
Quantum and Classial Strong Diret Produt Theoremsand Optimal Time-Spae Tradeo�sHartmut Klauk�University of Calgaryklaukh�ps.ualgary.a Robert �SpalekyCWI, Amsterdamsr�wi.nl Ronald deWolfyCWI, Amsterdamrdewolf�wi.nlAbstratA strong diret produt theorem says that if we want toompute k independent instanes of a funtion, using lessthan k times the resoures needed for one instane, thenour overall suess probability will be exponentially smallin k. We establish suh theorems for the lassial as wellas quantum query omplexity of the OR funtion. Thisimplies slightly weaker diret produt results for all totalfuntions.Weprove a similar result for quantumommu-niation protools omputing k instanes of the Disjoint-ness funtion. These results imply a time-spae tradeo�T 2S = 
�N3� for sorting N items on a quantum om-puter, whih is optimal up to polylog fators. They alsogive several tight time-spae and ommuniation-spaetradeo�s for the problems of Boolean matrix-vetor mul-tipliation and matrix multipliation.1. Introdution1.1. Diret produt theoremsFor every reasonable model of omputation one anask the following fundamental question:How do the resoures needed for omputingk independent instanes of f sale with theresoures needed for one instane and with k?Here \resoure" needs to be spei�ed. It ould refer totime, spae, queries, ommuniation et. Similarly weneed to de�ne what we mean by \omputing f", forinstane whether we allow the algorithm some proba-bility of error, and whether this probability of error isaverage-ase or worst-ase.In this paper we onsider two kinds of resoures,queries and ommuniation, and allow our algorithms� Supported by Canada's NSERC and MITACS and by DFGgrant KL 1470/1.y Supported in part by EU projet RESQ, IST-2001-37559.

some error probability. An algorithm is given k in-puts x1; : : : ; xk, and has to output the vetor of kanswers f(x1); : : : ; f(xk). The issue is how the algo-rithm an optimally distribute its resoures among thek instanes it needs to ompute. We fous on the rela-tion between the total amount T of resoures availableand the best-ahievable suess probability � (whihould be average or worst-ase). Intuitively, if every al-gorithm with t resoures must have some onstant er-ror probability when omputing one instane of f , thenfor omputing k instanes we expet a onstant erroron eah instane and hene an exponentially small su-ess probability for the k-vetor as a whole. Suh astatement is known as a weak diret produt theorem:If T � t, then � = 2�
(k)However, even if we give our algorithm roughly kt re-soures, on average it still has only t resoures availableper instane. So even here we expet a onstant errorper instane and an exponentially small suess prob-ability overall. Suh a statement is known as a strongdiret produt theorem:If T � kt, then � = 2�
(k)Strong diret produt theorems, though intuitivelyvery plausible, are generally hard to prove and some-times not even true. Shaltiel [41℄ exhibits a general lassof examples where strong diret produt theorems fail.This applies for instane to query omplexity, ommu-niation omplexity, and iruit omplexity. In his ex-amples, suess probability is taken under the uniformprobability distribution on inputs. The funtion is ho-sen suh that for most inputs, most of the k instanesan be omputed quikly and without any error prob-ability. This leaves enough resoures to solve the fewhard instanes with high suess probability. Hene forhis funtions, with T � tk, one an ahieve average su-ess probability lose to 1.Aordingly, we an only establish diret prod-ut theorems in speial ases. Examples are Nisan



et al.'s [34℄ strong diret produt theorem for \de-ision forests", Parnafes et al.'s [36℄ diret prod-ut theorem for \forests" of ommuniation protools,Shaltiel's strong diret produt theorems for \fair" de-ision trees and the disrepany bound for ommunia-tion omplexity [41℄. In the quantum ase, Aaronson [2℄established a result for the unordered searh prob-lem that lies in between the weak and the strong the-orems: every T -query quantum algorithm for searh-ing k marked items among N = kn input bits willhave suess probability � � O�T 2=N�k. In partiu-lar, if T � pkn, then � = 2�
(k).Our main ontributions in this paper are strong di-ret produt theorems for the OR-funtion in varioussettings. First onsider the ase of lassial randomizedalgorithms. Let ORn denote the n-bit OR-funtion,and let f (k) denote k independent instanes of a fun-tion f . Any randomized algorithm with less than, say,n=2 queries will have a onstant error when omput-ing ORn. Hene we expet an exponentially small su-ess probability when omputing OR(k)n using � knqueries. We prove this in Setion 3:SDPT for lassial query omplexity:Every randomized algorithm that omputesOR(k)n using T � �kn queries has worst-asesuess probability � = 2�
(k) (for � > 0 asuÆiently small onstant).For simpliity we stated this with � being the worst-ase suess probability, but the statement is also validfor the average probability under a k-fold produt dis-tribution that is impliit in our proof.This DPT for OR implies a weaker DPT for all to-tal funtions f , via the notion of blok sensitivity bs(f).Using tehniques of Nisan and Szegedy [35℄, we an em-bed ORbs(f) in f (with the promise that the weightof the input is 0 or 1). On the other hand, the las-sial bounded-error query omplexity R2(f) is upperbounded by bs(f)3 [7℄. This implies:Every randomized algorithm that omputesf (k) using T � �kR2(f)1=3 queries has worst-ase suess probability � = 2�
(k).This theorem falls short of a true strong diret prod-ut theorem in having R1=32 (f) instead of R2(f) in theresoure bound. However, the other two important as-pets of a SDPT remain valid: the linear dependeneof the resoures on k and the exponential deay of thesuess probability.Next we turn our attention to quantum algorithms.Buhrman et al. [16℄ atually proved that roughly ktimes the resoures for one instane suÆes to ompute

