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1 IntrodutionComputational Complexity is the sub�eld of Theoretial Computer Sienethat aims to understand \how muh" omputation is neessary and suÆientto perform ertain omputational tasks. For example, given a omputationalproblem it tries to establish tight upper and lower bounds on the length ofthe omputation (or on other resoures, like spae).Unfortunately, for many, pratially relevant, omputational problems no tightbounds are known. An illustrative example is the well known P versus NPproblem: for all NP-omplete problems the urrent upper and lower boundslie exponentially far apart. That is, the best known algorithms for these om-putational problems need exponential time (in the size of the input) but thebest lower bounds are of a linear nature.One of the general approahes towards solving a hard problem (mathematialor otherwise) is to set the goals a little bit lower and try to takle a simpler1 Partially supported by the EU �fth framework projet QAIP, IST{1999{11234.Preprint submitted to Elsevier Preprint 10 Otober 2002



problem �rst. The hope is that understanding of the simpler problem will leadto a better understanding of the original, more diÆult, problem.This approah has been taken with respet to Computational Complexity:simpler and more limited models of omputation have been studied. Perhapsthe simplest model of omputation is the deision tree. The goal here is toompute a Boolean funtion f : f0; 1gn ! f0; 1g using queries to the input. Inthe most simple form a query asks for the value of the bit xi and the answer isthis value. (The queries may be more ompliated. In this survey we will onlydeal with this simple type of query.) The algorithm is adaptive, that is the kthquery may depend on the answers of the k�1 previous queries. The algorithman therefore be desribed by a binary tree, whene its name `deision tree'.For a Boolean funtion f we de�ne its deterministi deision tree omplexity,D(f), as the minimum number of queries that an optimal deterministi al-gorithm for f needs to make on any input. This measure orresponds to thedepth of the tree that an optimal algorithm indues. One the omputationalpower of deision trees is better understood, one an extend this notion tomore powerful models of query algorithms. This results in randomized andeven quantum deision trees.In order to get a handle on the omputational power of deision trees (whetherdeterministi, randomized, or quantum), other measures of the omplexity ofBoolean funtions have been de�ned and studied. Some prime examples areerti�ate omplexity, sensitivity, blok sensitivity, the degree of a representingpolynomial, and the degree of an approximating polynomial. We survey theknown relations and biggest gaps between these omplexity measures and showhow they apply to deision tree omplexity, giving proofs of some of the entralresults. The main results say that all of these omplexity measures (with thepossible exeption of sensitivity) are polynomially related to eah other andto the deision tree omplexities in eah of the lassial, randomized, andquantum settings. We also identify some of the main remaining open questions.The omplexity measures disussed here also have interesting relations withiruit omplexity [47,4,7℄, parallel omputing [10,41,31,47℄, ommuniationomplexity [33,9℄, and the onstrution of orales in omputational omplexitytheory [6,43,15,16℄, whih we will not disuss here.The paper is organized as follows. In Setion 2 we introdue some notationonerning Boolean funtions and multivariate polynomials. In Setion 3 wede�ne the three main variants of deision trees that we disuss: determin-isti deision trees, randomized deision trees, and quantum deision trees.In Setion 4 we introdue erti�ate omplexity, sensitivity, blok sensitivity,and the degree of a representing or approximating polynomial. We survey themain relations and known upper and lower bounds between these measures.In Setion 5 we show how the omplexity measures of Setion 4 imply upper2



and lower bounds on deterministi, randomized, and quantum deision treeomplexity. This setion gives bounds that apply to all Boolean funtions.Finally, in Setion 6 we examine some speial sublasses of Boolean funtionsand tighten the general bounds of Setion 5 for those speial ases.2 Boolean Funtions and Polynomials2.1 Boolean funtionsA Boolean funtion is a funtion f : f0; 1gn ! f0; 1g. Note that f is total,i.e., de�ned on all n-bit inputs. For an input x 2 f0; 1gn, we use xi to denoteits ith bit, so x = x1 : : : xn. We use jxj to denote the Hamming weight of x(its number of 1s). If S is a set of (indies of) variables, then we use xS todenote the input obtained by ipping the S-variables in x. We abbreviate xfigto xi. For example, if x = 0011, then xf2;3g = 0101 and x4 = 0010. We allf symmetri if f(x) only depends on jxj. Some ommon symmetri funtionsthat we will refer to are:� ORn(x) = 1 i� jxj � 1� ANDn(x) = 1 i� jxj = n� PARITYn(x) = 1 i� jxj is odd� MAJn(x) = 1 i� jxj > n=2We all f monotone (inreasing) if f(x) annot derease if we set more vari-ables of x to 1. A funtion that we will refer to sometimes is the \addressfuntion". This is a funtion on n = k + 2k variables, where the �rst k bitsof the input provide an index in the last 2k bits. The value of the indexedvariable is the output of the funtion. Wegener [46℄ gives a monotone versionof the address funtion.2.2 Multilinear polynomialsIf S is a set of (indies of) variables, then the monomial XS is the produt ofvariables XS = �i2Sxi. The degree of this monomial is the ardinality of S. Amultilinear polynomial on n variables is a funtion p : Rn ! C that an bewritten as p(x) = PS�[n℄ SXS for some omplex numbers S. We all S theoeÆient of the monomial XS in p. The degree of p is the degree of its largestmonomial: deg(p) = maxfjSj j S 6= 0g. Note that if we restrit attention tothe Boolean domain f0; 1gn, then xi = xki for all k > 1, so onsidering onlymultilinear polynomials is no restrition when dealing with Boolean inputs.3



