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t. Suppose we have n algorithms, quantum or 
lassi
al, ea
h
omputing some bit-value with bounded error probability. We des
ribea quantum algorithm that uses O(pn) repetitions of the base algo-rithms and with high probability �nds the index of a 1-bit among thesen bits (if there is su
h an index). This shows that it is not ne
essaryto �rst signi�
antly redu
e the error probability in the base algorithmsto O(1=poly(n)) (whi
h would require O(pn log n) repetitions in total).Our te
hnique is a re
ursive interleaving of amplitude ampli�
ation anderror-redu
tion, and may be of more general interest. Essentially, it showsthat quantum amplitude ampli�
ation 
an be made to work also with abounded-error veri�er. As a 
orollary we obtain optimal quantum upperbounds of O(pN) queries for all 
onstant-depth AND-OR trees on Nvariables, improving upon earlier upper bounds of O(pNpolylog(N)).1 Introdu
tionOne of the main su

esses of quantum 
omputing is Grover's algorithm [10, 7℄. It
an sear
h an n-element spa
e in O(pn) steps, whi
h is quadrati
ally faster thanany 
lassi
al algorithm. The algorithm assumes ora
le a

ess to the elements inthe spa
e, meaning that in unit time it 
an de
ide whether the ith elementis a solution to its sear
h problem or not. In some more realisti
 settings we
an eÆ
iently make su
h an ora
le ourselves. For instan
e, if we want to de
idesatis�ability of an m-variable Boolean formula, the sear
h spa
e is the set ofall n = 2m truth assignments, and we 
an eÆ
iently de
ide whether a givenassignment satis�es the formula. However, in these 
ases the de
ision is madewithout any error probability. In this paper we study the 
omplexity of quantumsear
h if we only have bounded-error a

ess to the elements in the spa
e.More pre
isely, suppose that among n Boolean values f1; : : : ; fn we want to�nd a solution (if one exists), i.e., an index j su
h that fj = 1. For ea
h i we have? Supported in part by the Alberta Ingenuity Fund and the Pa
i�
 Institute for theMathemati
al S
ien
es.?? Supported by St. Jerome's University, the Canada Resear
h Chair programme,NSERC (CRO and Dis
overy Grant), CFI, OIT, PREA, ORDCF and MITACS.? ? ? This resear
h was (partially) funded by proje
ts QAIP (IST{1999{11234) and RESQ(IST{2001{37559) of the IST-FET programme of the EC.



at our disposal an algorithm Fi that 
omputes the bit fi with two-sided error: if fiis 1 then the algorithm outputs 1 with probability, say, at least 9=10, and if fi = 0then it outputs 0 with probability at least 9=10. Grover's algorithm is no longerappli
able in this bounded-error setting, at least not dire
tly, be
ause the errorsin ea
h step will qui
kly add up to something un
ontrollably large. A

ordingly,we need to do something di�erent to get a quantum sear
h algorithm that workshere. We will measure the 
omplexity of our quantum sear
h algorithms by thenumber of times they 
all the underlying algorithms Fi. Clearly, the 
(pn) lowerbound for the standard error-less sear
h problem, due to Bennett, Bernstein,Brassard, and Vazirani [4℄, also applies to our more general setting. Our aim isto give a mat
hing upper bound.An obvious but sub-optimal quantum sear
h algorithm is the following. Byrepeating Fi k = O(logn) times and outputting the majority value of the kout
omes, we 
an 
ompute fi with error probability at most 1=100n. If we then
opy the answer to a safe pla
e and reverse the 
omputation to 
lean up (most of)the workspa
e, then we get something that is suÆ
iently \
lose" to perfe
t ora
lea

ess to the fi bits to just treat it as su
h. Now we 
an apply Grover's algorithmon top of this, and be
ause quantum 
omputational errors add linearly [5℄, theoverall di�eren
e with perfe
t ora
le a