f (k) with suess probability lose to 1, rather than ex-ponentially small: Q2(f (k)) = O(kQ2(f)), where Q2(f)denotes the quantum bounded-error query omplexityof f (suh a result is not known to hold in the lassialworld). For instane, Q2(ORn) = �(pn) by Grover'ssearh algorithm, so O(kpn) quantum queries suÆeto ompute OR(k)n with high suess probability. In Se-tion 4 we show that if we make the number of queriesslightly smaller, the best-ahievable suess probabil-ity suddenly beomes exponentially small:SDPT for quantum query omplexity:Every quantum algorithm that omputesOR(k)n using T � �kpn queries has worst-ase suess probability � = 2�
(k) (for� > 0 a suÆiently small onstant).Our proof uses the polynomial method [7℄ and is om-pletely di�erent from the lassial proof. The polyno-mial method was also used by Aaronson [2℄ in his proofof a weaker version, mentioned above. Our proof takesits starting point from his proof, analyzing the degree ofa single-variate polynomial that is 0 on f0; : : : ; k�1g, atleast � on k, and between 0 and 1 on f0; : : : ; kng. Thedi�erene between his proof and ours is that we par-tially fator this polynomial, whih gives us some nieextra properties over Aaronson's approah of di�eren-tiating the polynomial. In addition, we use a strong re-sult of Coppersmith and Rivlin [20℄. In both ases (dif-ferent) extremal properties of Chebyshev polynomials�nish the proofs. Again, we also get a weaker result forall total funtions:Every quantum algorithm that omputes f (k)using T � �kQ2(f)1=6 queries has worst-asesuess probability � = 2�
(k).The third and last setting where we establish a strongdiret produt theorem is quantum ommuniationomplexity. Suppose Alie has an n-bit input x and Bobhas an n-bit input y. These x and y represent sets, andDISJn(x; y) = 1 i� those sets are disjoint. Note thatDISJn is the negation of ORn(x^y), where x^y is then-bit string obtained by bitwise AND-ing x and y. Inmany ways, DISJn has the same entral role in om-muniation omplexity as ORn has in query omplex-ity. In partiular, it is \o-NP omplete" [6℄. The om-muniation omplexity of DISJn has been well stud-ied: it takes �(n) bits of ommuniation in the las-sial world [24, 38℄ and �(pn) in the quantum world[13, 23, 3, 39℄. For the ase where Alie and Bob wantto ompute k instanes of Disjointness, we establish astrong diret produt theorem in Setion 5:SDPT for q. ommuniation omplexity:Every quantum protool that omputes



DISJ(k)n ommuniating T � �kpn qubitshas worst-ase suess probability � = 2�
(k).Our proof uses Razborov's [39℄ lower bound tehniqueto translate the quantum protool to a polynomial, atwhih point the polynomial results established for thequantum query SDPT take over. We an obtain similarresults for other symmetri prediates.One may also onsider omputing the parity of the koutomes instead of all k outomes. This issue has beenwell studied, partiularly in iruit omplexity, andgenerally goes under the name of XOR lemmas [44, 21℄.In this paper we fous on the vetor version, but we anprove similar strong bounds for the parity version. Inpartiular, we an get a strong XOR lemma for thequantum ase using the tehnique of Cleve et al. [19,Setion 3℄. They show how the ability to ompute theparity of any subset of k bits with probability 1=2+ ",suÆes to ompute the full k-vetor with probability4"2. Hene our strong quantum diret produt theo-rems imply strong quantum XOR lemmas.1.2. Time-Spae and Communiation-Spae tradeo�sApart from answering a fundamental question aboutthe omputational models of (quantum) query om-plexity and ommuniation omplexity, our diretprodut theorems also imply a number of new and op-timal time-spae tradeo�s.First, we onsider the tradeo� between the timeT and spae S that a quantum iruit needs forsorting N numbers. Classially, it is well knownthat TS = 
�N2�, and this tradeo� is ahiev-able [8℄. In the quantum ase, Klauk [26℄ on-struted a bounded-error quantum algorithm thatruns in time T = O((N logN)3=2=pS) for all(logN)3 � S � N= logN . He also showed1 a lowerbound TS = 
�N3=2�, whih is lose to optimal forsmall S but not for large S. We use our strong di-ret produt theorem to prove T 2S = 
�N3�. This istight up to polylog fators.Seondly, we onsider time-spae andommuniation-spae tradeo�s for the problemsof Boolean matrix-vetor produt and Boolean ma-trix produt. In the �rst problem there are an N � Nmatrix A and a vetor b of dimension N , andthe goal is to ompute the vetor  = Ab, wherei = _Nj=1 (A[i; j℄ ^ bj). In the setting of time-spaetradeo�s, the matrix A is �xed and the input is1 Unfortunately there is an error in the proof presented in [26℄,namely Lemma 5 appears to be wrong.

