
Improved Quantum Communiation ComplexityBounds for Disjointness and EqualityPeter H�yer1;? and Ronald de Wolf2;??1 Dept. of Comp. Si., Univ. of Calgary, AB, Canada. hoyer�ps.ualgary.a2 UC Berkeley. 583 Soda Hall, Berkeley CA 94720, USA. rdewolf�s.berkeley.eduAbstrat. We prove new bounds on the quantum ommuniation om-plexity of the disjointness and equality problems. For the ase of exatand non-deterministi protools we show that these omplexities are allequal to n+1, the previous best lower bound being n=2. We show this byimproving a general bound for non-deterministi protools of de Wolf. Wealso give an O(pn �log� n)-qubit bounded-error protool for disjointness,modifying and improving the earlier O(pn log n) protool of Buhrman,Cleve, and Wigderson, and prove an 
(pn) lower bound for a lass ofprotools that inludes the BCW-protool as well as our new protool.1 IntrodutionThe area of ommuniation omplexity deals with abstrated models of dis-tributed omputing, where one only ares about minimizing the amount of om-muniation between the parties and not about the amount of omputation doneby the individual parties. The standard setting is the following. Two parties,Alie and Bob, want to ompute some funtion f : f0; 1gn � f0; 1gn ! f0; 1g.Alie reeives input x 2 f0; 1gn, Bob reeives y 2 f0; 1gn, and they want toompute f(x; y). For example, they may want to �nd out whether x = y (theequality problem) or whether x and y are harateristi vetors of disjoint sets(the disjointness problem). A ommuniation protool is a distributed algorithmwhere Alie �rst does some omputation on her side, then sends a message toBob, who does some omputation on his side, sends a message bak, et. Theost of the protool is measured by the number of bits (or qubits, in the quantumase) ommuniated on a worst-ase input (x; y).As in many other branhes of omplexity theory, we an distinguish betweenvarious di�erent \modes" of omputation. Letting P (x; y) denote the aeptaneprobability of the protool (the probability of outputting 1), we onsider fourdi�erent kinds of protools for omputing f ,{ An exat protool has P (x; y) = f(x; y), for all x; y? Supported in part by Canada's NSERC and the Pai� Institute for the Mathema-tial Sienes.?? Supported by Talent grant S 62{565 from the Netherlands Organization for Sienti�Researh. Work onduted while at CWI, Amsterdam, partially supported by EU�fth framework projet QAIP, IST{1999{11234.



2 Peter H�yer and Ronald de Wolf{ A non-deterministi protool has P (x; y) > 0 if and only if f(x; y) = 1, forall x; y{ A one-sided error protool has P (x; y) � 1=2 if f(x; y) = 1, and P (x; y) = 0if f(x; y) = 0{ A two-sided error protool has jP (x; y)� f(x; y)j � 1=3, for all x; y.These four modes of omputation orrespond to those of the omputationalomplexity lasses P, NP, RP, and BPP, respetively.Protools may be lassial (send and proess lassial bits) or quantum (sendand proess quantum bits). Classial ommuniation omplexity was introduedby Yao [35℄, and has been studied extensively. It is well motivated by its intrinsiinterest as well as by its appliations in lower bounds on iruits, VLSI, datastrutures, et. We refer to the book of Kushilevitz and Nisan [26℄ for de�nitionsand results. We use D(f), N(f), R1(f), and R2(f) to denote the minimal ostof lassial protools for f in the exat, non-deterministi, one-sided error, andtwo-sided error settings, respetively.1 Note that R2(f) � R1(f) � D(f) � n+1and N(f) � R1(f) � D(f) � n+1 for all f . Similarly we de�ne QE(f), NQ(f),Q1(f), and Q2(f) for the quantum versions of these ommuniation omplexities(we will be a bit more preise about the notion of a quantum protool in thenext setion). For all of these omplexities, we assume Alie and Bob start outwithout any shared randomness or entanglement.Quantum ommuniation omplexity was introdued by (again) Yao [36℄and the �rst examples of funtions where quantum ommuniation omplex-ity is less than lassial ommuniation omplexity were given in [14, 10, 11,15, 9℄. In partiular, Buhrman, Cleve, and Wigderson [9℄ showed for a spe-i� promise version of the equality problem that QE(f) 2 O(logn) whileD(f) 2 
