsilon 2)
edges in time \widetilde O(

\surd 
mn/\epsilon ), and then use a classical algorithm to solve the prob-

lem in the sparsifier, taking additional time \widetilde O(kn/\epsilon 2). This proves the following
claim.

Claim 7.12. There exists an \widetilde O(
\surd 
mn/\epsilon + kn/\epsilon 2)-time quantum algorithm that

outputs with high probability an \epsilon -approximation of each of the k smallest eigenvalues
and a set of orthogonal unit vectors v1, . . . , vk such that vT\ell Lv\ell \leq (1 + \epsilon )\lambda \ell for all
1 \leq \ell \leq k.

This directly yields a speedup for the aforementioned spectral clustering algo-
rithms, provided that we are given adjacency-list access to some similarity graph of
the data [103]. Consider, for instance, the spectral k-means clustering algorithm in
[80]. Given the similarity graph, its classical time complexity is dominated by (i)
the time to construct a set of k vectors obeying (7.1) for constant \epsilon > 0, which is\widetilde O(m + nk), and (ii) the time to perform k-means clustering on these vectors, which
is \widetilde O(npoly(k)). This yields a total classical complexity \widetilde O(m + npoly(k)). From the
above claim, we immediately find the following corollary.
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1732 SIMON APERS AND RONALD DE WOLF

Corollary 7.13. There exists a quantum algorithm that, given adjacency-list
access to the similarity graph of a data set, performs spectral k-means clustering on
this data set in time \widetilde O(

\surd 
mn+ npoly(k)).

Appendix A. Quantum algorithm for shortest-path trees.

In this section we describe a quantum algorithm for constructing a single-source
shortest-path tree (SPT), based4 on the algorithm by D\"urr et al. [41]. We slightly
generalize the algorithm to the case where there is a set of ``forbidden edges,"" which
we encode by associating a weight we = 0 to these edges. The algorithm should then
return an SPT over the connected component of the source. We recall that the cost
of traversing an edge is described by its resistance 1/we, and the distance \delta G(u, v)
between nodes u and v is

\delta G(u, v) = min
u - v path P

\sum 
e\in P

1

we
.

The key routine that is used is a quantum algorithm for minimum-finding. It
assumes oracle access to a ``value function"" f : [N ] \rightarrow \BbbR \cup \{ \infty \} and a ``type function""
g : [N ] \rightarrow \BbbN , with a total number of types

M = | Im(g)| = | \{ g(j) : j \in [N ]\} | .

Given an integer d \in \BbbN with d \leq N/2, the problem minfind (d, f, g) is to output
a subset I \subseteq [N ] of size | I| = min\{ d,M\} , such that

\bullet g(i) \not = g(j) for all distinct i, j \in I, and
\bullet for all j \in [N ]\setminus I and i \in I, if f(j) < f(i), then f(i\prime ) \leq f(j) for some i\prime \in I

with g(i\prime ) = g(j).

Proposition A.1 ([41, Theorem 3.4]). There is a quantum algorithm to solve
minfind (d, f, g) in time \widetilde O(

\surd 
Nd log(1/\delta )) with success probability at least 1 - \delta . The

algorithm requires O(logN) qubits and a QRAM of \widetilde O(d) bits.

The quantum algorithm for constructing an SPT effectively implements Dijkstra's
algorithm, which we recall below for completeness. The algorithm assigns a ``cost"" to
any (ordered) pair of nodes u, v by setting

cost(u, v) = \delta G(v0, u) + w(u, v).

We define the component of a node v0 as the smallest subset S \subseteq V such that
v0 \in S and either | E(S, V \setminus S)| = 0 or min\{ w(u, v) | (u, v) \in E(S, V \setminus S)\} = \infty .

Starting from a node v0, Dijkstra's algorithm (Algorithm A.1) returns an SPT
from v0 that spans the component of v0. A key feature of the algorithm is that, at
any time, the tree T is an SPT for the nodes in T (i.e., \delta T (v0, u) = \delta G(v0, u) for all
u \in T ). It follows that for any node u \in T we can efficiently evaluate \delta G(v0, u) and
hence cost(u, v) = \delta G(v0, u) + 1/w(u, v).