the vetor b. In the problem of matrix multiplia-tion two matries have to be multiplied with thesame type of Boolean produt, and both are inputs.Time-spae tradeo�s for Boolean matrix-vetor mul-tipliation have been analyzed in an average-asesenario by Abrahamson [4℄, whose results give aworst-ase lower bound of TS = 
�N3=2� for las-sial algorithms. He onjetured that a worst-aselower bound of TS = 
�N2� holds. Using our las-sial diret produt result we are able to on�rmthis, i.e., there is a matrix A, suh that omput-ing Ab requires TS = 
�N2�. We also show a lowerbound of T 2S = 
�N3� for this problem in the quan-tum ase. Both bounds are tight (the seond withina logarithmi fator) if T is taken to be the num-ber of queries to the inputs. We also get a lowerbound of T 2S = 
�N5� for the problem of multiply-ing two matries in the quantum ase. This bound islose to optimal for small S.Researh on ommuniation-spae tradeo�s in thelassial setting has been initiated by Lam et al. [31℄ ina restrited setting, and by Beame et al. [9℄ in a gen-eral model of spae-bounded ommuniation omplex-ity. In the setting of ommuniation-spae tradeo�s,players Alie and Bob are modeled as spae-boundediruits, and we are interested in the ommuniationost when given partiular spae bounds. For the prob-lem of omputing the matrix-vetor produt Alie re-eives the matrix A (now an input) and Bob the ve-tor b. Beame et al. gave tight lower bounds e.g. for thematrix-vetor produt and matrix produt over GF(2),but stated the omplexity of Boolean matrix-vetormultipliation as an open problem. Using our diretprodut result for quantum ommuniation omplex-ity we are able to show that any quantum protoolfor this problem satis�es C2S = 
�N3�. This is tightwithin a polylogarithmi fator. We also get a lowerbound of C2S = 
�N5� for omputing the produt oftwo matries, whih again is tight.No lassial lower bounds for these problems wereknown previously, and �nding better lassial boundsthan these remains open. The possibility to show goodquantum bounds omes from the deep relation betweenquantum protools and polynomials impliit in [39℄.2. PreliminariesWe assume familiarity with quantum omputing [32℄and sketh the model of query omplexity, referringto [18℄ for more details, also on the lose relation be-tween query omplexity and degrees of multivariatepolynomials. Suppose we want to ompute some fun-tion f . For input x 2 f0; 1gN , a query gives us aess



to the input bits. It orresponds to the unitary mapO : ji; b; zi 7! ji; b � xi; zi: Here i 2 [N ℄ = f1; : : : ; Ngand b 2 f0; 1g; the z-part is workspae, whih is not af-feted by the query. We assume the input an be a-essed only via suh queries. A T -query quantum algo-rithm has the form A = UTOUT�1 � � �OU1OU0, wherethe Uk are �xed unitaries, independent of x. This Adepends on x via the T appliations of O. The algo-rithm starts in initial S-qubit state j0i and its outputis the result of measuring a dediated part of the �-nal state Aj0i. For a Boolean funtion f , the outputof A is obtained by observing the leftmost qubit of the�nal superposition Aj0i, and its aeptane probabil-ity on input x is its probability of outputting 1. Oneof the most interesting quantum query algorithms isGrover's searh algorithm [22, 10℄. It an �nd an in-dex of a 1-bit in an n-bit input in expeted number ofO�pn=(jxj+ 1)� queries, where jxj is the Hammingweight (number of ones) in the input. If we know thatjxj � 1, we an solve the searh problem exatly us-ing �4pn queries [11℄.For investigating time-spae tradeo�s we use the ir-uit model. A iruit aesses its input via an orale likea query algorithm. Time orresponds to the number ofgates in the iruit. We will, however, usually onsiderthe number of queries to the input, whih is obviouslya lower bound on time. A quantum iruit uses spae Sif it works with S qubits only. We require that the out-puts are made at prede�ned gates in the iruit, bywriting their value to some extra qubits that may notbe used later on. Similar de�nitions are made for las-sial iruits.In the model of quantum ommuniation omplex-ity, two players Alie and Bob ompute a funtion fon distributed inputs x and y. The omplexity mea-sure of interest in this setting is the amount of ommu-niation. The players follow some prede�ned protoolthat onsists of loal unitary operations, and the ex-hange of qubits. The ommuniation ost of a proto-ol is the maximal number of qubits exhanged for anyinput. In the standard model of ommuniation om-plexity, Alie and Bob are omputationally unbounded,but we are also interested in what happens if they havebounded memory, i.e., they work with a bounded num-ber of qubits. To this end we model Alie and Bob asommuniating quantum iruits, following Yao [45℄.A pair of ommuniating quantum iruits is a-tually a single quantum iruit partitioned into twoparts. The allowed operations are loal unitary opera-tions and aess to the inputs that are given by orales.Alie's part of the iruit may use orale gates to readsingle bits from her input, and Bob's part of the ir-uit may do so for his input. The ommuniation C