ess will be negligibly small. This solvesthe bounded-error quantum sear
h problem using O(pn logn) repetitions of theFi's, whi
h is an O(logn)-fa
tor worse than the lower bound. Below we will referto this algorithm as \the simple sear
h algorithm".A relatively straightforward improvement over the simple sear
h algorithm isthe following. Partition the sear
h spa
e into n= log2 n blo
ks of size log2 n ea
h.Pi
k one su
h blo
k at random.We 
an �nd a potential solution (an index j in the
hosen blo
k su
h that fj = 1, if there is su
h a j) in 
omplexity O(logn log logn)using the simple sear
h algorithm, and then verify that it is indeed 1 with er-ror probability at most 1=n using another O(logn) invo
ations of Fj . ApplyingGrover sear
h on the spa
e of all n= log2 n blo
ks, we obtain an algorithm with
omplexity O(qn= log2 n) � O(logn log logn+ logn) = O(pn log logn).A further improvement 
omes from doing the splitting re
ursively: we 
anuse the improved upper bound to do the 
omputation of the \inner" blo
ks,instead of the simple sear
h algorithm. Using T (n) to denote the 
omplexity onsear
h spa
e of size n, this gives us the re
ursionT (n) � d�T (log2 n)r nlog2 n + logn�for some 
onstant d > 0. This re
ursion resolves to 
omplexity O(pn � 
log� n)for some 
onstant 
 > 0. It is similar to (and inspired by) the 
ommuni
ation
omplexity proto
ol for the disjointness problem of H�yer and de Wolf [11℄.Apart from being rather messy, this improved algorithm is still not optimal.The main result of this paper is to give a relatively 
lean algorithm that uses theoptimal number O(pn) of repetitions to solve the bounded-error sear
h problem.Our algorithm uses a kind of \
arrot-and-sti
k" approa
h that may be of moregeneral interest. Roughly speaking, it starts with a uniform superposition of all



Fi. It then ampli�es all bran
hes of the 
omputation that give answer 1. Thesebran
hes in
lude solutions, but they also in
lude \false positives": bran
hes 
or-responding to the 1=10 error probability of Fi's where fi = 0. We then \pushthese ba
k" by testing whether a 1-bran
h is a real positive or a false one (i.e.,whether fi = 1 or not) and removing most of the false ones. Interleaving theseamplify and push-ba
k steps properly, we 
an amplify the weight of the solutionsto a 
onstant using O(pn) repetitions. At this point we just do a measurement,see a potential solution j, and verify it 
lassi
ally by running Fj a few times.As an appli
ation of our bounded-error quantum sear
h algorithm, in Se
-tion 4 we give optimal quantum algorithms for 
onstant-depth AND-OR trees inthe query 
omplexity setting. For any 
onstant d, we need only O(pN) queriesfor the d-level AND-OR tree, improving upon the earlier O(pN(logN)d�1) algo-rithms of Buhrman, Cleve, and Widgerson [9℄. Mat
hing lower bounds of 
(pN)were already shown for su
h AND-OR trees, using Ambainis' quantum adversarymethod [1, 2℄. Finally, in Se
tion 5 we indi
ate how the ideas presented here 
anbe 
ast more generally in terms of amplitude ampli�
ation.2 PreliminariesHere we brie
y sket
h the basi
s and notation of quantum 
omputation, referringto the book by Nielsen and Chuang [12℄ for more detail. An m-qubit state is alinear 
ombination of all 
lassi
al m-bit statesj�i = Xi2f0;1gm �ijii;where jii denotes the basis state i (a 
lassi
al m-bit string), the amplitude �i isa 
omplex number, and Pi j�ij2 = 1. We view j�i as a 2m-dimensional 
olumnve
tor. A measurement of state j�i will give jii with probability j�ij2, and thestate will then 
ollapse to the observed jii. A non-measuring quantum operation
orresponds to applying a unitary (= linear and norm-preserving) transformationU to the ve
tor of amplitudes. If j�i and j i are quantum states on m and m0qubits, respe
tively, then the two-register state j�i 
 j i = j�ij i 
orrespondsto the 2m+m0-dimensional ve
tor that is the tensor produ
t of j�i and j i.The setting of query 
omplexity is as follows. For input x 2 f0; 1gn, a query
orresponds to the unitary transformation O that maps ji; b; zi ! ji; b � xi; zi.Here i 2 [n℄ and b 2 f0; 1g; the z-part 
orresponds to the workspa
e, whi
his not a�e
ted by the query. A T -query quantum algorithm has the form A =UTOUT�1 � � �OU1OU0, where the Uk are unitary transformations, independentof x. This A depends on x only via the T appli
ations of O. The algorithmstarts in initial all-zero state j0i and its output (whi
h is a random variable) isobtained from observing some dedi
ated part of the �nal superposition Aj0i.