(n). They also showed for the intersetion problem (the negation of thedisjointness problem) that Q1(INTn) 2 O(pn logn), whereas R2(INTn) 2 
(n)is a well known and non-trivial result from lassial ommuniation omplex-ity [20, 31℄. Later, Raz [30℄ exhibited a promise problem with an exponentialquantum-lassial gap even in the bounded-error setting: Q2(f) 2 O(logn) ver-sus R2(f) 2 
(n1=4= logn). Other results on quantum ommuniation omplex-ity may be found in [25, 2, 28, 13, 21, 34, 24, 23℄.The aim of this paper is to sharpen the bounds on the quantum ommuni-ation omplexities of the equality and disjointness (or intersetion) problems,in the four modes we distinguished above. We summarize what was known priorto this paper,{ n=2 � Q1(EQn); QE(EQn) � n+ 1 [25, 13℄n=2 � NQ(EQn) � n+ 1 [34℄Q2(EQn) 2 �(logn) [25℄{ n=2 � Q1(DISJn); QE(DISJn) � n+ 1 [25, 13℄n=2 � NQ(DISJn) � n+ 1 [34℄logn � Q1(INTn); Q2(DISJn) 2 O(pn logn) [9℄.1 Kushilevitz and Nisan [26℄ use N1(f) for our N(f), R1(f) for our R1(f) and R(f)for our R2(f).



Quantum Communiation Complexity 3In Setion 3 we �rst sharpen the non-deterministi bounds, by proving a generalalgebrai haraterization of NQ(f). In [34℄ it was shown for all funtions f thatlognrank(f)2 � NQ(f) � log(nrank(f)) + 1;where nrank(f) denotes the rank of a \non-deterministi matrix" for f (to bede�ned more preisely below). It is interesting to note that in many plaesin quantum omputing one sees fators of 12 appearing that are essential, forexample in the query omplexity of parity [4, 17℄, in the bounded-error queryomplexity of all funtions [16℄, in superdense oding [5℄, and in lower boundsfor entanglement-enhaned quantum ommuniation omplexity [13, 28℄. In on-trast, we show here that the 12 in the above lower bound an be dispensed with,and the upper bound is tight,2NQ(f) = log(nrank(f)) + 1:Equality and disjointness both have non-deterministi rank 2n, so their non-deterministi omplexities are maximal: NQ(EQn) = NQ(DISJn) = n + 1.(This ontrasts with their omplements: NQ(NEQn) = 2 [27℄ and NQ(INTn) �N(INTn) = logn+1.) Sine NQ(f) lower bounds Q1(f) and QE(f), we also ob-tain optimal bounds for the one-sided and exat quantum ommuniation om-plexities of equality and disjointness. In partiular, QE(EQn) = n + 1, whihanswers a question posed to one of us (RdW) by Gilles Brassard in Deember2000.The two-sided error bound Q2(EQn) 2 �(logn) is easy to show, whereasthe two-sided error omplexity of disjointness is still wide open. In Setion 4 wegive a one-sided error protool for the intersetion problem that improves theO(pn logn) protool of Buhrman, Cleve, and Wigderson by nearly a log-fator,Q1(INTn) 2 O(pn � log? n);where  is a (small) onstant. The funtion log? n is de�ned as the minimumnumber of iterated appliations of the logarithm funtion neessary to obtaina number less than or equal to 1: log? n = minfr � 0 j log(r) n � 1g, wherelog(0) is the identity funtion and log(r) = log Æ log(r�1). Even though log? n isexponential in log? n, it is still very small in n, in partiular log? n 2 o(log(r) n)for every onstant r � 1. It should be noted that our protool is asymptotiallysomewhat more eÆient than the BCW-protool (pnlog? n versus pn logn),but is also more ompliated to desribe; it is based on a reursive modi�ationof the BCW-protool, an idea that previously has been used for law-�nding byBuhrman et al. [12, Setion 5℄.Proving good lower bounds on the Q2-omplexity of the disjointness andintersetion problems is one of the main open problems in quantum ommuni-ation omplexity. Only logarithmi lower bounds are known so far for general2 Similarly we an improve the query omplexity result ndeg(f)=2 � NQq(f) �ndeg(f) of [34℄ to the optimal NQq(f) = ndeg(f).