between the two parties is simply the number of wiresarrying qubits that ross between the two parts of theiruit. A pair of ommuniating quantum iruits usesspae S, if the whole iruit works on S qubits.In the problems we onsider, the number of outputsis muh larger than the memory of the players. There-fore we use the following output onvention. The playerwho omputes the value of an output sends this valueto the other player at a predetermined point in the pro-tool. In order to make our models as general as possi-ble, we furthermore allow the players to do loal mea-surements, and to throw qubits away as well as pikup some fresh qubits. The spae requirement only de-mands that at any given time no more than S qubitsare in use in the whole iruit.A �nal omment regarding upper bounds: Buhrmanet al. [13℄ showed how to run a query algorithm in adistributed fashion with small overhead in the om-muniation. In partiular, if there is a T -query quan-tum algorithm omputing N -bit funtion f , then thereis a pair of ommuniating quantum iruits withO(T logN) ommuniation that omputes f(x^y) withthe same suess probability. We refer to the book ofKushilevitz and Nisan [30℄ for more on ommuniationomplexity in general, and to the surveys [25, 12, 42℄for more on its quantum variety.3. SDPT for Classial QueriesIn this setion we give the strong diret produttheorem for randomized algorithms omputing k in-dependent instanes of ORn. Unlike the quantum ase,the proof (skethed in Appendix A) is quite straight-forward, proving a diret produt theorem for non-adaptive algorithms as an intermediate.Theorem 1 (SDPT for OR) For every 0 <  < 1,there exists an � > 0 suh that every randomized algo-rithm for OR(k)n with T � �kn queries has suess prob-ability � � 2�k.The strong diret produt theorem for OR implies aweaker diret produt theorem for all funtions. In thisweaker version, the suess probability of omputing kinstanes still goes down exponentially with k, but weneed to start from a polynomially smaller bound on theoverall number of queries. For x 2 f0; 1gn and S � [n℄,we use xS to denote the n-bit string obtained from xby ipping the bits in S. Consider a (possibly partial)funtion f : D ! Z, with D � f0; 1gn. The blok sensi-tivity bsx(f) of x 2 D is the maximal b for whih thereare disjoint sets S1; : : : ; Sb suh that f(x) 6= f(xSi).The blok sensitivity of f is bs(f) = maxx2D bsx(f).Blok sensitivity is losely related to deterministi andbounded-error lassial query omplexity:



Theorem 2 ([33, 7℄) R2(f) = 
(bs(f)) for all f ,D(f) � bs(f)3 for all total Boolean f .Nisan and Szegedy [35℄ showed how to embed abs(f)-bit OR-funtion (with the promise that the in-put has weight � 1) into f . Combined with our strongdiret produt theorem for OR, this implies a diretprodut theorem for all funtions f in terms of bs(f):Theorem 3 For every 0 <  < 1, there exists an� > 0 suh that for every f , every lassial algorithmfor f (k) with T � �kbs(f) queries has suess probabil-ity � � 2�k.This is optimal if R2(f) = �(bs(f)), whih is thease for most funtions. For total funtions, the gap be-tween R2(f) and bs(f) is not more than ubi, heneCorollary 4 For every 0 <  < 1, there exists an � > 0suh that for every total Boolean f , every lassial algo-rithm for f (k) with T � �kR2(f)1=3 queries has suessprobability � � 2�k.4. SDPT for Quantum QueriesIn this setion we prove a strong diret produt the-orem for quantum algorithms omputing k indepen-dent instanes of OR. Our proof relies on the polyno-mial method of [7℄. The following key lemma is provedin Appendix B.Lemma 5 Suppose p is a single-variate degree-D poly-nomial suh that for some Æ � 0�Æ � p(i) � Æ for all i 2 f0; : : : ; k � 1g,p(k) = �,p(i) 2 [�Æ; 1 + Æ℄ for all i 2 f0; : : : ; Ng.Then for every integerC 2 [1; N � k) and � = 2C=(N �k � C) we have� � Æk2k�1 + a�1 + Æ + Æ(2N)k(k � 1)!� �exp� b(D � k)2(N � k � C) + 2(D � k)p2�+ �2 � k ln(C=k)� ;where a; b are the onstants of Theorem 23 (Appendix B).We will apply this lemma with Æ negligibly small, D =�pkN for small �, and C = ke+1, giving� � exp�(b�2 + 4�e=2+1=2 � 1� )k� � e�k � 2�k:This will imply a strong tradeo� between queries andsuess probability for quantum algorithms that haveto �nd k ones in an N -bit input. A k-threshold algo-rithm with suess probability � is an algorithm on N -bit input x, that outputs 0 with ertainty if jxj < k,and outputs 1 with probability at least � if jxj = k.