The next lemma implies that if multilinear polynomials p and q are equal onall Boolean inputs, then they are idential:Lemma 1 Let p; q : Rn ! R be multilinear polynomials of degree at most d.If p(x) = q(x) for all x 2 f0; 1gn with jxj � d, then p = q.Proof De�ne r(x) = p(x) � q(x). Suppose r is not identially zero. LetV be a minimal-degree term in r with non-zero oeÆient , and x be theinput where xj = 1 i� xj ours in V . Then jxj � d, and hene p(x) = q(x).However, sine all monomials in r exept for V evaluate to 0 on x, we haver(x) =  6= 0 = p(x) � q(x), whih is a ontradition. It follows that r isidentially zero and p = q. 2Below we sketh the method of symmetrization, due to Minsky and Papert [28℄(see also [4, Setion 4℄). Let p : Rn ! R be a polynomial. If � is somepermutation and x = x1 : : : xn, then �(x) = (x�(1); : : : ; x�(n)). Let Sn be theset of all n! permutations. The symmetrization psym of p averages over allpermutations of the input, and is de�ned as:psym(x) = P�2Sn p(�(x))n! :Note that psym is a polynomial of degree at most the degree of p. Symmetrizingmay atually lower the degree: if p = x1 � x2, then psym = 0. The followinglemma allows us to redue an n-variate polynomial to a single-variate one.Lemma 2 (Minsky & Papert) If p : Rn ! R is a multilinear polynomial,then there exists a single-variate polynomial q : R! R, of degree at most thedegree of p, suh that psym(x) = q(jxj) for all x 2 f0; 1gn.Proof Let d be the degree of psym, whih is at most the degree of p. Let Vjdenote the sum of all �nj� produts of j di�erent variables, so V1 = x1+� � �+xn,V2 = x1x2 + x1x3 + � � � + xn�1xn, et. Sine psym is symmetrial, it is easilyshown by indution that it an be written aspsym(x) = 0 + 1V1 + 2V2 + � � �+ dVd;with i 2 R. Note that Vj assumes value �jxjj � = jxj(jxj�1)(jxj�2) � � � (jxj�j+1)=j! on x, whih is a polynomial of degree j of jxj. Therefore the single-variatepolynomial q de�ned byq(jxj) = 0 + 1 jxj1 !+ 2 jxj2 !+ � � �+ d jxjd !satis�es the lemma. 24



3 Deision Tree Complexity on Various Mahine ModelsBelow we de�ne deision tree omplexity for three di�erent kinds of mahinemodels: deterministi, randomized, and quantum.3.1 DeterministiA deterministi deision tree is a rooted ordered binary tree T . Eah internalnode of T is labeled with a variable xi and eah leaf is labeled with a value 0or 1. Given an input x 2 f0; 1gn, the tree is evaluated as follows. Start at theroot. If this is a leaf then stop. Otherwise, query the variable xi that labelsthe root. If xi = 0, then reursively evaluate the left subtree, if xi = 1 thenreursively evaluate the right subtree. The output of the tree is the value (0 or1) of the leaf that is reahed eventually. Note that an input x deterministiallydetermines the leaf, and thus the output, that the proedure ends up in.We say a deision tree omputes f if its output equals f(x), for all x 2 f0; 1gn.Clearly there are many di�erent deision trees that ompute the same f . Theomplexity of suh a tree is its depth, i.e., the number of queries made on theworst-ase input. We de�ne D(f), the deision tree omplexity of f , as thedepth of an optimal (= minimal-depth) deision tree that omputes f .3.2 RandomizedAs in many other models of omputation, we an add the power of random-ization to deision trees. There are two ways to view a randomized deisiontree. Firstly, we an add (possibly biased) oin ips as internal nodes to thetree. That is, the tree may ontain internal nodes labeled by a bias p 2 [0; 1℄,and when the evaluation proedure reahes suh a node, it will ip a oin withbias p and will go to the left hild on outome `heads' and to the right hildon `tails'. Now an input x no longer determines with ertainty whih leaf ofthe tree will be reahed, but instead indues a probability distribution overthe set of all leaves. Thus the tree outputs 0 or 1 with a ertain probability.The omplexity of the tree is the number of queries on the worst-ase inputand worst-ase outome of the oin ips. A seond way to de�ne a randomizeddeision tree is as a probability distribution � over deterministi deision trees.The tree is evaluated by hoosing a deterministi deisions tree aording to�, whih is then evaluated as before. The omplexity of the randomized treein this seond de�nition is the depth of the deepest T that has �(T ) > 0. Itis not hard to see that these two de�nitions are equivalent.5



We say that a randomized deision tree omputes f with bounded-error ifits output equals f(x) with probability at least 2/3, for all x 2 f0; 1gn. R2(f)denotes the omplexity of the optimal randomized deision tree that omputesf with bounded error. 23.3 QuantumWe briey sketh the framework of quantum omputing, referring to [30℄ formore details. The lassial unit of omputation is a bit, whih an take on thevalues 0 or 1. In the quantum ase, the unit of omputation is a quantum bitor qubit, whih is a linear ombination or superposition of the two lassialvalues: �0j0i+ �1j1i:More generally, an m-qubit state j�i is a superposition of all lassial m-bitstrings: j�i = Xi2f0;1gm �ijii:Here �i is a omplex number, alled the amplitude of basis state jii. We requirePi j�ij2 = 1. Mathematially speaking, the set of m-qubit quantum states isthe set of all unit vetors in the Hilbert spaed that has fjii j i 2 f0; 1gmg asan orthonormal basis.There are two things we an do to suh a state: measure it or apply a unitarytransformation to it. One of the axioms of quantum mehanis says that if wemeasure them-qubit register j�i, then we will see the basis state jii with prob-ability j�ij2. Sine Pi j�ij2 = 1, we thus have a valid probability distributionover the lassial m-bit strings. After the measurement, j�i has \ollapsed"to the spei� observed basis state jii and all other information in the statewill be lost.Apart from measuring j�i, we an also apply a unitary transformation toit. That is, viewing the 2m amplitudes of j�i as a vetor in C2m , we anobtain some new state j i = Pi2f0;1gm �ijii by multiplying j�i with a unitarymatrix U : j i = U j�i. A matrix U is unitary i� its inverse U�1 equals theonjugate transpose matrix U�. Beause unitarity is equivalent to preservingEulidean norm, the new state j i will still have Pi j�ij2 = 1. There is anextensive literature on how suh large U an be obtained from small unitarytransformations (\quantum gates") on few qubits at a time, see [30℄.2 The subsript `2' in R2(f) refers to the 2-sided error of the algorithm: it mayerr on 0-inputs as well as on 1-inputs. We will not disuss zero-error (Las Vegas)or one-sided error randomized deision trees here. See [38,31,22,23,20,8℄ for someresults onerning suh trees. 6