4 Peter H�yer and Ronald de Wolfprotools [25, 2, 13℄. A lower bound of 
(n1=k) is shown in [24℄ for protoolsexhanging at most k 2 O(1) messages. In Setion 4.1 we prove a nearly tightlower bound of 
(pn) qubits of ommuniation for all protools that satisfy theonstraint that their aeptane probability is a funtion of x^y (the n-bit ANDof Alie's x and Bob's y), rather than of x and y \separately." Sine DISJn itselfis also a funtion only of x ^ y, this does not seem to be an extremely strongonstraint. The onstraint is satis�ed by a lass of protools that inludes theBCW-protool and our new protool. It seems plausible that the general boundis Q2(DISJn) 2 
(pn) as well, but we have so far not been able to weaken theonstraint that the aeptane probability is a funtion of x ^ y.2 Preliminaries2.1 Quantum ComputingHere we briey sketh the setting of quantum omputation, referring to the bookof Nielsen and Chuang [29℄ for more details. An m-qubit quantum state j�i is asuperposition or linear ombination over all lassial m-bit states,j�i = Xi2f0;1gm �ijii;with the onstraint that Pi j�ij2 = 1. Equivalently, j�i is a unit vetor in C 2m .Quantum mehanis allows us to hange this state by means of unitary (i.e.,norm-preserving) operations: j�newi = U j�i, where U is a 2m � 2m unitarymatrix. A measurement of j�i produes the outome i with probability j�ij2,and then leaves the system in the state jii.The two main examples of quantum algorithms so far, are Shor's algorithmfor fatoring n-bit numbers using a polynomial number (in n) of elementaryunitary transformations [32℄ and Grover's algorithm for searhing an unorderedn-element spae using O(pn) \look-ups" or queries in the spae [18℄. Belowwe use a tehnique alled amplitude ampli�ation, whih generalizes Grover'salgorithm.Theorem 1 (Amplitude ampli�ation [7℄). There exists a quantum algo-rithm QSearh with the following property. Let A be any quantum algorithmthat uses no measurements, and let � : f1; : : : ; ng ! f0; 1g be any Boolean fun-tion. Let a denote the initial suess probability of A of �nding a solution (i.e.,the probability of outputting some i 2 f1; : : : ; ng so that �(i) = 1). AlgorithmQSearh �nds a solution using an expeted number of O � 1pa� appliations ofA, A�1, and � if a > 0, and it runs forever if a = 0.Consider the problem of searhing an unordered n-element spae. An algo-rithm A that reates a uniform superposition over all i 2 f1; : : : ; ng has suessprobability a � 1=n, so plugging this into the above theorem and terminatingafter O(pn) appliations gives us an algorithm that �nds a solution with prob-ability at least 1=2 provided there is one, and otherwise outputs `no solution'.