Now we describe a quantum SPT algorithm that is based on Dijkstra's algorithm.
It will have the same feature that at any time, the tree T is an SPT for the nodes
in T .

4 It was brought to our attention by J. van Apeldoorn and T. de Vos that there is an error
in the original algorithm from [41]. Namely, in the proof of [41, Theorem 7.1] the cost function
f((u, v)) = 1/w(u, v) is used, while this should have been f((u, v)) = \delta G(v0, u)+ 1/w(u, v). We here
describe the corrected algorithm, which requires a more elaborate proof of correctness.
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QUANTUM SPEEDUP OF SPARSIFICATION AND APPLICATIONS 1733

Algorithm A.1 Dijkstra's algorithm.
1: let T = (VT = \{ v0\} , ET = \emptyset )
2: while | VT | < n - 1 do
3: find an edge (u, v) \in E(VT , V \setminus VT ) with minimal cost(u, v)
4: if w(u, v) = \infty then
5: abort and output T
6: else
7: add v to VT and (u, v) to ET

8: end if
9: end while

Algorithm A.2 T = SPT(G, v0).
1: let T = (VT = \{ v0\} , ET = \emptyset ), L = 1 and P1 = \{ v0\} 
2: set dist(v0) = 0 and dist(u) = \infty for all u \not = v0
3: while | VT | < n - 1 do
4: let BL be the output of minfind(| PL| , f, g) on E(PL) where

(i) type function g returns the end node g((u, v)) = v of an edge (u, v),
(ii) value function f((u, v)) = cost(u, v) = dist(u) + 1/w(u, v) if u \in PL,

v /\in T , and f((u, v)) = \infty otherwise
5: let (u, v) \in B1 \cup \cdot \cdot \cdot \cup BL have minimal cost(u, v) with v /\in P1 \cup \cdot \cdot \cdot \cup PL

6: if w(u, v) = 0 then
7: abort and output T
8: else
9: add v to VT and (u, v) to ET , set PL+1 = \{ v\} and L = L+ 1
10: set dist(v) = dist(u) + 1/w(u, v)
11: end if
12: as long as L \geq 2 and | PL| = | PL - 1| , merge PL into PL - 1 (removing PL) and

set L = L - 1
13: end while

First we prove correctness of the algorithm.

Proposition A.2. Let G = (V,E,w) be an undirected graph with weights w :
E \rightarrow \BbbR \geq 0, and Cv0 the connected component of v0 \in V . Then Algorithm SPT(G, v0)
outputs an SPT from v0 that spans Cv0 .

Proof. We choose the success probability of each call to minfind to be 1  - \delta /n,
so that the total success probability is at least (1  - \delta /n)n \geq 1  - \delta . Assuming this,
correctness of the algorithm follows from Dijkstra's algorithm, provided that we can
show that each iteration adds a least-cost border edge to T , if it exists. To this end,
notice that in every iteration we have the following invariants directly after step 3:

1. The nodes of T are partitioned into subsets P1, . . . , PL whose sizes are non-
increasing powers of 2, and such that | Pk| >

\sum L
i=k+1 | Pi| .

2. For every 1 \leq k \leq L, the set Bk contains up to | Pk| least-cost border edges
from Pk to distinct nodes outside of Pk.

Now let T be the SPT constructed so far, let (u, v) be a least-cost border edge of
T , and let P1, . . . , PL denote the node subsets directly after step 3. Without loss of
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1734 SIMON APERS AND RONALD DE WOLF

generality, assume that u \in Pk. Since the edge (u, v) is a least-cost border edge of T ,
it must also be a least-cost border edge of Pk from the subset

E \not =k = \{ (u\prime , v\prime ) | u\prime \in Pk, v
\prime /\in V (T ) = P1 \cup \cdot \cdot \cdot \cup PL\} .

Indeed, if there were another edge (\^u, \^v) \in E\not =k with cost(\^u, \^v) < cost(u, v), then
(\^u, \^v) would be a border edge of T with lower cost than (u, v), which is a contradiction.