Theorem 6 For every  > 0, there exists an � > 0suh that every quantum k-threshold algorithm with T ��pkN queries has suess probability � � 2�k.Proof. Fix  > 0 and onsider a T -query k-thresholdalgorithm. By [7℄, its aeptane probability is an N -variate polynomial of degree D � 2T � 2�pkN andan be symmetrized to a single-variate polynomial pwith the propertiesp(i) = 0 if i 2 f0; : : : ; k � 1gp(k) � �p(i) 2 [0; 1℄ for all i 2 f0; : : : ; NgChoosing � > 0 suÆiently small and Æ = 0, the resultfollows from Lemma 5. �This implies a strong diret produt theorem for kinstanes of the n-bit searh problem:Theorem 7 (SQDPT for Searh) For every  > 0,there exists an � > 0 suh that every quantum algorithmfor Searh(k)n with T � �kpn queries has suess proba-bility � � 2�k.Proof. Set N = kn, �x a  > 0 and a T -query algo-rithm A for Searh(k)n with suess probability �. Nowonsider the following algorithm on N -bit input x:1. Apply a random permutation � to x.2. Run A on �(x).3. Query eah of the k positions that A outputs, re-turn 1 i� at least k=2 of those bits are 1.This uses T + k queries. We will show that it is a k=2-threshold algorithm. If jxj < k=2, it always outputs 0.If jxj = k=2, the probability that � puts all k=2 ones indistint n-bit bloks isNN � N � nN � 1 � � � N � k2nN � k2 �  N � k2nN !k=2 = 2�k=2:Hene our algorithm outputs 1 with probability at least�2�k=2. Choosing � suÆiently small, the previous the-orem implies �2�k=2 � 2�(+1=2)k, hene � � 2�k. �Our bounds are quite preise for � � 1. We anhoose  = 2 ln(1=�) � O(1) and ignore some lower-order terms to get roughly � � �2k . On the otherhand, it is known that Grover's searh algorithm with�pn queries on an n-bit input has suess probabil-ity roughly �2 [10℄. Doing suh a searh on all k in-stanes gives overall suess probability �2k.Theorem 8 (SQDPT for OR) There exist �;  > 0suh that every quantum algorithm for OR(k)n with T ��kpn queries has suess probability � � 2�k.



Proof. An algorithm A for OR(k)n with suess prob-ability � an be used to build an algorithm A0 forSearh(k)n with slightly worse suess probability:1. Run A on the original input and remember whihbloks ontain a 1.2. Run simultaneously (at most k) binary searheson the nonzero bloks. Iterate this s = 2 log(1=�)times. Eah iteration runs A on the parts of thebloks that are known to ontain a 1, halving theremaining instane size eah time.3. Run the exat version of Grover's algorithm oneah of the remaining parts of the instanes tolook for a one there (eah part has size n=2s).This new algorithm A0 uses (s + 1)T + �4 kpn=2s =O(� log(1=�)kpn) queries. With probability at least�s+1, A sueeds in all iterations, in whih ase A0solves Searh(k)n . By Theorem 7, for every 0 > 0 thereis an � > 0 suh that �s+1 � 2�0k. This gives the the-orem with  = 0=(s+ 1). �Choosing parameters arefully, we an show that forevery  < 1 there is an � suh that �kpn queries give� � 2�k. Clearly, � = 2�k is ahievable without anyqueries by random guessing.As in the lassial ase, we also get weaker boundsfor all funtions, using the following results from [7℄:Q2(f) = 
�pbs(f)� for all f and D(f) � bs(f)3 forall total Boolean f .Theorem 9 There exist �;  > 0 suh that for every f ,every quantum algorithm for f (k) with T � �kpbs(f)queries has suess probability � � 2�k.Corollary 10 There exist �;  > 0 suh that for ev-ery total Boolean f , every quantum algorithm for f (k)with T � �kQ2(f)1=6 queries has suess probability� � 2�k.5. SDPT for Quantum CommuniationHere we establish a strong diret produt theoremfor quantum ommuniation, spei�ally for protoolsthat ompute k independent instanes of the Disjoint-ness problem. Our proof relies ruially on the beautifultehnique that Razborov introdued to lower bound thequantum ommuniation omplexity of one instane ofDisjointness [39℄. It allows us to translate a quantumommuniation protool to a single-variate polynomialthat represents, roughly speaking, the protool's aep-tane probability as a funtion of the size of the inter-setion of x and y. The following lemma is impliit inRazborov's paper (see our long version [1℄).