Quantum Communiation Complexity 52.2 Communiation ComplexityFor lassial ommuniation protools we refer to [26℄. Here we briey de�nequantum ommuniation protools, referring to the surveys [33, 8, 22, 6℄ for moredetails. The spae in whih the quantum protool works, onsists of three parts:Alie's part, the ommuniation hannel, and Bob's part (we do not write thedimensions of these spaes expliitly). Initially these three parts ontain only0-qubits, j0ij0ij0i:We assume Alie starts the protool. She applies a unitary transformation UA1 (x)to her part and the hannel. This orresponds to her initial omputation andher �rst message. The length of this message is the number of hannel qubitsa�eted. The state is now (UA1 (x) 
 IB)j0ij0ij0i;where 
 denotes tensor produt, and IB denotes the identity transformation onBob's part. Then Bob applies a unitary transformation UB2 (y) to his part andthe hannel. This operation orresponds to Bob reading Alie's message, doingsome omputation, and putting a return-message on the hannel. This proessgoes bak and forth for some k messages, so the �nal state of the protool oninput (x; y) will be (in ase Alie goes last)(UAk (x)
 IB)(IA 
 UBk�1(y)) � � � (IA 
 UB2 (y))(UA1 (x)
 IB)j0ij0ij0i:The total ost of the protool is the total length of all messages sent, on a worst-ase input (x; y). For tehnial onveniene, we assume that at the end of theprotool the output bit is the �rst qubit on the hannel. Thus the aeptaneprobability P (x; y) of the protool is the probability that a measurement of the�nal state gives a `1' in the �rst hannel-qubit. Note that we do not allow inter-mediate measurements during the protool. This is without loss of generality:it is well known that suh measurements an be postponed until the end of theprotool at no extra ommuniation ost. As mentioned in the introdution, weuse QE(f), NQ(f), Q1(f), and Q2(f) to denote the ost of optimal exat, non-deterministi, one-sided error, and two-sided error protools for f , respetively.The following lemma was stated summarily without proof by Yao [36℄ andin more detail by Kremer [25℄. It is key to many of the earlier lower bounds onquantum ommuniation omplexity as well as to ours, and is easily proven byindution on `.Lemma 2 (Yao [36℄; Kremer [25℄). The �nal state of an `-qubit protool oninput (x; y) an be written asXi2f0;1g` jAi(x)iji`ijBi(y)i;where the Ai(x); Bi(y) are vetors (not neessarily of norm 1), and i` denotesthe last bit of the `-bit string i (the output bit).



6 Peter H�yer and Ronald de WolfThe aeptane probability P (x; y) of the protool is the squared norm of thepart of the �nal state that has i` = 1. Letting aij be the 2n-dimensional omplexolumn vetor with the inner produts hAi(x)jAj(x)i as entries, and bij the 2n-dimensional olumn vetor with entries hBi(y)jBj(y)i, we an write P (viewedas a 2n � 2n matrix) as the sum Pi;j:i`=j`=1 aijbTij of 22`�2 rank 1 matries,so the rank of P is at most 22`�2. For example, for exat protools this givesimmediately that ` is lower bounded by 12 times the logarithm of the rank of theommuniation matrix, and for non-deterministi protools ` is lower boundedby 12 times the logarithm of the non-deterministi rank (de�ned below). In thenext setion we show how we an get rid of the fator 12 in the non-deterministiase.We use x^y to denote the bitwise-AND of n-bit strings x and y, and similarlyx � y denotes the bitwise-XOR. Let OR denote the n-bit funtion whih is 1 ifat least one of its n input bits is 1, and NOR be its negation. We onsider thefollowing three ommuniation omplexity problems,{ Equality: EQn(x; y) = NOR(x � y){ Intersetion: INTn(x; y) = OR(x ^ y){ Disjointness: DISJn(x; y) = NOR(x ^ y).3 Optimal Non-Deterministi BoundsLet f : f0; 1gn � f0; 1gn ! f0; 1g. A 2n � 2n omplex matrix M is alled anon-deterministi matrix for f if it has the property that Mxy 6= 0 if and only iff(x; y) = 1 (equivalently, Mxy = 0 if and only if f(x; y) = 0). We use nrank(f)to denote the non-deterministi rank of f , whih is the minimal rank among allnon-deterministi matries for f . In [34℄ it was shown thatlognrank(f)2 � NQ(f) � log(nrank(f)) + 1:In this setion we show that the upper bound is the true bound. The proof usesthe following tehnial lemma.Lemma 3. If there exist two families of vetors fA1(x); : : : ; Am(x)g � C d andfB1(y); : : : ; Bm(y)g � C d suh that for all x 2 f0; 1gn and y 2 f0; 1gn, we havemXi=1 Ai(x)