We formalize a query to an input x 2 f0; 1gn as a unitary transformation Othat maps ji; b; zi to ji; b � xi; zi. Here ji; b; zi is some m-qubit basis state,where i takes dlogne bits, b is one bit, z denotes the (m � dlogne � 1)-bit\workspae" of the quantum omputer, whih is not a�eted by the query,and � denotes exlusive-or. This learly generalizes the lassial setting wherea query inputs an i into a blak-box, whih returns the bit xi: if we apply Oto the basis state ji; 0; zi we get ji; xi; zi, from whih the ith bit of the inputan be read. Beause O has to be unitary, we speify that it maps ji; 1; zi toji; 1�xi; zi. Note that a quantum omputer an make queries in superposition:applying O one to the state 1pnPni=1 ji; 0; zi gives 1pnPni=1 ji; xi; zi, whih insome sense ontains all bits of the input.A quantum deision tree has the following form: we start with anm-qubit statej~0i where every bit is 0. Then we apply a unitary transformation U0 to thestate, then we apply a query O, then another unitary transformation U1, et. AT -query quantum deision tree thus orresponds to a big unitary transforma-tion A = UTOUT�1 � � �OU1OU0. Here the Ui are �xed unitary transformations,independent of the input x. The �nal state Aj~0i depends on the input x onlyvia the T appliations of O. The output is obtained by measuring the �nalstate and outputting the rightmost bit of the observed basis state (withoutloss of generality we an assume there are no intermediate measurements).We say that a quantum deision tree omputes f exatly if the output equalsf(x) with probability 1, for all x 2 f0; 1gn. The tree omputes f with bounded-error if the output equals f(x) with probability at least 2/3, for all x 2 f0; 1gn.QE(f) denotes the number of queries of an optimal quantum deision tree thatomputes f exatly, Q2(f) is the number of queries of an optimal quantumdeision tree that omputes f with bounded-error. Note that we just ountthe number of queries, not the omplexity of the Ui.Unlike the lassial deterministi or randomized deision trees, the quantumalgorithms are not really trees anymore (the names `quantum query algo-rithm' or `quantum blak-box algorithm' are also in use). Nevertheless weprefer the term `quantum deision tree', beause suh quantum algorithmsgeneralize lassial trees in the sense that they an simulate them, as skethedbelow. Consider a T -query deterministi deision tree. It �rst determines whihvariable it will query initially; then it determines the next query dependingupon its history, and so on for T queries. Eventually it outputs an output-bitdepending on its total history. The basis states of the orresponding quan-tum algorithm have the form ji; b; h; ai, where i; b is the query-part, h rangesover all possible histories of the lassial omputation (this history inludesall previous queries and their answers), and a is the rightmost qubit, whihwill eventually ontain the output. Let U0 map the initial state j~0; 0;~0; 0i toji; 0;~0; 0i, where xi is the �rst variable that the lassial tree would query. Nowthe quantum algorithm applies O, whih turns the state into ji; xi;~0; 0i. Then7



the algorithm applies a transformation U1 that maps ji; xi;~0; 0i to jj; 0; h; 0i,where h is the new history (whih inludes i and xi) and xj is the variable thatthe lassial tree would query given the outome of the previous query. Thenthe quantum tree applies O for the seond time, it applies a transformationU2 that updates the workspae and determines the next query, et. Finally,after T queries the quantum tree sets the answer bit to 0 or 1 depending onits total history. All operations Ui performed here are injetive mappings frombasis states to basis states, hene they an be extended to permutations ofbasis states, whih are unitary transformations. Thus a T -query determinis-ti deision tree an be simulated by an exat T -query quantum algorithm.Similarly a T -query randomized deision tree an be simulated by a T -queryquantum deision tree with the same error probability (basially beause a su-perposition an \simulate" a probability distribution). Aordingly, we haveQ2(f) � R2(f) � D(f) � n and Q2(f) � QE(f) � D(f) � n for all f .4 Some Complexity MeasuresLet f : f0; 1gn ! f0; 1g be a Boolean funtion. We an assoiate severalmeasures of omplexity with suh funtions, whose de�nitions and relationsare surveyed below.4.1 Certi�ate omplexityCerti�ate omplexity measures how many of the n variables have to be givena value in order to �x the value of f .De�nition 1 Let C be an assignment C : S ! f0; 1g of values to some subsetS of the n variables. We say that C is onsistent with x 2 f0; 1gn if xi = C(i)for all i 2 S.For b 2 f0; 1g, a b-erti�ate for f is an assignment C suh that f(x) = bwhenever x is onsistent with C. The size of C is jSj, the ardinality of S.The erti�ate omplexity Cx(f) of f on x is the size of a smallest f(x)-erti�ate that is onsistent with x. The erti�ate omplexity of f is C(f) =maxxCx(f). The 1-erti�ate omplexity of f is C(1)(f) = maxfxjf(x)=1g Cx(f),and similarly we de�ne C(0)(f).For example, C(1)(ORn) = 1 sine it suÆes to set one variable xi = 1 to forethe OR-funtion to 1. On the other hand, C(ORn) = C(0)(ORn) = n.8



4.2 Sensitivity and blok sensitivitySensitivity and blok sensitivity measure how sensitive the value of f is tohanges in the input. Sensitivity was introdued in [10℄ (under the name ofritial omplexity) and blok sensitivity in [31℄. 3De�nition 2 The sensitivity sx(f) of f on x is the number of variables xi forwhih f(x) 6= f(xi). The sensitivity of f is s(f) = maxx sx(f).The blok sensitivity bsx(f) of f on x is the maximum number b suh that thereare disjoint sets B1; : : : ; Bb for whih f(x) 6= f(xBi). The blok sensitivity off is bs(f) = maxx bsx(f). (If f is onstant, we de�ne s(f) = bs(f) = 0.)Note that sensitivity is just blok sensitivity with the size of the bloks Birestrited to 1. Simon [41℄ gave a general lower bound on s(f):Theorem 1 (Simon) If f depends on all n variables, then we have s(f) �12 logn� 12 log logn + 12 .Wegener [46℄ proved that this theorem is tight up to the O(log logn)-term forthe monotone address funtion.We now prove some relations between C(f), s(f), and bs(f). Clearly, for all xwe have sx(f) � bsx(f) and bsx(f) � Cx(f) (sine a erti�ate for x will haveto ontain at least one variable of eah sensitive blok). Hene:Proposition 1 s(f) � bs(f) � C(f).The biggest gap known between s(f) and bs(f) is quadrati and was exhibitedby Rubinstein [37℄:Example 1 Let n = 4k2. Divide the n variables in pn disjoint bloks of pnvariables: the �rst blok B1 ontains x1; : : : ; xpn, the seond blok B2 ontainsxpn+1; : : : ; x2pn, et. De�ne f suh that f(x) = 1 i� there is at least one blokBi where two onseutive variables have value 1 and the other pn�2 variablesare 0. It is easy to see that s(f) = pn and bs(f) = n=2, so we have a quadratigap between s(f) and bs(f). Sine bs(f) � C(f), this is also a quadrati gapbetween s(f) and C(f) (Wegener and Z�adori give a di�erent funtion with asmaller gap between s(f) and C(f) [48℄).It has been open for quite a while whether bs(f) an be upper bounded by apolynomial in s(f). It may well be true that bs(f) 2 O(s(f)2).3 There has also been some work on average (blok) sensitivity [5℄ and its appli-ations [7,40,2℄. In partiular, Shi [40℄ has shown that the average sensitivity of atotal funtion f is a lower bound on its approximate degreegdeg(f).9