3 Optimal Quantum Algorithm for Bounded-Error Sear
hIn this se
tion we des
ribe our quantum algorithm for bounded-error sear
h.The following two fa
ts generalize, respe
tively, the Grover sear
h and the error-redu
tion used in the algorithms we sket
hed in the introdu
tion.Fa
t 1 (Amplitude ampli
ation [8℄) Let S0 be the unitary that puts a `-' infront of the all-zero state j0i, and S1 be the unitary that puts a `-' in front ofall basis states whose last qubit is j1i. Let Aj0i = sin(�)j�1ij1i + 
os(�)j�0ij0iwhere angle � is su
h that 0 � � � �=2 and sin2(�) equals the probability that ameasurement of the last register of state Aj0i yields a '1'. Set G = �AS0A�1S1.Then GAj0i = sin(3�)j�1ij1i+ 
os(3�)j�0ij0i.Amplitude ampli�
ation is a pro
ess that is used in many quantum algo-rithms to in
rease the su

ess probability. Amplitude ampli�
ation e�e
tivelyimplements a rotation by an angle 2� in a two-dimensional spa
e (a spa
e di�er-ent from the Hilbert spa
e a
ted upon) spanned by j�1ij1i and j�0ij0i. Note thatwe 
an always apply amplitude ampli�
ation regardless of whether the angle �is known to us or not.Fa
t 2 (Error-redu
tion) Suppose Aj0i = ppj�bijbi + p1� pj�1�bij1 � bi,where b 2 f0; 1g and p � 9=10. Then using O(log(1=")) appli
ations of Aand majority-voting, we 
an build a unitary E su
h that Ej0i = pqj bijbi +p1� qj 1�bij1 � bi with q � 1 � ", and j b=1�bi possibly of larger dimensionthan j�b=1�bi (be
ause of extra workspa
e).We will re
ursively interleave these two fa
ts to get a quantum sear
h algo-rithm that sear
hes the spa
e f1; : : : ; fn 2 f0; 1g. We assume ea
h fi is 
omputedby unitary Fi with su

ess probability at least 9=10. Let � = fj : fj = 1g be theset of solutions, and t = j� j its size (whi
h is unknown to our algorithm). Thegoal is to �nd an element in � if t � 1, and to output `no solutions' if t = 0.We will build an algorithm that has a superposition of all j 2 [n℄ in its �rstregister, a growing se
ond register that 
ontains workspa
e and other junk, anda 1-qubit third register indi
ating whether something is deemed a solution ornot. The algorithm will su

essively in
rease the weight of the basis states thatsimultaneously have a solution in the �rst register and a 1 in the third.Consider an algorithm A that runs all Fi on
e in superposition, produ
ingthe state Aj0i, whi
h we rewrite as1pn nXi=1 jii�ppij i;1ij1i+p1� pij i;0ij0i� = sin(�)j�1ij1i+ 
os(�)j�0ij0i;where pi is the probability that Fi outputs 1, the states j i;bi des
ribe theworkspa
e of the Fi, and sin(�)2 =Pni=1 pi � 9t=10n.The idea is to apply a round of amplitude ampli�
ation to A to amplify thej1i-part from sin(�) to sin(3�). This will amplify both the good states jjij1i forj 2 � and the \false positives" jjij1i for j 62 � by a fa
tor of sin(3�)= sin(�) � 3



(here we didn't write the se
ond register). We then apply an error-redu
tion stepto redu
e the amplitude of the false positives, setting \most" of its third registerto 0. These two steps together form a new algorithm that puts almost 3 timesas mu
h amplitude on the solutions as A does, and that puts less amplitude onthe false positives than A. We then repeat the amplify-redu
e steps on this newalgorithm to get an even better algorithm, and so on.Let us be more pre
ise. Our algorithm will 
onsist of a number of rounds. Inround k we will have a unitary Ak that produ
esAkj0i = �kj�kij1i+ �kj� kij1i+q1� �2k � �2kjHkij0i;where �k; �k are non-negative reals, j�ki is a unit ve
tor whose �rst register only
ontains j 2 � , j� ki is a unit ve
tor whose �rst register only 
ontains j 62 � ,and jHki is a unit ve
tor. If we measure the �rst register of the above state, wewill see a solution (i.e. some j 2 � ) with probability at least �2k. A1 is the abovealgorithm A, whi
h runs the Fi in superposition. Initially, �21 � 9t=10n sin
eea
h solution 
ontributes at least 9=10n. We want to make the good amplitude�k grow by a fa
tor of almost 3 in ea
h round.Amplitude ampli�
ation step. For ea
h round k, de�ne �k 2 [0; �=2℄ bysin(�k)2 = �2k + �2k. Applying amplitude ampli�
ation (Gk = �AkS0A�1k S1)gives us the state GkAk j0i, whi
h we may write assin(3�k)sin(�k) �kj�kij1i+ sin(3�k)sin(�k) �kj� kij1i+s1�� sin(3�k)sin(�k) �2 (�2k + �2k)jHkij0i:We applied Ak twi
e and A�1k on
e, so the 
omplexity goes up by a fa
tor of 3.Error-redu
tion step. Conditional on the qubit in the third register being1, the error-redu
tion step Ek now does majority voting on O(k) runs of the Fj(for all j in superposition) to de
ide with error at most 1=2k+5 whether fj = 1.It adds one 0-qubit as the new third register and maps (ignoring its workspa
e,whi
h is added to the se
ond register)Ekjjij1ij0i = ajk jjij1ij1i+q1� a2jk jjij1ij0iEkjjij0ij0i = jjij0ij0iwhere a2jk � 1 � 1=2k+5 if fj = 1 and a2jk � 1=2k+5 if fj = 0. This way, Ekremoves most of the false positives.Putting Ak+1 = EkGkAk and de�ning �k+1, �k+1, j�k+1i, j� k+1i, and jHk+1iappropriately, we now haveAk+1j0i = �k+1j�k+1ij1i+ �k+1j� k+1ij1i+q1� �2k+1 � �2k+1jHk+1ij0i:



Here the se
ond register has grown by the workspa
e used in the error-redu
tionstep Ek, as well as by the qubit that previously was the third register. The goodamplitude has grown in the pro
ess:�k+1 � �k sin(3�k)sin(�k) q1� 1=2k+5:Sin
e x� x3=6 � sin(x) � x, we havesin(3�k)sin(�k) � 3� 9�2k=2:A

ordingly, as long as �k is small, �k will grow by a fa
tor of almost 3 in ea
hround. On the other hand, the weight of the false positives goes down rapidly:�k+1 � �k sin(3�k)sin(�k) 1p2k+5 :We now analyze the number m of rounds that we need to make the good am-plitude large. In general, we have sin(�k)2 = �2k + �2k , hen
e �2k � 2(�2k + �2k) forthe domain we are interested in. Here �2k � 9k�1�21 and �2k � 110 (9=26)k�1. Notem�1Xk=1 �2k � 2m�1Xk=1 �2k + �2k� 2m�1Xk=1 9k�1�21 + 2m�1Xk=1 110(9=26)k�1� 2 � 9m�1�21 + 1=4:Therefore, m rounds of the above pro
ess ampli�es the good amplitude �k to�m � �1 m�1Yk=1 sin(3�k)sin(�k) q1� 1=2k+5� �1 m�1Yk=1 �3� 9�2k=2� �1� 1=2k+5�= �13m�1 m�1Yk=1 �1� 3�2k=2� �1� 1=2k+5�� �13m�1 1� 32 m�1Xk=1 �2k � m�1Xk=1 12k+5!� �13m�1�1� 32(2 � 9m�1�21 + 1=4)� 1=16�� �13m�1 �1=2� 3 � 9m�1�21� :



In parti
ular, whenever the (unknown) number t of solutions lies in the interval[n=9m+1; n=9m℄, equivalently 9m 2 [n=9t; n=t℄, then we have13mp10 �r 9t10n � �1 �r tn � 13m :This implies �m � 0:04;so the probability of seeing a solution after m rounds is at least 0:0016. Byrepeating this 
lassi
ally a 
onstant number of times, say 1000 times, we 
anbring the su

ess probability 
lose to 1 (note to avoid 
onfusion: these 1000repetitions are not part of the de�nition of Am itself).The 
omplexity Ck of the operation Ak, in terms of number of repetitions ofthe Fi algorithms, is given by the re
ursionC1 = 1 and Ck+1 = 3Ck +O(k);where the 3Ck is the 
ost of amplitude ampli�
ation and O(k) is the 
ost oferror-redu
tion. This implies Cm = O(Pm�1k=1 k � 3m�k�1) = O(3m):We now give the full algorithm when the number of solutions is unknown:Algorithm: Quantum sear
h on bounded-error inputs1. for m = 0 to dlog9(n)e � 1 do:(a) run Am 1000 times(b) verify the 1000 measurement results, ea
h by O(logn) runs of the 
orre-sponding Fj(
) if a solution has been found, then output a solution and stop2. Output `no solutions'This �nds a solution with high probability if one exists. The 
omplexity isdlog9(n)e�1Xm=0 1000 �O(3m) + 1000 � O(logn) = O(3log9(n)) = O(pn):If we know that there is at least one solution but we don't know how many thereare, then, using a modi�
ation of our algorithm as in [7℄, we 
an �nd a solutionusing an expe
ted number of repetitions in O(pN=t), where t is the (unknown)number of solutions. This is quadrati
ally faster than 
lassi
ally, and optimal forany quantum algorithm.4 Optimal Upper Bounds for AND-OR TreesA d-level AND-OR tree on N Boolean variables is a Boolean fun
tion that isdes
ribed by a depth-d�1 tree with interleaved ORs and ANDs on the nodes and