Bi(y) = 0 if and only if f(x; y) = 0;then nrank(f) � m.Proof. Assume there exist two suh families of vetors. Let Ai(x)j denote thejth entry of vetor Ai(x), and let similarly Bi(y)k denote the kth entry of vetorBi(y). We use pairs (j; k) 2 f1; : : : ; dg2 to index entries of vetors in the d2-dimensional tensor spae. Note that



Quantum Communiation Complexity 7if f(x; y) = 0 then Pmi=1 Ai(x)jBi(y)k = 0 for all (j; k),if f(x; y) = 1 then Pmi=1 Ai(x)jBi(y)k 6= 0 for some (j; k).As a �rst step, we want to replae the vetors Ai(x) and Bi(y) by numbers ai(x)and bi(y) that have similar properties. We use the probabilisti method [1℄ toshow that this an be done.Let I be an arbitrary set of 22n+1 numbers. Choose oeÆients �1; : : : ; �dand �1; : : : ; �d, eah oeÆient piked uniformly at random from I . For every x,de�ne ai(x) = Pdj=1 �jAi(x)j , and for every y de�ne bi(y) = Pdk=1 �kBi(y)k.Consider the numberv(x; y) = mXi=1 ai(x)bi(y) = dXj;k=1�j�k mXi=1 Ai(x)jBi(y)k! :If f(x; y) = 0, then v(x; y) = 0 for all hoies of the �j ; �k.Now onsider some (x; y) with f(x; y) = 1. There is a pair (j0; k0) for whihPmi=1Ai(x)j0Bi(y)k0 6= 0. We want to prove that v(x; y) = 0 happens only withvery small probability. In order to do this, �x the random hoies of all �j ,j 6= j0, and �k, k 6= k0, and view v(x; y) as a funtion of the two remainingnot-yet-hosen oeÆients � = �j0 and � = �k0 ,v(x; y) = 0�� + 1�+ 2� + 3:Here we know that 0 =Pmi=1 Ai(x)j0Bi(y)k0 6= 0. There is at most one value of �for whih 0�+2 = 0. All other values of � turn v(x; y) into a linear equation in�, so for those � there is at most one hoie of � that gives v(x; y) = 0. Hene outof the (22n+1)2 di�erent ways of hoosing (�; �), at most 22n+1+(22n+1�1) �1 <22n+2 hoies give v(x; y) = 0. ThereforePr[v(x; y) = 0℄ < 22n+2(22n+1)2 = 2�2n:Using the union bound, we now havePr �there is an (x; y) 2 f�1(1) for whih v(x; y) = 0�� X(x;y)2f�1(1)Pr[v(x; y) = 0℄ < 22n � 2�2n = 1:This probability is stritly less than 1, so there exist sets fa1(x); : : : ; am(x)g andfb1(y); : : : ; bm(y)g that make v(x; y) 6= 0 for every (x; y) 2 f�1(1). We thus havethat mXi=1 ai(x)bi(y) = 0 if and only if f(x; y) = 0:View the ai and bi as 2n-dimensional vetors, let A be the 2n�m matrix havingthe ai as olumns, and B be the m � 2n matrix having the bi as rows. Then(AB)xy = Pmi=1 ai(x)bi(y), whih is 0 if and only if f(x; y) = 0. Thus AB is anon-deterministi matrix for f , and nrank(f) � rank(AB) � rank(A) � m. ut



8 Peter H�yer and Ronald de WolfLemma 3 allows us to prove tight bounds for non-deterministi quantumprotools.Theorem 4. NQ(f) = log(nrank(f)) + 1.Proof. The upper bound NQ(f) � log(nrank(f))+1 was shown in [34℄ (atually,the upper bound shown there was log(nrank(f)) for protools where only Bobhas to know the output value). For the sake of ompleteness we repeat that proofhere. Let r = nrank(f) and M be a rank-r non-deterministi matrix for f . LetMT = U�V be the singular value deomposition of the transpose of M [19℄, soU and V are unitary, and � is a diagonal matrix whose �rst r diagonal entries arepositive real numbers and whose other diagonal entries are 0. Below we desribea one-round non-deterministi protool for f , using log(r)+1 qubits. First Alieprepares the state j�xi = x�V jxi, where x > 0 is a normalizing real numberthat depends on x. Beause only the �rst r diagonal entries of � are non-zero,only the �rst r amplitudes of j�xi