Open problem 1 Is bs(f) 2 O(s(f)k) for some k?We proeed to give Nisan's proof [31℄ that C(f) is bounded by bs(f)2.Lemma 3 If B is a minimal sensitive blok for x, then jBj � s(f).Proof If we ip one of the B-variables in xB, then the funtion value must ipfrom f(xB) to f(x) (otherwise B would not be minimal), so every B-variableis sensitive for f on input xB. Hene jBj � sxB(f) � s(f). 2Theorem 2 (Nisan) C(f) � s(f)bs(f).Proof Consider an input x 2 f0; 1gn and let B1; : : : ; Bb be disjoint minimalsets of variables that ahieve the blok sensitivity b = bsx(f) � bs(f). We willshow that the funtion C : [iBi ! f0; 1g that sets variables aording to x isa suÆiently small erti�ate for f(x).If C is not an f(x)-erti�ate, then let x0 be an input that is onsistent withC, suh that f(x0) 6= f(x). De�ne Bb+1 by x0 = xBb+1 . Now f is sensitive toBb+1 on x and Bb+1 is disjoint from B1; : : : ; Bb, whih ontradits b = bsx(f).Hene C is an f(x)-erti�ate. By the previous lemma we have jBij � s(f)for all i, hene the size of this erti�ate is j [i Bij � s(f)bs(f). 2No quadrati gap between bs(f) and C(f) seems to be known. Some sub-quadrati gaps may be found in [48, Setion 3℄.4.3 Degree of representing polynomialDe�nition 3 A polynomial p : Rn ! R represents f if p(x) = f(x) for allx 2 f0; 1gn.Note that sine x2 = x for x 2 f0; 1g, we an restrit attention to multilinearpolynomials for representing f . It is easy to see that eah f an be representedby a multilinear polynomial p. Lemma 1 implies that this polynomial is unique,whih allows us to de�ne:De�nition 4 The degree deg(f) of f is the degree of the multilinear polyno-mial that represents f .For example, deg(ANDn) = n, beause the representing polynomial is themonomial x1 : : : xn. The degree deg(f) may be signi�antly larger than s(f),bs(f), and C(f): 10



Example 2 Let f on n = k2 variables be the AND of k ORs of k variableseah. Both ANDk and ORk are represented by degree-k polynomials, so the rep-resenting polynomial of f has degree deg(f) = k2 = n. On the other hand, it isnot hard to see that s(f) = bs(f) = C(f) = pn. Thus deg(f) is quadratiallylarger than s(f), bs(f), and C(f) in this ase. 4On the other hand, deg(f) may also be signi�antly smaller than s(f) andbs(f), as the next example from Nisan and Szegedy [32℄ shows.Example 3 Consider the funtion E12 de�ned by E12(x1; x2; x3) = 1 i� jxj 2f1; 2g. This funtion is represented by the following degree-2 polynomial:E12(x1; x2; x3) = x1 + x2 + x3 � x1x2 � x1x3 � x2x3:De�ne Ek12 as the funtion on n = 3k variables obtained by building a om-plete reursive ternary tree of depth k, where the 3k leaves are the variablesand eah node is the E12-funtion of its three hildren. For k > 1, the rep-resenting polynomial for Ek12 is obtained by substituting independent opiesof the Ek�112 -polynomial in the above polynomial for E12. This shows thatdeg(f) = 2k = n1= log 3. On the other hand, it is easy to see that ippingany variable in the input ~0 ips the funtion value from 0 to 1, hene s(f) =bs(f) = C(f) = n = deg(f)log 3 (Kushilevitz has found a slightly bigger gap,based on the same tehnique with a slightly more omplex polynomial, see [33,footnote 1 on p.560℄).Below we give Nisan and Szegedy's proof that deg(f) an be no more thanquadratially smaller than bs(f) [32℄. This shows that the gap of the lastexample is lose to optimal. The proof uses the following theorem from [12,36℄:Theorem 3 (Ehlih & Zeller; Rivlin & Cheney) Let p : R ! R be apolynomial suh that b1 � p(i) � b2 for every integer 0 � i � n, and its deriva-tive has jp0(x)j �  for some real 0 � x � n. Then deg(p) � qn=(+ b2 � b1).Theorem 4 (Nisan & Szegedy) bs(f) � 2 deg(f)2.Proof Let polynomial p of degree d represent f . Let b = bs(f), and a andB1; : : : ; Bb be the input and sets that ahieve the blok sensitivity. We assumewithout loss of generality that f(a) = 0. We transform p(x1; : : : ; xN ) into apolynomial q(y1; : : : ; yb) by replaing every xj in p as follows:(1) xj = yi if aj = 0 and j 2 Bi4 It will follow from Theorem 10 and Corollary 2 that deg(f) � C(f)2, so thisquadrati gap between deg(f) and C(f) is optimal. Theorem 10 and Corollary 1will imply deg(f) � bs(f)3, but the quadrati gap between deg(f) and bs(f) of thisexample is the best we know of. 11



(2) xj = 1� yi if aj = 1 and j 2 Bi(3) xj = aj if j 62 Bi for every iNow it is easy to see that q has the following properties:(1) q is a multilinear polynomial of degree � d(2) q(y) 2 f0; 1g for all y 2 f0; 1gb(3) q(~0) = p(x) = f(x) = 0(4) q(ei) = p(xBi) = f(xBi) = 1 for all unit vetors ei 2 f0; 1gbLet r be the single-variate polynomial of degree � d obtained from symmetriz-ing q over f0; 1gb. Note that 0 � r(i) � 1 for every integer 0 � i � b, and forsome x 2 [0; 1℄ we have r0(x) � 1 beause r(0) = 0 and r(1) = 1. ApplyingTheorem 3 we get d � qb=2. 2The following two theorems give, respetively, a weak bound for all funtions,and a strong bound for almost all funtions. We state the �rst without proof(see [32℄).Theorem 5 (Nisan & Szegedy) If f depends on all n variables, then wehave deg(f) � logn�O(log logn).The address funtion on n = k+2k variables has deg(f) = k+1, whih showsthat the previous theorem is tight up to the O(log logn)-term.For the seond result, de�ne Xeven1 = fx j jxj is even and f(x) = 1g, similarlyfor Xodd1 . Let X1 = Xeven1 [Xodd1 . Let p = PS SXS be the unique polynomialrepresenting f , with S the oeÆient of the monomial XS = �i2Sxi. TheMoebius inversion formula (see [4℄) says:S = XT�S(�1)jSj�jT jf(T );where f(T ) is the value of f on the input where exatly the variables in Tare 1. We learned about the next lemma via personal ommuniation withYaoyun Shi.Lemma 4 (Shi & Yao) deg(f) = n i� jXeven1 j 6= jXodd1 j.Proof Applying the Moebius formula with S = f1; : : : ; ng, we getS = XT�S(�1)jSj�jT jf(T ) = (�1)n Xx2X1(�1)jxj = (�1)n �jXeven1 j � jXodd1 j� :Sine deg(f) = n i� the monomial x1 : : : xn has non-zero oeÆient, the lemmafollows. 212