Now it suffices to show that there exists an edge (u\prime , v\prime ) \in Bk with v\prime /\in T and
cost(u\prime , v\prime ) = cost(u, v) (potentially (u\prime , v\prime ) = (u, v)), because this would imply that
step 5 indeed adds a least-cost border edge to T . Recall that Bk was constructed as
the set of up to | Pk| least-cost border edges with distinct endpoints from the larger
subset5

E>k = \{ (u\prime , v\prime ) | u\prime \in Pk, v
\prime /\in P1 \cup \cdot \cdot \cdot \cup Pk\} .

By the invariant property we have that | Pk+1 \cup \cdot \cdot \cdot \cup PL| < | Pk| , and so the set
Bk must contain at least one edge (u\prime , v\prime ) with v\prime /\in Pk+1 \cup \cdot \cdot \cdot \cup PL (and so v\prime /\in T ).
This must be a least-cost edge from E\not =k, and so cost(u\prime , v\prime ) = cost(u, v).

It remains to prove that there is an efficient quantum algorithm for implementing
SPT.

Proposition A.3. There is a quantum algorithm that implements SPT(G, v0)
with success probability 1  - \delta in time \widetilde O(

\sqrt{} 
| Cv0 | | E(Cv0

)| log(n/\delta )) and by making\widetilde O(
\sqrt{} 

| Cv0 | | E(Cv0)| log(n/\delta )) quantum queries to the adjacency list of G. The algo-
rithm requires O(log n) qubits and a QRAM of \~O(| Cv0 | ) bits.

Proof. The bound on the runtime follows from bounding the runtime of the
calls to minfind, which are dominant. It follows from Proposition A.1 that a call of
minfind (| PL| , f, g) requires time O(

\sqrt{} 
| E(PL)| | PL| log(n/\delta )). The total runtime is

hence given by

O

\biggl( \sum 
PL

\sqrt{} 
| E(PL)| | PL| log(n/\delta )

\biggr) 
,

where the sum runs over the sets PL in step 3 of each iteration. We can bound this by
noting that the merging procedure in step 9 ensures that in every iteration | PL| = 2rL

for some integer rL \leq log n, and any two PL of the same size are necessarily disjoint.
Since necessarily PL \subseteq Cv0 , there are at most | Cv0 | /2r (disjoint) sets of size 2r, and
we can bound\sum 

PL:| PL| =2r

\sqrt{} 
| E(PL)| | PL| = 2r/2

\sum 
PL:| PL| =2r

\sqrt{} 
| E(PL)| 

\leq 2r/2
\sqrt{} 
2 - r| Cv0 | 

\sum 
PL:| PL| =2r

| E(PL)| \leq 
\sqrt{} 

2| Cv0 | | E(Cv0)| ,

where the second inequality follows from Cauchy--Schwarz and the third inequality
from the fact that

\sum 
PL:| PL| =2r | E(PL)| \leq 2| E(Cv0)| . Summing this over all r \leq log n,

we find the claimed runtime.
Finally we bound the space complexity. The only quantum routine is running

minfind (| PL| , f, g) on the set of edges, with | PL| \leq n. By Proposition A.1 this
requiresO(log n) qubits and a QRAM of \widetilde O(n) bits. All remaining routines are classical

5Note that Bk was constructed at the iteration where Pk was ``formed"" (potentially by merging
other subsets), and that the subsets P1, . . . , Pk do not change between this iteration and the iteration
that we are examining.
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QUANTUM SPEEDUP OF SPARSIFICATION AND APPLICATIONS 1735

operations on the \widetilde O(n) bits describing (i) the nodes and edges of the tree T , (ii) the
sets B1, . . . , BL, and (iii) the string dist(\cdot ).

Appendix B. Existence of disjoint matching.

Fix n,m \leq n2/4 and let \epsilon \geq 
\sqrt{} 

n/m. Let G1 = (L1 \cup R1, E1) consist of \epsilon 2n/2
disjoint copies B(k) of the complete bipartite graph on 1/\epsilon 2 left and right nodes,
containing 2\epsilon 2m/n parallel copies of every edge. In this way, G1 has n nodes and m

edges and is 2m/n-regular. We index the ith left and jth right node of B(k) as l
(k)
i ,

respectively, r
(k)
j . Let G2 = (L2 \cup R2, E2) be the complete bipartite graph on 2m/n

left nodes and n/2 right nodes. In this appendix we prove that every edge in G1 can
be matched to a unique edge in G2 such that

1. all edges leaving a left node l \in L1 are matched to edges in G2 with distinct
left ends;

2. all edges leaving a right node r \in R1 are matched to edges in G2 with distinct
right ends.

We do this by considering maximum bipartite matchings in G2 of the form

Mj = \{ (i, i+ j) | i \in [2m/n]\} \subset E2, 0 \leq j < n/2,

where the sum is modulo n/2. These matchings form a partition of the edges set E2.

We interpret every Mj as a set of 2m/n ordered edges. Now for every node l
(k)
i \in L1

we will match the 2m/n (lexicographically ordered) outgoing edges E(l
(k)
i ) from that

node to the (lexicographically ordered) edges in some Mj . This ensures that all edges

leaving l
(k)
i are matched to edges in G2 whose left ends are distinct, so that condition

1 is satisfied. In order to satisfy condition 2, we specify the matching as follows:

E(l
(k)
i ) \leftrightarrow Mk - 1+(i - 1)\epsilon 2n/2 \forall k \in [\epsilon 2n/2], i \in [1/\epsilon 2].

Indeed, one can check that the 2m/n edges matched to, for instance, the incoming

edges of node r
(1)
1 are described by

(\alpha , \beta ), with \alpha \in [1, 2\epsilon 2m/n] and \beta = \ell 
\epsilon 2n

2
+ \alpha , 0 \leq \ell < 1/\epsilon 2.

Since we assumed that m \leq n2/4, and hence 2m/n \leq n/2, the right ends of these

edges are indeed disjoint. The same reasoning applies to all other nodes r
(k)
j . We

illustrate this matching in Figure 5 below.

Appendix C. Quantum SDD solver.

In this appendix we describe a quantum algorithm for approximately solving an
SDD linear system Ax = b. The blueprint of the algorithm is given below. An SDDM
matrix is an SDD matrix whose off-diagonals are nonpositive.

Algorithm C.1 qSDD(A, x, b).

1: reduce the SDD system Ax = b to an SDDM system \^A\^x = \^b using a classical
trick [48] (see section C.1)

2: construct an \epsilon -spectral sparsifier \~A of \^A using our quantum sparsification
algorithm (see section C.2)

3: solve the sparse SDDM linear system \~A\^x = \^b using a classical SDD solver [97]
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1736 SIMON APERS AND RONALD DE WOLF

Fig. 5. Matching edges between G1 and G2 for n = 8, m = 16, and \epsilon = 1/
\surd 
2. The left ends of

matchings M0 are distinct, ensuring condition 1 for node l
(1)
1 . Similarly, the right ends of all edges

matched to r
(1)
1 are distinct, ensuring condition 2 for this node. We note that in general G2 is a

bipartite graph between 2m/n left nodes and n/2 right nodes, with 2m/n \leq n/2.

By the same reasoning as in Claim 7.5, it follows that an \epsilon -approximate solution of
the SDDM system \~A\^x = \^b yields a 2\epsilon -approximate solution to the system \^A\^x = \^b. This
proves correctness of the algorithm. The runtime is dominated by the second step,
which takes time \widetilde O(

\surd 
mn/\epsilon ) (see section C.2). Hence this describes an \epsilon -approximate

quantum SDD solver with runtime \widetilde O(
\surd 
mn/\epsilon ), which proves Proposition 7.7.

C.1. Classical SDD to SDDM reduction.

Gremban [48] showed how to reduce an SDD system Ax = b to an SDDM system
\^A\^x = \^b. Let A = D+P+N be an SDD matrix, with the diagonal matrixD containing
the diagonal elements, and N and P containing the negative and positive off-diagonal
elements, respectively. To this matrix we can associate an SDDM matrix \^A \in \BbbR 2n\times 2n

and a vector \^b \in \BbbR 2n\times 1, which we define as

\^A =

\biggl[ 
D +N  - P
 - P D +N

\biggr] 
, \^b =

\biggl[ 
b
 - b

\biggr] 
.

Now Gremban showed that if the 2n-dimensional vector \^z = [\^z1\^z2]
T is an \epsilon -

approximate solution of the linear system \^A\^x = \^b, then the n-dimensional vector
z = (\^z1  - \^z2)/2 is an \epsilon -approximate solution of the original system Ax = b. More
precisely,

\| \^z  - \^A+\^b\| \^A \leq \epsilon \| \^A+\^b\| \^A \Rightarrow \| z  - A+b\| A \leq \epsilon \| A+b\| A.

This implies that it suffices to solve the SDDM system \^A\^x = \^b.
Given sparse access to A, we now show how to simulate sparse access to \^A. The

latter takes as input a pair (i, k) \in [2n]2. If i \leq n, let (j, Aij) denote the output of an
(i, k)-query to the original matrix A. If this yields an error symbol, output the error
symbol. Otherwise, do the following:

(i, k) \mapsto \rightarrow 

\Biggl\{ 
(j, Aij) if j = i or Aij < 0,

(j + n, - Aij) otherwise.

If i \geq n + 1, let (j, Aij) denote the output of an (i  - n, k)-query to A. If this
yields an error symbol, return the error symbol, otherwise do the following:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(i, k) \mapsto \rightarrow 

\Biggl\{ 
(j + n,Aij) if j = i - n or Aij < 0,

(j, - Aij) otherwise.

This proves that we can simulate sparse access to \^A using a single query to A.
Note that the relative ordering between elements in the induced adjacency list for \^A
may be different from the ordering in the adjacency list for A; that is not a problem
because we are not assuming the adjacency lists to be ordered in any particular way.

C.2. Sparsifying SDDM matrices.

By the previous section, it suffices to solve an SDDM system \^A\^x = \^b to which
we have sparse access. We will do so by using our quantum algorithm to construct
a much sparser SDDM matrix \~A with respect to which we can solve linear systems
classically. If we can ensure that6

\~A \approx \epsilon 
\^A,

then an \epsilon -approximate solution of \~A\^x = \^b will be an O(\epsilon )-approximate solution to
\^A\^x = \^b.

Since \^A is SDDM, we can rewrite it as \^A = \^L + \^D, with \^L a Laplacian and
\^D = diag( \^A) - diag(\^L) a nonnegative, diagonal ``excess""-matrix. Given sparse access
to \^A, we can easily simulate adjacency-list access to the graph associated to \^L. Using
our sparsification algorithm, this allows us to explicitly output a sparsified Laplacian
\~L with \widetilde O(n/\epsilon 2) nonzero entries such that

\~L \approx \epsilon 
\^L.

Now we define the matrix

\~A = \~L+ diag( \^A) - diag(\~L).

This matrix has \widetilde O(n/\epsilon 2) nonzero entries, of which we have an explicit description.
We can prove that \~A closely approximates \^A, as follows.

Lemma C.1. Let \~A be as described above. Then \~A \approx 2\epsilon 
\^A.

Proof. First we use the fact that if A, B, and C are positive semidefinite matrices
and A \approx \epsilon B, then A+C \approx \epsilon B+C. Since \^L \approx \epsilon 

\~L, this shows that \^A = \^L+ \^D \approx \epsilon 
\~L+ \^D.

As a special case, this implies that diag( \^A) = diag(\^L) + \^D \approx \epsilon diag(\~L) + \^D. Now we
can simply rewrite

\~A = \~L+ \^D + diag(\^L) - diag(\~L) \approx \epsilon 
\~L+ \^D + diag(\~L) - diag(\~L) = \~L+ \^D \approx \epsilon 

\^A.

Now it suffices to note that if \~A \approx \epsilon B \approx \epsilon 
\^A, then \~A \approx 2\epsilon 

\^A.

We can hence solve the sparse linear system \~A\^x = \^b to yield an approximation of
the original system. Since \~A has \widetilde O(n/\epsilon 2) nonzero entries, we can do this efficiently
using a classical near-linear time SDD solver [97].

Acknowledgments. We are very grateful to Aleksandrs Belovs and Troy Lee
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which we required for the proof of our lower bound, and to Joran van Apeldoorn
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