are non-zero, so j�xi an be ompressed intolog r qubits. Alie sends these qubits to Bob. Bob then applies U to j�xi andmeasures the resulting state. If he observes jyi, then he puts 1 on the hanneland otherwise he puts 0 there. The aeptane probability of this protool isP (x; y) = jhyjU j�xij2 = 2xjhyjU�V jxij2 = 2xjMTyxj2 = 2xjMxyj2:Sine Mxy is non-zero if and only if f(x; y) = 1, P (x; y) will be positive if andonly if f(x; y) = 1. Thus we have a non-deterministi quantum protool for fwith log(r) + 1 qubits of ommuniation.For the lower bound, onsider a non-deterministi `-qubit protool for f . ByLemma 2, its �nal state on input (x; y) an be written asXi2f0;1g` jAi(x)iji`ijBi(y)i:Without loss of generality we assume the vetors Ai(x) and Bi(y) all have thesame dimension d. Let S = fi 2 f0; 1g` j i` = 1g and onsider the part of thestate that orresponds to output 1 (we drop the i` = 1 and the j�i-notation here),�(x; y) =Xi2S Ai(x) 
Bi(y):Beause the protool has aeptane probability 0 if and only if f(x; y) = 0, thisvetor �(x; y) will be the zero vetor if and only if f(x; y) = 0. The previouslemma gives nrank(f) � jSj = 2`�1, and hene that log(nrank(f)) + 1 � NQ(f).utNote that any non-deterministi matrix for the equality funtion has non-zeroes on its diagonal and zeroes o�-diagonal, and hene has full rank. ThusNQ(EQn) = n + 1, whih ontrasts sharply with the non-deterministi om-plexity of its omplement (inequality), whih is only 2 [27℄. Similarly, a non-deterministi matrix for disjointness has full rank, beause reversing the order-ing of the olumns gives an upper triangular matrix with non-zero elements on



Quantum Communiation Complexity 9the diagonal. This gives tight bounds for the exat, one-sided error, and non-deterministi settings.Corollary 5. We have that QE(EQn) = Q1(EQn) = NQ(EQn) = n + 1 andthat QE(DISJn) = Q1(DISJn) = NQ(DISJn) = n+ 1.4 On the Bounded-Error Complexity of Disjointness4.1 Improved Upper BoundHere we show that we an take o� most of the logn fator from the O(pn logn)protool for the intersetion problem (the omplement of disjointness) that wasgiven by Buhrman, Cleve, and Wigderson in [9℄.Theorem 6. There exists a onstant  suh that Q1(INTn) 2 O(pn � log? n).Proof. We reursively build a one-sided error protool that an �nd an index isuh that xi = yi = 1, provided suh an i exists (all suh an i a `solution').Clearly this suÆes for omputing INTn(x; y). Let Cn denote the ost of ourprotool on n-bit inputs.Alie and Bob divide the n indies f1; : : : ; ng into n=(logn)2 bloks of (logn)2indies eah. Alie piks a random number j 2 f1; : : : ; n=(logn)2g and sends thenumber j to Bob. Now they reursively run our protool on the jth blok, at aost of C(logn)2 qubits of ommuniation. Alie then measures her part of thestate, and they verify whether the measured i is indeed a solution. If there is asolution in the jth blok, then Alie �nds one with probability at least 1=2, so theoverall probability of �nding a solution (if there is one) is at least (logn)2=2n. Byusing a superposition over all j we an push all intermediate measurements to theend without a�eting the suess probability. Therefore, applying O(pn= logn)rounds of amplitude ampli�ation (Theorem 1) boosts this protool to havingerror probability at most 1=2. We thus have the reurreneCn � O(1) pnlogn �C(log n)2 +O(logn)� :Sine C1 = 2, this reursion unfolds to the bound Cn 2 O(pn � log? n) forsome onstant . Careful inspetion of the protool gives that the onstant  isreasonably small. ut4.2 Lower Bound for a Spei� Class of ProtoolsWe give a lower bound for two-sided error quantum protools for disjointness.The lower bound applies to all protools whose aeptane probability P (x; y)is a funtion just of x^ y, rather than of x and y \separately." In partiular, theprotools of [9℄ and of our previous setion fall in this lass.The lower bound basially follows by ombining various results from [13℄.



10 Peter H�yer and Ronald de WolfTheorem 7. Any two-sided error quantum protool for DISJn whose aeptaneprobability is a funtion of x ^ y, has to ommuniate 
(pn) qubits.Proof. Consider an `-qubit protool with error probability at most 1=3. By theomment following Lemma 2, we an write its aeptane probability P (x; y) asa 2n � 2n matrix P of rank r � 22`�2.We now invoke a relation between the rank of the matrix P and properties ofthe 2n-variate multilinear polynomial that equals P (x; y).3 There is an n-variatefuntion g suh that P (x; y) = g(x ^ y). Let g(z) =PS aSzS be the polynomialrepresentation of g. Then P (x; y) = g(x^ y) =PS aS(x^ y)S =PS aSxSyS , sothe 2n-variate multilinear polynomial P only ontains monomials in whih theset of x-variables is the same as the set of y-variables. For polynomials of thisform (alled \even"), [13, Lemmas 2 and 3℄ imply that the number of monomialsin P (x; y) equals the rank r of the matrix P .Setting y = x in P (x; y) gives a polynomial p(x) =PS aSxS that has r mono-mials and that approximates the n-bit funtion NOR, sine jp(x)� NOR(x)j =jP (x; x) � DISJ(x; x)j � 1=3. But [13, Theorem 8℄ implies that every polyno-mial that approximates NOR must have at least 2pn=12 monomials. Hene2pn=12 � r � 22`�2, whih gives ` �pn=48 + 1. ut5 Open ProblemsThis paper �ts in a sequene of papers that (slowly) extend what is known forquantum ommuniation omplexity, e.g. [9, 2, 30, 13, 21, 34, 24, 23℄. The mainopen question is still the bounded-error omplexity of disjointness. Of interestis whether it is possible to prove an O(pn) upper bound for disjointness, thusgetting rid of the fator of log? n in our upper bound of Theorem 6, and whetherit is possible to extend the lower bound of Theorem 7 to broader lasses ofprotools. Sine disjointness is oNP-omplete for ommuniation omplexityproblems [3℄, strong lower bounds on the disjointness problem imply a host ofother lower bounds.A seond question is whether qubit ommuniation an be signi�antly re-dued in ase Alie and Bob an make use of prior entanglement (shared EPR-pairs). Giving Alie and Bob n shared EPR-pairs trivializes the non-deterministiomplexity (use the EPR-pairs as a publi oin to randomly guess some n-bit z,Alie then sends Bob 1 bit indiating whether x = z, if x = z then Bob an om-pute the answer f(x; y) and send it to Alie, if x 6= z then they output 0), butfor the exat and bounded-error models it is open whether prior entanglementan make a signi�ant di�erene.3 For S � [n℄ = f1; : : : ; ng, we use xS for the monomialQi2S xi. An n-variate multilin-ear polynomial p(x) =PS�[n℄ aSxS, aS 2 R, is a weighted sum of suh monomials.The number of monomials in p is the number of S for whih aS 6= 0. One anshow that for every funtion g : f0; 1gn ! R there is a unique n-variate multilinearpolynomial p suh that g(x) = p(x) for all x 2 f0; 1gn.
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