As a onsequene, we an exatly ount the number of funtions that haveless than full degree:Theorem 6 There are � 2n2n�1� funtions f : f0; 1gn ! f0; 1g with deg(f) < n.Proof We will ount the number E of f for whih jXeven1 j = jXodd1 j; byLemma 4 these are exatly the f satisfying deg(f) < n. Suppose we want toassign f -value 1 to exatly i of the 2n�1 inputs for whih jxj is even. There are�2n�1i � ways to do this. If we want jXeven1 j = jXodd1 j, then there are only �2n�1i �ways to hoose the f -values of the odd x. HeneE = 2n�1Xi=0  2n�1i ! 2n�1i ! =  2n2n�1!:The seond equality is Vandermonde's onvolution [18, p.174℄. 2Note that � 2n2n�1� 2 �(22n=p2n) by Stirling's formula. Sine there are 22nBoolean funtions on n variables, we see that the fration of funtions withdegree < n is o(1). Thus almost all funtions have full degree.4.4 Degree of approximating polynomialApart from representing a funtion f exatly by means of a polynomial, wemay also only approximate it with a polynomial, whih an sometimes be ofa smaller degree. 5De�nition 5 A polynomial p : Rn ! R approximates f if jp(x)�f(x)j � 1=3for all x 2 f0; 1gn. The approximate degree gdeg(f) of f is the minimum degreeamong all multilinear polynomials that approximate f .As a simple example: 23x1 + 23x2 approximates OR2, so gdeg(OR2) = 1. Inontrast, deg(OR2) = 2. Note that there may be many di�erent minimal-degree polynomials that approximate f , whereas there is only one polynomialthat represents f .By the same tehnique as Theorem 4, Nisan and Szegedy [32℄ showedTheorem 7 (Nisan & Szegedy) bs(f) � 6 gdeg(f)2.5 Also non-deterministi polynomials for f have been studied [49℄, but we will notover that notion in this survey. 13



The approximate degree of f an sometimes be signi�antly smaller than thedegree of f . Nisan and Szegedy [32℄ onstruted a degree-O(pn) polynomialthat approximates ORn. Sine bs(ORn) = n, the previous theorem impliesthat this degree is optimal. Sine deg(ORn) = n we have a quadrati gapbetween deg(f) and gdeg(f). This is the biggest gap known.Ambainis [1℄ showed that almost all funtions have high approximate degree:Theorem 8 (Ambainis) Almost all f have gdeg(f) � n=2� O(pn logn).5 Appliation to Deision Tree ComplexityThe omplexity measures disussed above are intimately related to the deisiontree omplexity of f in various models. In fat, D(f), R2(f), QE(f), Q2(f),bs(f), C(f), deg(f), and gdeg(f) are all polynomially related.5.1 DeterministiWe start with two simple lower bounds on D(f).Theorem 9 bs(f) � D(f).Proof On input x with disjoint sensitive bloks B1; : : : ; Bbs(f), a deterministideision tree must query at least one variable in eah blok Bi, for otherwise weould ip that blok (and hene the orret output) without the tree notiingit. Thus the tree must make at least bs(f) queries on input x. 2Theorem 10 deg(f) � D(f).Proof Consider a deision tree for f of depth D(f). Let L be a 1-leaf (i.e., aleaf with output 1) and x1; : : : ; xr be the queries on the path to L, with valuesb1; : : : ; br. De�ne the polynomial pL(x) = �i:bi=1xi�i:bi=0(1� xi). Then pL hasdegree r � D(f). Furthermore, pL(x) = 1 if leaf L is reahed on input x, andpL(x) = 0 otherwise. Let p = PL pL be the sum of all pL over all 1-leaves.Then p has degree � D(f), and p(x) = 1 i� a 1-leaf is reahed on input x, sop represents f . 2Below we give some upper bounds on D(f) in terms of bs(f), C(f), deg(f),and gdeg(f). Beals et al. [3℄ prove 14



Theorem 11 D(f) � C(1)(f)bs(f).Proof The following desribes an algorithm to ompute f(x), querying atmost C(1)(f)bs(f) variables of x (in the algorithm, by a \onsistent" erti�ateC or input y at some point we mean a C or y that agrees with the values ofall variables queried up to that point).(1) Repeat the following at most bs(f) times:Pik a onsistent 1-erti�ate C and query those of its variables whosex-values are still unknown (if there is no suh C, then return 0 andstop); if the queried values agree with C then return 1 and stop.(2) Pik a onsistent y 2 f0; 1gn and return f(y).The nondeterministi \pik a C" and \pik a y" an easily be made determin-isti by hoosing the �rst C resp. y in some �xed order. Call this algorithm A.Sine A runs for at most bs(f) stages and eah stage queries at most C(1)(f)variables, A queries at most C(1)(f)bs(f) variables.It remains to show that A always returns the right answer. If it returns ananswer in step (1), this is either beause there are no onsistent 1-erti�atesleft (and hene f(x) must be 0) or beause x is found to agree with a partiular1-erti�ate C. In both ases A gives the right answer.Now onsider the ase where A returns an answer in step (2). We will showthat all onsistent y must have the same f -value. Suppose not. Then thereare onsistent y; y0 with f(y) = 0 and f(y0) = 1. A has queried b = bs(f) 1-erti�ates C1; C2; : : : ; Cb. Furthermore, y0 ontains a onsistent 1-erti�ateCb+1. We will derive from these Ci disjoint sets Bi suh that f is sensitiveto eah Bi on y. For every 1 � i � b + 1, de�ne Bi as the set of variableson whih y and Ci disagree. Clearly, eah Bi is non-empty, for otherwise theproedure would have returned 1 in step (1). Note that yBi agrees with Ci, sof(yBi) = 1, whih shows that f is sensitive to eah Bi on y. Suppose variablek ours in some Bi (1 � i � b), then xk = yk 6= Ci(k). If j > i, then Cj hasbeen hosen onsistent with all variables queried up to that point (inludingxk), so we annot have xk = yk 6= Cj(k). This shows that k 62 Bj, hene allBi and Bj are disjoint. But then f is sensitive to bs(f) + 1 disjoint sets on y,whih is a ontradition. Aordingly, all onsistent y in step 2 must have thesame f -value, and A returns the right value f(y) = f(x) in step 2, beause xis one of those onsistent y. 2Combining with C(1) � C(f) � s(f)bs(f) (Theorem 2) we obtain:Corollary 1 D(f) � s(f)bs(f)2 � bs(f)3.15



It might be possible to improve this to D(f) � bs(f)2. This would be optimal,sine the funtion f of Example 2 has bs(f) = pn and D(f) = n.Open problem 2 Is D(f) 2 O(bs(f)2)?Of ourse, Theorem 11 also holds with C(0) instead of C(1). Sine bs(f) �maxfC(0)(f); C(1)(f)g, we also obtain the following result, due to [6,21,43℄.Corollary 2 D(f) � C(0)(f)C(1)(f).Now we will show that D(f) is upper bounded by deg(f)4 and gdeg(f)6. The�rst result is due to Nisan and Smolensky, below we give their (previouslyunpublished) proof. It improves the earlier result D(f) 2 O(deg(f)8) of Nisanand Szegedy [32℄. Here a maxonomial of f is a monomial with maximal degreein f 's representing polynomial p.Lemma 5 (Nisan & Smolensky) For every maxonomial M of f , there isa set B of variables in M suh that f(~0B) 6= f(~0).Proof Obtain a restrited funtion g from f by setting all variables outsideof M to 0. This g annot be onstant 0 or 1, beause its unique polynomialrepresentation (as obtained from p) ontains M . Thus there is some subset Bof the variables in M that makes g(~0B) 6= g(~0) and hene f(~0B) 6= f(~0). 2Lemma 6 (Nisan & Smolensky) There exists a set of deg(f)bs(f) vari-ables that intersets eah maxonomial of f .Proof Greedily take all variables in maxonomials of f , as long as there isa maxonomial that is still disjoint from those taken so far. Sine eah suhmaxonomial will ontain a sensitive blok for ~0, and there an be at mostbs(f) disjoint sensitive bloks, this proedure an go on for at most bs(f)maxonomials. Sine eah maxonomial ontains deg(f) variables, the lemmafollows. 2Theorem 12 (Nisan & Smolensky) D(f) � deg(f)2bs(f) � 2deg(f)4.Proof By the previous lemma, there is a set of deg(f)bs(f) variables thatintersets eah maxonomial of f . Query all these variables. This indues arestrition g of f on the remaining variables, suh that deg(g) < deg(f) (be-ause the degree of eah maxonomial in the representation of f drops at leastone) and bs(g) � bs(f). Repeating this indutively for at most deg(f) times,we reah a onstant funtion and learn the value of f . This algorithm uses atmost deg(f)2bs(f) queries, hene D(f) � deg(f)2bs(f). Theorem 4 gives theseond inequality of the theorem. 216



Combining Corollary 1 and Theorem 7 we obtain the following result from [3℄(improving the earlier D(f) 2 O(gdeg(f)8) result of Nisan and Szegedy [32℄):Theorem 13 D(f) 2 O(gdeg(f)6).Finally, sine deg(f) may be polynomially larger or smaller than bs(f), thefollowing theorem may be weaker or stronger than Theorem 11. The proofuses an idea similar to the above Nisan-Smolensky proof.Theorem 14 D(f) � C(1)(f)deg(f).Proof Let p be the representing polynomial for f . Choose some erti�ate C :S ! f0; 1g of size � C(1)(f). If we �ll in the S-variables aording to C, then pmust redue to a onstant funtion (onstant 0 if C is a 0-erti�ate, onstant1 if C is a 1-erti�ate). Hene the erti�ate has to interset eah maxonomialof p. Aordingly, querying all variables in S redues the polynomial degreeof the funtion by at least 1. Repeating this deg(f) times, we end up with aonstant funtion and hene know f(x). In all, this algorithm takes at mostC(1)(f)deg(f) queries. 25.2 RandomizedHere we show thatD(f), R2(f), bs(f), and gdeg(f) are all polynomially related.We �rst give the bounded-error analogues of Theorems 10 and 9:Theorem 15 gdeg(f) � R2(f).Proof Consider a randomized deision tree for f of depth R2(f), viewed as aprobability distribution � over di�erent deterministi deision trees T , eah ofdepth at most R2(f). Using the tehnique of Theorem 10, we an write eahof those T as a 0/1-valued polynomial pT of degree at most R2(f). De�nep = PT �(T )pT , whih has degree at most R2(f). Then it is easy to see thatp gives the aeptane probability of R, so p approximates f . 2Nisan [31℄ provedTheorem 16 (Nisan) bs(f) � 3 R2(f).Proof Consider an algorithmwith R2(f) queries, and an input x that ahievesthe blok sensitivity. For every set S suh that f(x) 6= f(xS), the probability17



that the algorithm queries a variable in S must be � 1=3, otherwise thealgorithm ould not \see" the di�erene between x and xS with suÆientprobability. Hene on input x the algorithm has to make an expeted numberof at least 1=3 queries in eah of the bs(f) sensitive bloks, so the total expetednumber of queries on input x must be at least bs(f)=3. Sine the worst-asenumber of queries on input x is at the least the expeted number of querieson x, the theorem follows. 2Combined with Corollary 1 we see that the gap between D(f) and R2(f) anbe at most ubi [31℄:Corollary 3 (Nisan) D(f) � 27 R2(f)3.There may be some room for improvement here, beause the biggest gap knownbetween D(f) and R2(f) is muh less than ubi:Example 4 Let f on n = 2k variables be the omplete binary AND-OR-treeof depth k. For instane, for k = 2 we have f(x) = (x1 _ x2) ^ (x3 _ x4). It iseasy to see that deg(f) = n and hene D(f) = n. There is a simple randomizedalgorithm for f [42,38℄: randomly hoose one of the two subtrees of the rootand reursively ompute the value of that subtree; if its value is 0 then output 0,otherwise ompute the other subtree and output its value. It an be shown thatthis algorithm always gives the orret answer with expeted number of queriesO(n�), where � = log((1 + p33)=4) � 0:7537 : : :. Saks and Wigderson [38℄showed that this is asymptotially optimal for zero-error algorithms for thisfuntion, and Santha [39℄ proved the same for bounded-error algorithms. Thuswe have D(f) = n = �(R2(f)1:3:::).Open problem 3 What is the biggest gap between D(f) and R2(f)?5.3 QuantumAs in the lassial ase, deg(f) and gdeg(f) give lower bounds on quantumquery omplexity. The next lemma from [3℄ is also impliit in the ombinationof some proofs in [15,16℄.Lemma 7 Let A be a quantum deision tree that makes T queries. Then thereexist omplex-valued n-variate multilinear polynomials �i of degree at most T ,suh that the �nal state of A is Xi2f0;1gm �i(x)jii;for every input x 2 f0; 1gn. 18