the N input variables as leaves. More pre
isely, a 0-level AND-OR tree is just aninput variable, and if f1; : : : ; fn all are d-level AND-OR trees onm variables, ea
hwith an AND (resp. OR) as root, then OR(f1; : : : ; fn) (resp. AND) is a (d+1)-level AND-OR tree onN = nm variables. AND-OR trees 
an be 
onverted easilyinto OR-AND trees and vi
e versa using De Morgan's laws, if we allow negationsto be added to the tree.Consider the two-level tree on N = n2 variables with an OR as root, ANDsas its 
hildren, and fanout n in both levels. Ea
h AND-subtree 
an be quantum
omputed by Grover's algorithm with one-sided error using O(pn) queries (welet Grover sear
h for a `0', and output 1 if we don't �nd any), and the value ofthe OR-AND tree is just the OR of those n values. A

ordingly, the 
onstru
tionof the previous se
tion gives an O(pn � pn) = O(pN) algorithm with two-sidederror. This is optimal up to a 
onstant fa
tor [1℄.More generally, for d-level AND-OR trees we 
an apply the above algorithmre
ursively to obtain an algorithm with O(
d�1pN) queries. Here 
 is the 
on-stant hidden in the O(�) of the result of the previous se
tion. For ea
h �xedd, this 
omplexity is O(pN), whi
h is optimal up to a 
onstant fa
tor [2℄. Itimproves upon the O(pN(logN)d�1) algorithm given in [9℄.Our query 
omplexity upper bound also implies that the minimal degreeamong N -variate polynomials approximating AND-OR is O(pN) [3℄. Whetherthis upper bound on the degree is optimal remains open. The best known lowerbound for the 2-level 
ase is 
(N1=4plogN) [13℄.5 Amplitude Ampli�
ation with Imperfe
t Veri�erIn this se
tion we view our 
onstru
tion in a more general light.Suppose we are given some 
lassi
al randomized algorithm A that su

eedsin solving some problem with probability p. In addition, we are given a Booleanfun
tion � that takes as input an output from algorithm A, and outputs whetherit is a solution or not. Then, we may �nd a solution to our problem by repetition.We �rst apply algorithm A, obtaining some 
andidate solution, whi
h we thengive as input to the veri�er �. If � outputs that the 
andidate indeed is a solution,we output it and stop, and otherwise we repeat the pro
ess by reapplying A.The probability that this pro
ess terminates by outputting a solution within the�rst �( 1p ) iterations of the loop, is lower bounded by a 
onstant.A quantum analogue of boosting the probability of su

ess is to boost theamplitude of being in a 
ertain subspa
e of a Hilbert spa
e. Thus far, amplitudeampli�
ation [6℄ has assumed that we are given a perfe
t veri�er �: whenever a
andidate solution is found, we 
an determine with 
ertainty whether it is a solu-tion or not. Formally, we model this by letting � be 
omputed by a deterministi

lassi
al subroutine or an exa
t quantum subroutine.The main result of this paper may be viewed as an adaptation of amplitudeampli�
ation to the situation where the veri�er is not perfe
t, but sometimesmakes mistakes. Instead of a deterministi
 subroutine for 
omputing �, we are



given a bounded-error randomized subroutine, and instead of an exa
t quan-tum subroutine, we are given a bounded-error quantum subroutine. Previously,the only known te
hnique for handling su
h 
ases has been by straightforwardsimulation of a perfe
t veri�er: 
onstru
t a subroutine for 
omputing � with er-ror 12k by repeating a given bounded-error subroutine of order �(k) times andthen use majority voting. Using su
h dire
t simulations, we may 
onstru
t goodbut sub-optimal quantum algorithms, like the O(pn logn) query algorithm forquantum sear
h of the introdu
tion. Here, we have introdu
ed a modi�
ation ofthe amplitude ampli�
ation pro
ess that allows us to eÆ
iently deal with im-perfe
t veri�ers. Essentially, our result says that imperfe
t veri�ers are as goodas perfe
t veri�ers (up to a 
onstant multipli
ative fa
tor in the 
omplexity).A
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