Lemma 11 Consider a Q-qubit quantum om-muniation protool on N-bit inputs x and y,with aeptane probabilities P (x; y). De�neP (i) = Ejxj=jyj=N=4;jx^yj=ij[P (x; y)℄, with expe-tation taken uniformly over all x; y that eah haveweight N=4 and that have intersetion i. For ev-ery d � N=4 there exists a degree-d polynomial q suhthat jP (i)� q(i)j � 2�d=4+2Q for all i 2 f0; : : : ; N=8g.Theorem 12 (SQDPT for Disjointness) Thereexist �;  > 0 suh that every quantum protoolfor DISJ(k)n with Q � �kpn qubits of ommunia-tion has suess probability p � 2�k.Proof (sketh). By doing the same trik with s =2 log(1=�) rounds of binary searh as for Theorem 8, wean tweak a protool for DISJ(k)n to a protool that sat-is�es (with P (i) de�ned as in Lemma 11, N = kn and� = ps+1) P (i) = 0 if i 2 f0; : : : ; k � 1g; P (k) � �;P (i) 2 [0; 1℄ for all i 2 f0; : : : ; Ng. Instead of exatGrover we use an exat version of the O(pn)-qubit Dis-jointness protool of [3℄ (the [13℄-protool would lose alogn-fator). Lemma 11, using d = 12Q, then gives adegree-d polynomial q that di�ers from P by at mostÆ � 2�Q on all i 2 f0; : : : ; N=8g. This Æ is suÆientlysmall to apply Lemma 5, whih in turn upper bounds� and hene p. �6. Time-Spae Tradeo� for QuantumSortingWe will now use our strong diret produt theoremto get near-optimal time-spae tradeo�s for quantumiruits for sorting. This follows Klauk [26℄, who de-sribed an upper bound T 2S = O�(N logN)3� and alower bound TS = 
�N3=2�. In our model, the num-bers a1; : : : ; aN that we want to sort an be aessedby means of queries, and the number of queries lowerbounds the atual time taken by the iruit. The ir-uit has N output gates and in the ourse of its ompu-tation outputs the N numbers in sorted (say, desend-ing) order, with suess probability at least 2=3.Theorem 13 Every bounded-error quantum iruit forsorting N numbers that uses T queries and S qubits ofworkspae satis�es T 2S = 
�N3�.Proof. We \slie" the iruit along the time-axis intoL = T=�pSN slies, eah ontaining T=L = �pSNqueries. Eah suh slie has a number of output gates.Consider any slie. Suppose it ontains output gatesi; i+ 1; : : : ; i+ k � 1, for i � N=2, so it is supposed tooutput the i-th up to i + k � 1-th largest elements ofits input. We want to show that k = O(S). If k � S



then we are done, so assume k > S. We an use theslie as a k-threshold algorithm on N=2 bits, as fol-lows. For an N=2-bit input x, onstrut a sorting in-put by taking i�1 opies of the number 2, the N=2 bitsin x, and N=2� i+ 1 opies of the number 0, and ap-pend their position behind the numbers.Consider the behavior of the sorting iruit on thisinput. The �rst part of the iruit has to output thei� 1 largest numbers, whih all start with 2. We on-dition on the event that the iruit sueeds in this.It then passes on an S-qubit state (possibly mixed) asthe starting state of the partiular slie we are onsid-ering. This slie then outputs the k largest numbers inx with probability at least 2=3. Now, onsider an algo-rithm that runs just this slie, starting with the om-pletely mixed state on S-qubits, and that outputs 1 ifit �nds k numbers starting with 1, and outputs 0 oth-erwise. If jxj < k this new algorithm always outputs0 (note that it an verify �nding a 1 sine its posi-tion is appended), but if jxj = k then it outputs 1with probability at least � � 23 � 2�S, beause the om-pletely mixed state has \overlap" 2�S with the \good"S-qubit state that would have been the starting stateof the slie in the run of the sorting iruit. On theother hand, the slie has only �pSN < �pkN queries,so by hoosing � suÆiently small, Theorem 6 implies� � 2�
(k). Combining our upper and lower bounds on� gives k = O(S). Thus we need L = 
(N=S) slies, soT = L�pSN = 
�N3=2=pS�. �As mentioned, our tradeo� is ahievable up to poly-log fators [26℄. Interestingly, the near-optimal algo-rithm uses only a polylogarithmi number of qubitsand otherwise just lassial memory. For simpliity wehave shown the lower bound for the ase when the out-puts have to be made in their natural ordering only,but we an show the same lower bound for any order-ing of the outputs that does not depend on the inputusing a slightly di�erent proof.7. Time-Spae Tradeo�s for BooleanMatrix ProdutsFirst we give a lower bound on the time-spae trade-o� for Boolean matrix-vetor multipliation on lassi-al mahines. For reasons of spae we omit the proofs inthis setion and the next. They use the same approahas before: slie the iruit into small slies, and use astrong diret produt theorem to show that eah sliean only produe few outputs (hene we need manyslies). Details may be found in our long version [1℄.Theorem 14 There is a matrix A suh that every las-sial bounded-error iruit that omputes the Boolean