Proof Let j�ki be the state of quantum deision tree (on input x) just beforethe kth query. Note that j�k+1i = UkOj�ki. The amplitudes in j�0i dependon the initial state and on U0 but not on x, so they are polynomials of x ofdegree 0. A query maps basis state ji; b; zi to ji; b� xi; zi, so if the amplitudeof ji; 0; zi in j�0i is � and the amplitude of ji; 1; zi is �, then the amplitude ofji; 0; zi after the query beomes (1� xi)� + xi� and the amplitude of ji; 1; zibeomes xi� + (1 � xi)�, whih are polynomials of degree 1. (In general,if the amplitudes before a query are polynomials of degree � j, then theamplitudes after the query will be polynomials of degree � j + 1.) Betweenthe �rst and the seond query lies the unitary transformation U1. However, theamplitudes after applying U1 are just linear ombinations of the amplitudesbefore applying U1, so the amplitudes in j�1i are polynomials of degree at most1. Continuing indutively, the amplitudes of the �nal state are found to bepolynomials of degree at most T . We an make these polynomials multilinearwithout a�eting their values on x 2 f0; 1gn, by replaing all xmi by xi. 2Theorem 17 deg(f) � 2 QE(f).Proof Consider an exat quantum algorithm for f with QE(f) queries. LetS be the set of basis states orresponding to a 1-output. Then the aeptaneprobability is P (x) = Pk2S j�k(x)j2. By the previous lemma, the �k are poly-nomials of degree � QE(f), so P (x) is a polynomial of degree � 2QE(f). ButP represents f , so it has degree deg(f) and hene deg(f) � 2QE(f). 2By a similar proof:Theorem 18 gdeg(f) � 2 Q2(f).Both theorems are tight for f = PARITYn: here we have deg(f) = gdeg(f) =n [28℄ and QE(f) = Q2(f) = dn=2e [3,13℄. No f is known withQE(f) > deg(f)or Q2(f) > gdeg(f), so the following question presents itself:Open problem 4 Are QE(f) 2 O(deg(f)) and Q2(f) 2 O(gdeg(f))?Note that the degree lower bounds of Theorems 6 and 8 now imply stronglower bounds on the quantum deision tree omplexities of almost all f . Inpartiular, Theorem 8 implies that Q2(f) � n=4� O(pn logn) for almost allf . In ontrast, Van Dam [45℄ has shown that Q2(f) � n=2 +pn for all f .Combining Theorems 17 and 18 with Theorems 12 and 13 we obtain thepolynomial relations between lassial and quantum omplexities of [3℄:Corollary 4 D(f) 2 O(QE(f)4) and D(f) 2 O(Q2(f)6).19



Some other quantum lower bounds via degree lower bounds may be foundin [3,1,29,14,8℄.The biggest gap that is known between D(f) and QE(f) is only a fator of2: D(PARITYn) = n and QE(PARITYn) = dn=2e. The biggest gap we knowbetween D(f) and Q2(f) is quadrati:D(ORn) = n and Q2(ORn) 2 �(pn) byGrover's quantum searh algorithm [19℄. Also, R2(ORn) 2 �(n), deg(ORn) =n, gdeg(ORn) 2 �(pn).Open problem 5 What are the biggest gaps between the lassialD(f), R2(f)and their quantum analogues QE(f), Q2(f)?The previous two open problems are onneted via the funtion f = Ek12 onn = 3k variables (Example 3): this has D(f) = s(f) = n but deg(f) = n1= log 3.The omplexity QE(f) is unknown; it must lie between n1= log 3=2 and n. How-ever, it must either show a gap between D(f) and QE(f) (partly answeringthe last question) or between deg(f) and QE(f) (answering the penultimatequestion).6 Some Speial Classes of FuntionsHere we look more losely at several speial lasses of Boolean funtions.6.1 Symmetri funtionsReall that a funtion is symmetri if f(x) only depends on the Hammingweight jxj of its input, so permuting the input does not hange the value of thefuntion. A symmetri f is fully desribed by giving a vetor (f0; f1; : : : ; fn) 2f0; 1gn+1, where fk is the value of f(x) for jxj = k. Beause of this andLemma 2, there is a lose relationship between polynomials that representsymmetri funtions, and single-variate polynomials that assume values 0 or 1on f0; 1; : : : ; ng. Using this relationship, von zur Gathen and Rohe [17℄ provedeg(f) = (1� o(1))n for all symmetri f :Theorem 19 (von zur Gathen & Rohe) If f is non-onstant and sym-metri, then deg(f) = n � O(n0:548). If, furthermore, n + 1 is prime, thendeg(f) = n.In fat, von zur Gathen and Rohe onjeture that deg(f) = n� O(1) for allsymmetri f . The biggest gap they found is deg(f) = n� 3 for some spei�f and n. Via Theorems 10 and 17, the above degree lower bounds give stronglower bounds on D(f) and QE(f). 20



For the ase of approximate degrees of symmetri f , Paturi [34℄ gave thefollowing tight haraterization. De�ne �(f) = minfj2k� n+ 1j : fk 6= fk+1g.Informally, this quantity measures the length of the interval around Hammingweight n=2 where fk is onstant.Theorem 20 (Paturi) If f is non-onstant and symmetri, then gdeg(f) =�(qn(n� �(f))).Paturi's result implies lower bounds on R2(f) and Q2(f). For Q2(f) thesebounds are in fat tight (a mathing upper bound was shown in [3℄), but forR2(f) a stronger bound an be obtained from Theorem 16 and the followingresult [44℄:Proposition 2 (Tur�an) If f is non-onstant and symmetri, then s(f) �dn+12 e.Proof Let k be suh that fk 6= fk+1, and jxj = k. Without loss of generalityassume k � b(n� 1)=2 (otherwise give the same argument with 0s and 1sreversed). Note that ipping any of the n�k 0-variables in x ips the funtionvalue. Hene s(f) � sx(f) � n� k � d(n+ 1)=2e. 2This lemma is tight, sine s(MAJn) = d(n+ 1)=2e.Colleting the previous results, we have tight haraterizations of the variousdeision tree omplexities of all symmetri f :Theorem 21 If f is non-onstant and symmetri, then� D(f) = (1� o(1))n� R2(f) = �(n)� QE(f) = �(n)� Q2(f) = �(qn(n� �(f)))6.2 Monotone funtionsOne nie property of monotone funtions was shown in [31℄:Proposition 3 (Nisan) If f is monotone, then C(f) = s(f) = bs(f).Proof Sine s(f) � bs(f) � C(f) for all f , we only have to prove C(f) �s(f). Let C : S ! f0; 1g be a minimal erti�ate for some x with jSj = C(f).Without loss of generality we assume f(x) = 0. For eah i 2 S it musthold that xi = 0 and f(xi) = 1, for otherwise i ould be dropped from the21



erti�ate, ontraditing minimality. Thus eah variable in S is sensitive in x,hene C(f) � sx(f) � s(f). 2Theorem 11 now implies:Corollary 5 If f is monotone, then D(f) � s(f)2.This orollary is exatly tight, sine the funtion f of Example 2 has D(f) = nand s(f) = pn and is monotone.Also, the lower bound of Theorem 4 an be improved toProposition 4 If f is monotone, then s(f) � deg(f).Proof Let x be an input on whih the sensitivity of f equals s(f). Assumewithout loss of generality that f(x) = 0. All sensitive variables must be 0 inx, and setting one or more of them to 1 hanges the value of f from 0 to 1.Hene by �xing all variables in x exept for the s(f) sensitive variables, weobtain the OR funtion on s(f) variables, whih has degree s(f). Thereforedeg(f) must be at least s(f). 2The above two results strengthen some of the previous bounds for monotonefuntions:Corollary 6 If f is monotone, then D(f) 2 O(R2(f)2), D(f) 2 O(QE(f)2),and D(f) 2 O(Q2(f)4).For the speial ase where f is both monotone and symmetri, we have:Proposition 5 If f is non-onstant, symmetri, and monotone, then deg(f) =n.Proof Note that f is simply a threshold funtion: f(x) = 1 i� jxj � t for somet. Let p : R! R be the non-onstant single-variate polynomial obtained fromsymmetrizing f . This has degree � deg(f) � n and p(i) = 0 for i 2 f0; : : : ; t�1g, p(i) = 1 for i 2 ft; : : : ; ng. Then the derivative p0 must have zeroes in eahof the n � 1 intervals (0; 1); (1; 2); : : : ; (t � 2; t � 1); (t; t + 1); : : : ; (n � 1; n).Hene p0 has degree at least n � 1, whih implies that p has degree n anddeg(f) = n. 222



6.3 Monotone graph propertiesAn interesting and well studied sublass of the monotone funtions are themonotone graph properties. Consider an undireted graph on n verties. Thereare N = �n2� possible edges, eah of whih may be present or absent, so wean pair up the set of all graphs with the set of all N -bit strings. A graphproperty P is a set of graphs that is losed under permutation of the verties(so isomorphi graphs have the same properties). The property is monotoneif it is losed under the addition of an edge. We are now interested in thequestion: At how many edges must we look in order to determine if a graphhas the property P ? This is just the deision-tree omplexity of P if we viewP as a total Boolean funtion on N bits.A property P is alled evasive if D(P ) = N , so if we have to look at alledges in the worst ase. The evasiveness onjeture (also sometimes alledAanderaa-Karp-Rosenberg onjeture) says that all non-onstant monotonegraph properties P are evasive. This onjeture is still open; see [27℄ for anoverview. The onjeture has been proved for graphs where the number ofverties is a prime power [25℄, but the best known general bound is D(P ) 2
(N) [35,25,26℄. This bound also follows from a degree-bound by Dodis andKhanna [11, Theorem 2℄:Theorem 22 (Dodis & Khanna) If P is a non-onstant monotone graphproperty, then deg(P ) 2 
(N).Corollary 7 If P is a non-onstant monotone graph property, then D(P ) 2
(N) and QE(P ) 2 
(N).Thus the evasiveness onjeture holds up to a onstant fator for both de-terministi lassial and exat quantum algorithms. D(P ) = N may atuallyhold for all monotone graph properties P , but [8℄ exhibit a monotone P withQE(P ) < N . Only muh weaker lower bounds are known for the bounded-erroromplexity of suh properties [26,20,8℄.Open problem 6 Are D(P ) = N and R2(P ) 2 
(N) for all non-onstantmonotone graph properties P?There is no P known with R2(P ) 2 o(N), but the OR-problem an triviallybe turned into a monotone graph property P with Q2(P ) 2 o(N), in fatQ2(P ) 2 �(n) [8℄.Finally we mention a result about sensitivity from [46℄:Theorem 23 (Wegener) s(P ) � n�1 for all non-onstant monotone graphproperties P . 23



This theorem is tight, as witnessed by the property \No vertex is isolated" [44℄.AknowledgmentsWe thank NoamNisan for permitting us to inlude his and Roman Smolensky'sproof of Theorem 12, Louis Wingers for �nding a bug in an earlier version ofTheorem 6, and an anonymous referee for some useful omments that improvedthe presentation of the paper.Referenes[1℄ A. Ambainis. A note on quantum blak-box omplexity of almost allBoolean funtions. Information Proessing Letters, 71(1):5{7, 1999. Also athttp://arxiv.org/abs/quant-ph/9811080.[2℄ A. Ambainis and R. de Wolf. Average-ase quantum query omplexity. InProeedings of 17th Annual Symposium on Theoretial Aspets of ComputerSiene (STACS'2000), volume 1770 of Leture Notes in Computer Siene,pages 133{144. Springer, 2000. quant-ph/9904079.[3℄ R. Beals, H. Buhrman, R. Cleve, M. Mosa, and R. de Wolf. Quantum lowerbounds by polynomials. In Proeedings of 39th FOCS, pages 352{361, 1998.quant-ph/9802049.[4℄ R. Beigel. The polynomial method in iruit omplexity. In Proeedings of the8th IEEE Struture in Complexity Theory Conferene, pages 82{95, 1993.[5℄ A. Bernasoni. Sensitivity vs. blok sensitivity (an average-ase study).Information Proessing Letters, 59(3):151{157, 1996.[6℄ M. Blum and R. Impagliazzo. Generi orales and orale lasses (extendedabstrat). In Proeedings of 28th FOCS, pages 118{126, 1987.[7℄ R. B. Boppana. The average sensitivity of bounded-depth iruits. InformationProessing Letters, 63(5):257{261, 1997.[8℄ H. Buhrman, R. Cleve, R. de Wolf, and Ch. Zalka. Bounds for small-error andzero-error quantum algorithms. In Proeedings of 40th FOCS, pages 358{368,1999. s.CC/9904019.[9℄ H. Buhrman and R. de Wolf. Communiation omplexity lower bounds bypolynomials. s.CC/9910010, 1999.[10℄ S. Cook, C. Dwork, and R. Reishuk. Upper and lower time bounds forparallel random aess mahines without simultaneous writes. SIAM Journalon Computing, 15:87{97, 1986. 24
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