matrix-vetor produt Ab with T queries and spae S =o(N= logN) satis�es TS = 
�N2�.The bound is tight if T measures queries to the in-put. An absolutely analogous onstrution an be donein the quantum ase.Theorem 15 There is a matrixA suh that every quan-tum bounded-error iruit that omputes the Booleanmatrix-vetor produt Ab with T queries and spae S =o(N= logN) satis�es T 2S = 
�N3�.This is tight within a log-fator (needed to improve thesuess probability of Grover searh).Theorem 16 Every lassial bounded-error iruit thatomputes the Boolean matrix produt AB with T queriesand spae S satis�es TS = 
�N3�.While this is near-optimal for small S, it is proba-bly not tight for large S, a likely tight tradeo� beingT 2S = 
�N6�. It is also no improvement ompared tothe average-ase bounds of [4℄. The appliation to thequantum ase is analogous.Theorem 17 Every quantum bounded-error ir-uit that omputes the Boolean matrix produt AB withT queries and spae S satis�es T 2S = 
�N5�.If S = O(logN), then N2 appliations of Grover anompute AB with T = O�N2:5 logN�. Hene ourtradeo� is near-optimal for small S. We do not knowwhether it is optimal for large S.8. Quantum Communiation-SpaeTradeo�s for Matrix ProdutsIn this setion we use the strong diret produtresult for quantum ommuniation (Theorem 12) toprove tight ommuniation-spae tradeo�s.Theorem 18 Every quantumbounded-error protool inwhih Alie and Bob have bounded spae S and that om-putes the Booleanmatrix-vetor produt, satis�esC2S =
�N3�.Theorem 19 Every quantumbounded-error protool inwhih Alie and Bob have bounded spae S and thatomputes the Boolean matrix produt, satis�es C2S =
�N5�.Theorem 20 There is a quantum bounded-error pro-tool with spae S that omputes the Boolean produtbetween a matrix and a vetor within ommunia-tion C = O((N3=2 log2N)=pS). There is a quan-tum bounded-error protool with spae S that omputesthe Boolean produt between two matries within om-muniation C = O((N5=2 log2N)=pS).



9. Open ProblemsWe mention some open problems. The �rst is todetermine tight time-spae tradeo�s for Boolean ma-trix produt on both lassial and quantum omput-ers. Seond, regarding ommuniation-spae tradeo�sfor Boolean matrix-vetor and matrix produt, we didnot prove any lassial bounds that were better thanour quantum bounds. Klauk [27℄ reently proved las-sial tradeo�s CS2 = 
�N3� and CS2 = 
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A. Proofs from Setion 3Here we sketh the strong diret produt theorem forlassial randomized algorithms that ompute k inde-pendent instanes of ORn, referring to [1℄ for a more de-tailed proof. By Yao's priniple, it is suÆient to proveit for deterministi algorithms under a �xed hard inputdistribution. Let Sut;�(f) be the suess probability ofthe best algorithm for f under � that queries � t in-put bits. We all an algorithm non-adaptive if, for eahof the k input bloks, the maximum number of queriesin that blok is �xed before the �rst query. By indu-tion, as in [41℄, we an prove:Lemma 21 Let f : f0; 1gn ! f0; 1g and � be an in-put distribution. Every non-adaptive deterministi algo-rithm for f (k) under �k with T � kt queries has suessprobability � � Sut;�(f)k.Remark. A similar statement is not always true foradaptive algorithms. Following [41℄, de�ne h(x) = x1_(x2�: : :�xn). Clearly Su 23n;�(h) = 3=4 for � uniform.By a Cherno� bound, Su 23nk;�k (h(k)) = 1�2�
(k), be-ause approximately half of the bloks an be solved us-ing just 1 query and the unused queries an be used toanswer exatly also the other half of the bloks.However, the SDPT is valid for OR(k)n under �k,where �(0n) = 1=2 and �(ei) = 1=2n for ei an n-bit string that ontains a 1 only at the i-th posi-tion. It is simple to prove that Su�n;�(ORn) = �+12 .Non-adaptive algorithms for OR(k)n under �k with �knqueries thus have � � (�+12 )k = 2� log( 2�+1 )k. We anahieve any  < 1 by hoosing � suÆiently small. Weprove that adaptive algorithms annot be muh better.Without loss of generality, we assume: (1) The adap-tive algorithm is deterministi. (2) Whenever the algo-rithm �nds a 1 in some input blok, it stops queryingthat blok. (3) The algorithm spends the same num-ber of queries in all bloks where it does not �nd a1. This is optimal due to the symmetry between thebloks, and implies that the algorithm spends at leastas many queries in eah \empty" input blok as in eah\non-empty" blok.Lemma 22 If there is an adaptive T -query algorithmA omputing OR(k)n under �k with suess probability �,then there is a non-adaptive 3T -query algorithm A0 om-puting it with suess probability � � 2�
(k).Proof. Let Z be the number of empty bloks. E[Z℄ =k=2 and, by a Cherno� bound, Æ = Pr [Z < k=3℄ =2�
(k). If Z � k=3, then A spends at most 3T=k queriesin eah empty blok. De�ne non-adaptive A0 thatspends 3T=k queries in eah blok. Then A0 queries all



the positions that A queries, and maybe some more.Let us ompare the overall suess probabilities of Aand A0:�A = Pr [Z < k=3℄ � Pr [A sueeds j Z < k=3℄+ Pr [Z � k=3℄ � Pr [A sueeds j Z � k=3℄� Æ � 1 + Pr [Z � k=3℄ � Pr [A0 sueeds j Z � k=3℄� Æ + �A0 :We onlude that �A0 � �A�Æ. (Remark. By replaingthe k=3-bound on Z by a �k-bound for some � > 0, wean obtain arbitrary  < 1 in the exponent Æ = 2�k,while the number of queries of A0 beomes T=�.) �Combining the two lemmas establishes Theorem 1.B. Proofs from Setion 4We use three results about polynomials, also usedin [14℄. The �rst is by Coppersmith and Rivlin [20,p. 980℄ and gives a general bound for polynomialsbounded by 1 at integer points:Theorem 23 (Coppersmith & Rivlin [20℄)Every polynomial p of degree d � n that has abso-lute value jp(i)j � 1 for all integers i 2 [0; n℄, sat-is�es jp(x)j < aebd2=n for all real x 2 [0; n℄, wherea; b > 0 are universal onstants (no expliit val-ues for a and b are given in [20℄).The other two results onern the Chebyshev poly-nomials Td, de�ned as in [40℄:Td(x) = 12 ��x+px2 � 1�d + �x�px2 � 1�d� :Td has degree d and its absolute value jTd(x)j isbounded by 1 if x 2 [�1; 1℄. On the interval [1;1),Td exeeds all others polynomials with those two prop-erties ([40, p.108℄ and [37, Fat 2℄):Theorem 24 If q is a polynomial of degree d suh thatjq(x)j � 1 for all x 2 [�1; 1℄ then jq(x)j � jTd(x)j for allx � 1.Paturi [37, before Fat 2℄ provedLemma 25 (Paturi [37℄) Td(1+�) � e2dp2�+�2 forall � � 0.Proof. For x = 1 + �: Td(x) � (x + px2 � 1)d =(1+�+p2�+ �2)d � (1+2p2�+ �2)d � e2dp2�+�2(using that 1 + z � ez for all real z). �These tools allow us to establish the key lemma.

Proof of Lemma 5. Divide p with remainder byQk�1j=0 (x� j) to obtainp(x) = q(x) k�1Yj=0(x� j) + r(x);where d = deg(q) = D � k and deg(r) � k � 1.We know that r(x) = p(x) 2 [�Æ; Æ℄ for all x 2f0; : : : ; k � 1g. Deompose r as a linear ombinationof polynomials ei, where ei(i) = 1 and ei(x) = 0 forx 2 f0; : : : ; k � 1g � fig:r(x) = k�1Xi=0 p(i)ei(x) = k�1Xi=0 p(i) k�1Yj=0j 6=i x� ji� j :We bound the values of r for all real x 2 [0; N ℄ byjr(x)j � k�1Xi=0 jp(i)ji!(k � 1� i)! k�1Yj=0j 6=i jx� jj� Æ(k � 1)! k�1Xi=0 �k � 1i �Nk � Æ(2N)k(k � 1)! ;jr(k)j � Æk2k�1:This implies the following about the values of q:jq(k)j � (� � Æk2k�1)=k!jq(i)j � (i� k)!i! �1 + Æ + Æ(2N)k(k � 1)!�for i 2 fk; : : : ; NgIn partiular:jq(i)j � C�k �1 + Æ + Æ(2N)k(k � 1)!� = Afor i 2 fk + C; : : : ; NgTheorem 23 implies that there are a; b > 0 suh thatjq(x)j � A � aebd2=(N�k�C) = Bfor all real x 2 [k+C;N ℄. We now divide q by B to nor-malize it, and resale the interval [k + C;N ℄ to [1;�1℄to get a degree-d polynomial t satisfyingjt(x)j � 1 for all x 2 [�1; 1℄t(1 + �) = q(k)=B for � = 2C=(N � k � C)Sine t annot grow faster than the degree-d Cheby-shev polynomial, we gett(1 + �) � Td(1 + �) � e2dp2�+�2 .Combining our upper and lower bounds on t(1 + �):(� � Æk2k�1)=k!C�k �1 + Æ + Æ(2N)k(k�1)! � aebd2=(N�k�C) � e2dp2�+�2 :Rearranging gives the bound. �


