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2 � R. Beals, H. Buhrman, R. Cleve, M. Mosa, R. de WolfWe examine the number of queries to input variables that a quantum algorithm requires to om-pute Boolean funtions on f0; 1gN in the blak-box model. We show that the exponential quantumspeed-up obtained for partial funtions (i.e., problems involving a promise on the input) by Deutshand Jozsa, Simon, and Shor annot be obtained for any total funtion: if a quantum algorithmomputes some total Boolean funtion f with small error probability using T blak-box queries,then there is a lassial deterministi algorithm that omputes f exatly with O(T 6) queries. Wealso give asymptotially tight haraterizations of T for all symmetri f in the exat, zero-error,and bounded-error settings. Finally, we give new preise bounds for AND, OR, and PARITY. Ourresults are a quantum extension of the so-alled polynomial method, whih has been suessfullyapplied in lassial omplexity theory, and also a quantum extension of results by Nisan about apolynomial relationship between randomized and deterministi deision tree omplexity.Categories and Subjet Desriptors: F.1.1 [Computation by Abstrat Devies℄: Models ofComputation; F.2 [Theory of Computation℄: Analysis of Algorithms and Problem ComplexityGeneral Terms: Theory, Algorithms, PerformaneAdditional Key Words and Phrases: Quantum omputing, query omplexity, blak-box model,lower bounds, polynomial method1. INTRODUCTIONThe blak-box model of omputation arises when one is given a blak-box ontainingan N -tuple of Boolean variables X = (x0; x1; : : : ; xN�1). The box is equipped tooutput the bit xi on input i. We wish to determine some property of X , aessingthe xi only through the blak-box. Suh a blak-box aess is alled a query. Aproperty of X is any Boolean funtion that depends on X , i.e., a property is afuntion f : f0; 1gN ! f0; 1g. We want to ompute suh properties using as fewqueries as possible. For lassial algorithms, this optimal number of queries isknown as the deision tree omplexity of f .Consider, for example, the ase where the goal is to determine whether or notX ontains at least one 1, so we want to ompute the property ORN (X) =x0 _ : : : _ xN�1. It is well known that the number of queries required to om-pute ORN by any lassial (deterministi or probabilisti) algorithm is �(N).Grover [Grover 1996℄ disovered a remarkable quantum algorithm that an be usedto ompute ORN with small error probability using only O(pN) queries. His algo-rithm makes essential use of the fat that a quantum algorithm an apply a queryto a superposition of di�erent i, thereby aessing di�erent input bits xi at thesame time, eah with some amplitude. This upper bound of O(pN) queries wasshown to be asymptotially optimal [Bennett et al. 1997; Boyer et al. 1998; Zalka1999℄ (the �rst version of [Bennett et al. 1997℄ in fat appeared before Grover'salgorithm).Most other existing quantum algorithms an be naturally expressed in the blak-box model. For example, in the ase of Simon's problem [Simon 1997℄, one is givena funtion ~X : f0; 1gn ! f0; 1gn satisfying the promise that there is an s 2 f0; 1gnsuh that ~X(i) = ~X(j) i� i = j � s, where � denotes bitwise exlusive-or (additionmod 2). The goal is to determine whether s = 0 or not. Simon's quantum algorithmyields an exponential speed-up over lassial algorithms: it requires an expeted



Quantum Lower Bounds by Polynomials � 3number of O(n) appliations of ~X, whereas every lassial randomized algorithmfor the same problem must make 
(p2n) queries. Note that the funtion ~X anbe viewed as a blak-box X = (x0; : : : ; xN�1) of N = n2n bits, and that an ~X-appliation an be simulated by n queries to X . Thus we see that Simon's problem�ts squarely in the blak-box setting, and exhibits an exponential quantum-lassialseparation for this promise-problem. The promise means that Simon's problemf : f0; 1gN ! f0; 1g is partial ; it is not de�ned on all X 2 f0; 1gN but only on Xthat orrespond to an ~X satisfying the promise. (In the previous example of ORN ,the funtion is total ; however, the quantum speed-up is only quadrati instead ofexponential.) Something similar holds for the order-�nding problem, whih is theore of Shor's eÆient quantum fatoring algorithm [Shor 1997℄. In this ase thepromise is the periodiity of a ertain funtion derived from the number that wewant to fator (see [Cleve 2000℄ for the exponential lassial lower bound for order-�nding). Most other quantum algorithms are naturally expressed in the blak-boxmodel as well, see e.g. [Deutsh and Jozsa 1992; Boneh and Lipton 1995; Kitaev1995; Boyer et al. 1998; Brassard and H�yer 1997; Brassard et al. 1997; H�yer1999; Mosa and Ekert 1998; Cleve et al. 1998; Brassard et al. 2000; Grover 1998;Buhrman et al. 1998; Dam 1998; Farhi et al. 1999b; H�yer et al. 2001; Buhrmanet al. 2001; Dam and Hallgren 2000℄.Of ourse, upper bounds in the blak-box model immediately yield upper boundsfor the iruit desription model in whih the funtion X is suintly desribed asa (logN)O(1)-sized iruit omputing xi from i. On the other hand, lower boundsin the blak-box model do not imply lower bounds in the iruit model, thoughthey an provide useful guidane, indiating what ertain algorithmi approahesare apable of aomplishing. It is noteworthy that, at present, there is no knownalgorithm for omputing ORN (i.e., satis�ability of a logN -variable propositionalformula) in the iruit model that is signi�antly more eÆient than using the iruitsolely to make queries. Some better algorithms are known for k-SAT [Sh�oning1999℄ but not for satis�ability in general (though proving that no better algorithmexists is likely to be diÆult, as it would imply P 6= NP ).It should also be noted that the blak-box omplexity of a funtion only on-siders the number of queries; it does not apture the omplexity of the auxiliaryomputational steps that have to be performed in addition to the queries. In asessuh as the omputation of OR, PARITY, MAJORITY, this auxiliary work is notsigni�antly larger than the number of queries; however, in some ases it may bemuh larger. For example, onsider the ase of fatoring N -bit integers. The bestknown algorithms for this involve �(N) queries to determine the integer, followedby 2N
(1) operations in the lassial ase but only N2(logN)O(1) operations in thequantum ase [Shor 1997℄. Thus, the number of queries seems not to be of primaryimportane in the ase of fatoring. However, the problem that Shor's quantumalgorithm atually solves is the order-�nding problem, whih an be expressed inthe blak-box model as mentioned above.In this paper, we analyze the blak-box omplexity of several funtions and lassesof funtions in the quantum omputation setting, establishing strong lower bounds.In partiular, we show that the kind of exponential quantum speed-up that algo-rithms like Simon's ahieve for partial funtions annot be obtained by any quantumalgorithm for any total funtion: at most a polynomial speed-up is possible. We



4 � R. Beals, H. Buhrman, R. Cleve, M. Mosa, R. de Wolfalso tightly haraterize the quantum blak-box omplexity of all symmetri fun-tions, and obtain exat bounds for funtions suh as AND, OR, PARITY, andMAJORITY for various error models: exat, zero-error, bounded-error.An important ingredient of our approah is a redution that translates quantumalgorithms that make T queries into multilinear polynomials of degree at most 2Tover the N variables. This is a quantum extension of the so-alled polynomialmethod, whih has been suessfully applied in lassial omplexity theory (seee.g. [Nisan and Szegedy 1994; Beigel 1993℄). Also, our polynomial relationshipbetween the quantum and the lassial omplexity is analogous to earlier resultsby Nisan [Nisan 1991℄, who proved a polynomial relationship between randomizedand deterministi deision tree omplexity.The only quantum blak-box lower bounds known prior to this work were Jozsa'slimitations on the power of 1-query algorithms [Jozsa 1991℄, the searh-type boundsof [Bennett et al. 1997; Boyer et al. 1998; Zalka 1999℄, and some bounds derivedfrom ommuniation omplexity [Buhrman et al. 1998℄. The tight lower bound forPARITY of [Farhi et al. 1998℄ appeared independently and around the same time asa �rst version of this work [Beals et al. 1998℄, but their proof tehnique does not seemto generalize easily beyond PARITY. After the �rst appearane of this work, ourpolynomial approah has been used to derive many other quantum lower bounds,see e.g. [Nayak and Wu 1999; Buhrman et al. 1999; Farhi et al. 1999a; Ambainis1999; Wolf 2000; Servedio and Gortler 2000℄. Reently an alternative quantumlower bound method appeared [Ambainis 2000℄ whih yields good bounds in aseswhere polynomial degrees are hard to determine (for instane for AND-OR trees),but it seems, on the other hand, that some bounds obtainable using the polynomialmethod annot easily be obtained using this new method (see, e.g., [Buhrman et al.1999℄).2. SUMMARY OF RESULTSWe onsider three di�erent settings for omputing f on f0; 1gN in the blak-boxmodel. In the exat setting, an algorithm is required to return f(X) with ertaintyfor every X . In the zero-error setting, for every X , an algorithm may return\inonlusive" with probability at most 1=2, but if it returns an answer, this mustbe the orret value of f(X) (algorithms in this setting are sometimes alled LasVegas algorithms). Finally, in the two-sided bounded-error setting, for every X , analgorithmmust orretly return the answer with probability at least 2=3 (algorithmsin this setting are sometimes alled Monte Carlo algorithms; the 2=3 is arbitraryand may be replaed by any 1=2 + " for �xed onstant 0 < " < 1=2).Our main results are:1(1) In the blak-box model, the quantum speed-up for any total funtion annot bemore than by a sixth-root. More spei�ally, if a quantum algorithm omputes1All our results remain valid if we onsider a ontrolled blak-box, where the �rst bit of thestate indiates whether the blak-box is to be applied or not. (Thus suh a blak-box wouldmap j0; i; b; zi to j0; i; b; zi and j1; i; b; zi to j1; i; b� xi; zi.) Also, our results remain valid if weonsider mixed rather than only pure states. In partiular, allowing intermediate measurementsin a quantum query algorithm does not give more power, sine all measurements an be delayeduntil the end of the omputation at the ost of some additional memory.



Quantum Lower Bounds by Polynomials � 5f with bounded-error probability by making T queries, then there is a lassialdeterministi algorithm that omputes f exatly making at most O(T 6) queries.If f is monotone then the lassial algorithm needs at most O(T 4) queries, andif f is symmetri then it needs at most O(T 2) queries. If the quantum algorithmis exat, then the lassial algorithm needs O(T 4) queries.As a by-produt, we also improve the polynomial relation between the deisiontree omplexity D(f) and the approximate degree gdeg(f) of [Nisan and Szegedy1994℄ from D(f) 2 O(gdeg(f)8) to D(f) 2 O(gdeg(f)6).(2) We tightly haraterize the blak-box omplexity of all non-onstant symmet-ri funtions as follows. In the exat or zero-error settings �(N) queries areneessary and suÆient, and in the bounded-error setting �(pN(N � �(f)))queries are neessary and suÆient, where �(f) = minfj2k � N + 1j : f ipsvalue if the Hamming weight of the input hanges from k to k + 1g (this �(f)is a number that is low if f ips for inputs with Hamming weight lose toN=2 [Paturi 1992℄). This should be ompared with the lassial bounded-errorquery omplexity of suh funtions, whih is �(N). Thus, �(f) haraterizesthe speed-up that quantum algorithms give for all total funtions.An interesting example is the THRESHOLDM funtion, whih is 1 i� its inputX ontains at least M 1s. This has query omplexity �(pM(N �M + 1)).(3) For OR, AND, PARITY, MAJORITY, we obtain the bounds in the table below(all given numbers are both neessary and suÆient). These results are all new,exat zero-error bounded-errorORN , ANDN N N �(pN)PARITYN N=2 N=2 N=2MAJN �(N) �(N) �(N)Table 1. Some quantum omplexitieswith the exeption of the �(pN)-bounds for OR and AND in the bounded-errorsetting, whih appear in [Bennett et al. 1997; Boyer et al. 1998; Zalka 1999℄.The new bounds improve by polylog(N) fators previous lower bound resultsfrom [Buhrman et al. 1998℄, whih were obtained through a redution fromommuniation omplexity. The new bounds for PARITY were independentlyobtained by Farhi et al. [Farhi et al. 1998℄.Note that lower bounds for OR imply lower bounds for the searh problem,where we want to �nd an i suh that xi = 1, if suh an i exists. Thus exator zero-error quantum searh requires N queries, in ontrast to �(pN) queriesfor the bounded-error ase. (On the other hand, if we are promised in advanethat the number of solutions is t, then a solution an be found with probability1 using O(pN=t) queries [Brassard et al. 2000℄.)3. SOME DEFINITIONSOur main goal in this paper is to �nd the number of queries a quantum algorithmneeds to ompute some Boolean funtion by relating suh algorithms to polyno-mials. In this setion we give some basi de�nitions and properties of multilinearpolynomials and Boolean funtions, and desribe our quantum setting.



6 � R. Beals, H. Buhrman, R. Cleve, M. Mosa, R. de Wolf3.1 Boolean Funtions and PolynomialsWe assume the following setting, mainly adapted from [Nisan and Szegedy 1994℄.We have a vetor of N Boolean variables X = (x0; : : : ; xN�1), and we want toompute a Boolean funtion f : f0; 1gN ! f0; 1g of X . Unless expliitly statedotherwise, f will always be total. The Hamming weight (number of 1s) of X isdenoted by jX j. For example, ORN (X) = 1 i� jX j > 0, ANDN (X) = 1 i� jX j = N ,PARITYN (X) = 1 i� jX j is odd, and MAJN (X) = 1 i� jX j > N=2.We an represent Boolean funtions using N -variate polynomials p : RN ! R.Sine xm = x whenever x 2 f0; 1g, we an restrit attention to multilinear p. Ifp(X) = f(X) for all X 2 f0; 1gN , then we say that p represents f . It is easy to seethat every f is represented by a unique multilinear polynomial p of degree � N . Weuse deg(f) to denote the degree of this p. If jp(X)�f(X)j � 1=3 for allX 2 f0; 1gN ,we say p approximates f , and gdeg(f) denotes the degree of a minimum-degree pthat approximates f . For example, x0x1 : : : xN�1 is a multilinear polynomial ofdegree N that represents ANDN . Similarly, 1 � (1 � x0)(1 � x1) : : : (1 � xN�1)represents ORN . The polynomial 13x0 + 13x1 approximates but does not representAND2.Nisan and Szegedy [Nisan and Szegedy 1994, Theorem 2.1℄ proved a general lowerbound on the degree of any Boolean funtion that depends on N variables:Theorem 3.1 (Nisan & Szegedy). If f is a Boolean funtion that depends onN variables, then deg(f) � logN �O(log logN).Let p : RN ! R be a polynomial. If � is some permutation on f0; : : : ; N � 1g,and X = (x0; : : : ; xN�1), then �(X) = (x�(0); : : : ; x�(N�1)). Let SN be the set ofall N ! permutations. The symmetrization psym of p averages over all permutationsof the input, and is de�ned as:psym(X) = P�2SN p(�(X))N ! :Note that psym is a polynomial of degree at most the degree of p. Symmetrizingmay atually lower the degree: if p = x0 � x1, then psym = 0. The followinglemma, originally due to [Minsky and Papert 1968℄, allows us to redue an N -variate polynomial to a single-variate one.Lemma 3.2 (Minsky & Papert). If p : Rn ! R is a multilinear polynomial,then there exists a polynomial q : R ! R, of degree at most the degree of p, suhthat psym(X) = q(jX j) for all X 2 f0; 1gN .Proof. Let d be the degree of psym, whih is at most the degree of p. Let Vjdenote the sum of all �Nj � produts of j di�erent variables, so V1 = x0+ : : :+xN�1,V2 = x0x1 + x0x2 + : : : + xN�1xN�2, et. Sine psym is symmetrial, it an bewritten as psym(X) = a0 + a1V1 + a2V2 + : : :+ adVd;for some ai 2 R. Note that Vj assumes value �jXjj � = jX j(jX j�1)(jX j�2) : : : (jX j�j+1)=j! on X , whih is a polynomial of degree j of jX j. Therefore the single-variate



Quantum Lower Bounds by Polynomials � 7polynomial q de�ned byq(jX j) = a0 + a1�jX j1 �+ a2�jX j2 �+ : : :+ ad�jX jd �satis�es the lemma.A Boolean funtion f is symmetri if permuting the input does not hange thefuntion value (i.e., f(X) only depends on jX j). Paturi has proved a powerfultheorem that haraterizesgdeg(f) for symmetri f . For suh f , let fk = f(X) forjX j = k, and de�ne�(f) = minfj2k �N + 1j : fk 6= fk+1 and 0 � k � N � 1g:�(f) is low if fk \jumps" near the middle (i.e., for some k � N=2). Now [Paturi1992, Theorem 1℄ gives:Theorem 3.3 (Paturi). If f is a non-onstant symmetri Boolean funtion onf0; 1gN , then gdeg(f) 2 �(pN(N � �(f))).For funtions like ORN and ANDN , we have �(f) = N � 1 and hene gdeg(f) 2�(pN). For PARITYN (whih is 1 i� jX j is odd) and MAJN (whih is 1 i�jX j > N=2), we have �(f) = 1 if N is even and �(f) = 0 if N is odd, henegdeg(f) 2 �(N) for those funtions.3.2 The Framework of Quantum NetworksOur goal is to ompute some Boolean funtion f of X = (x0; : : : ; xN�1), where Xis given as a blak-box: alling the blak-box on i returns the value of xi. We wantto use as few queries as possible.A lassial algorithm that omputes f by using (adaptive) blak-box queries toX is alled a deision tree, sine it an be pitured as a binary tree where eah nodeis a query, eah node has the two outomes of the query as hildren, and the leavesgive answer f(X) = 0 or f(X) = 1. The ost of suh an algorithm is the numberof queries made on the worst-ase input X , i.e., the depth of the tree. The deisiontree omplexity D(f) of f is the ost of the best deision tree that omputes f .Similarly we an de�ne R(f) as the worst-ase number of queries for randomizedalgorithms that ompute f(X) with error probability � 1=3 for all X . By a well-known result of Nisan, the best randomized algorithm an be at most polynomiallymore eÆient than the best deterministi algorithm: D(f) 2 O(R(f)3) for all totalf [Nisan 1991, Theorem 4℄.For a general introdution to quantum omputing we refer to [Nielsen and Chuang2000℄. A quantum network (also alled quantum algorithm) with T queries is thequantum analogue to a lassial deision tree with T queries, where queries andother operations an now be made in quantum superposition. Suh a network anbe represented as a sequene of unitary transformations:U0; O1; U1; O2; : : : ; UT�1; OT ; UT ;where the Ui are arbitrary unitary transformations, and the Oj are unitary trans-formations that orrespond to queries to X . The omputation ends with somemeasurement or observation of the �nal state. We assume eah transformation



8 � R. Beals, H. Buhrman, R. Cleve, M. Mosa, R. de Wolfats on m qubits and eah qubit has basis states j0i and j1i, so there are 2m ba-sis states for eah stage of the omputation. It will be onvenient to representeah basis state as a binary string of length m or as the orresponding naturalnumber, so we have basis states j0i; j1i; j2i; : : : ; j2m � 1i. Let K be the index setf0; 1; 2; : : : ; 2m � 1g. With some abuse of notation, we will sometimes identify aset of numbers with the orresponding set of basis states. Every state j�i of thenetwork an be uniquely written as j�i =Pk2K �kjki, where the �k are omplexnumbers suh that Pk2K j�kj2 = 1. When j�i is measured in the above basis, theprobability of observing jki is j�kj2. Sine we want to ompute a funtion of X ,whih is given as a blak-box, the initial state of the network is not very importantand we will disregard it hereafter; we may assume the initial state to be j0i always.The queries are implemented using the unitary transformations Oj in the follow-ing standard way. The transformation Oj only a�ets the leftmost part of a basisstate: it maps basis state ji; b; zi to ji; b� xi; zi (� denotes XOR). Here i has lengthdlogNe bits, b is one bit, and z is an arbitrary string of m�dlogNe� 1 bits. Notethat the Oj are all equal.How does a quantum network ompute a Boolean funtion f of X? Let usdesignate the rightmost qubit of the �nal state of the network as the output bit.More preisely, the output of the omputation is de�ned to be the value we observeif we measure the rightmost qubit of the �nal state. If this output equals f(X) withertainty, for every X , then the network omputes f exatly. If the output equalsf(X) with probability at least 2=3, for every X , then the network omputes f withbounded error probability at most 1=3. To de�ne the zero-error setting, the outputis obtained by observing the two rightmost qubits of the �nal state. If the �rstof these qubits is 0, the network laims ignorane (\inonlusive"), otherwise theseond qubit should ontain f(X) with ertainty. For every X , the probability ofgetting \inonlusive" should be less than 1=2. We use QE(f), Q0(f) and Q2(f) todenote the minimum number of queries required by a quantum network to omputef in the exat, zero-error and bounded-error settings, respetively. It an be shownthat the quantum setting generalizes the lassial setting, hene Q2(f) � Q0(f) �QE(f) � D(f) � N and Q2(f) � R(f) � D(f) � N .4. GENERAL LOWER BOUNDS ON THE NUMBER OF QUERIESIn this setion we will provide some general lower bounds on the number of queriesrequired to ompute a Boolean funtion f on a quantum network, either exatly orwith zero- or bounded-error probability.4.1 The Aeptane Probability is a PolynomialHere we prove that the aeptane probability of a T -query quantum network anbe written as a multilinear N -variate polynomial P (X) of degree at most 2T . Thenext lemmas relate quantum networks to polynomials; they are the key to most ofour results.Lemma 4.1. Let N be a quantum network that makes T queries to a blak-box X.Then there exist omplex-valued N-variate multilinear polynomials p0; : : : ; p2m�1,



Quantum Lower Bounds by Polynomials � 9eah of degree at most T , suh that the �nal state of the network is the superpositionXk2K pk(X)jki;for any blak-box X.Proof. Let j�ii be the state of the network (using some blak-box X) justbefore the ith query. Note that j�i+1i = UiOij�ii. The amplitudes in j�0i dependon the initial state and on U0 but not on X , so they are polynomials of X of degree0. A query maps basis state ji; b; zi to ji; b� xi; zi. Hene if the amplitude ofji; 0; zi in j�0i is � and the amplitude of ji; 1; zi is �, then the amplitude of ji; 0; ziafter the query beomes (1 � xi)� + xi� and the amplitude of ji; 1; zi beomesxi� + (1� xi)�, whih are polynomials of degree 1. (In general, if the amplitudesbefore a query are polynomials of degree � j, then the amplitudes after the querywill be polynomials of degree � j +1.) Between the �rst and the seond query liesthe unitary transformation U1. However, the amplitudes after applying U1 are justlinear ombinations of the amplitudes before applying U1, so the amplitudes in j�1iare polynomials of degree at most 1. Continuing in this manner, the amplitudesof the �nal states are found to be polynomials of degree at most T . We an makethese polynomials multilinear without a�eting their values on X 2 f0; 1gN , byreplaing all xmi by xi.Note that we have not used the assumption that the Uj are unitary, but onlytheir linearity. The next lemma is also impliit in the ombination of some proofsin [Fenner et al. 1993; Fortnow and Rogers 1999℄.Lemma 4.2. Let N be a quantum network that makes T queries to a blak-box X, and B be a set of basis states. Then there exists a real-valued multilinearpolynomial P (X) of degree at most 2T , whih equals the probability that observingthe �nal state of the network with blak-box X yields a state from B.Proof. By the previous lemma, we an write the �nal state of the network asXk2K pk(X)jki;for any X , where the pk are omplex-valued polynomials of degree � T . Theprobability of observing a state in B isP (X) =Xk2B jpk(X)j2:If we split pk into its real and imaginary parts as pk(X) = prk(X) + i � pik(X),where prk and pik are real-valued polynomials of degree � T , then jpk(X)j2 =(prk(X))2 + (pik(X))2, whih is a real-valued polynomial of degree at most 2T .Hene P is also a real-valued polynomial of degree at most 2T , whih we an makemultilinear without a�eting its values on X 2 f0; 1gN .Letting B be the set of states that have 1 as rightmost bit, it follows that wean write the aeptane probability of a T -query network (i.e., the probability ofgetting output 1) as a polynomial P (X) of degree � 2T .



10 � R. Beals, H. Buhrman, R. Cleve, M. Mosa, R. de Wolf4.2 Lower Bounds for Exat and Zero-Error Quantum ComputationConsider a quantum network that omputes f exatly using T = QE(f) queries.Its aeptane probability P (X) is a polynomial of degree � 2T whih equals f(X)for all X . But then P (X) must have degree deg(f), whih implies the followinglower bound result for QE(f):Theorem 4.3. If f is a Boolean funtion, then QE(f) � deg(f)=2.Combining this with Theorem 3.1, we obtain a weak but general lower bound:Corollary 4.4. If f depends on N variables, then QE(f) � logN2 �O(log logN).For symmetri f we an prove a muh stronger bound. Firstly for the zero-errorsetting:Theorem 4.5. If f is non-onstant and symmetri, then Q0(f) � (N + 1)=4.Proof. We assume f(X) = 0 for at least (N +1)=2 di�erent Hamming weightsof X ; the proof is similar if f(X) = 1 for at least (N + 1)=2 di�erent Hammingweights. Consider a network that uses T = Q0(f) queries to ompute f with zero-error. Let B be the set of basis states that have 11 as rightmost bits. These arethe basis states orresponding to output 1. By Lemma 4.2, there is a real-valuedmultilinear polynomial P of degree � 2T , suh that for all X , P (X) equals theprobability that the output of the network is 11 (i.e., that the network answers 1).Sine the network omputes f with zero-error and f is non-onstant, P (X) is non-onstant and equals 0 on at least (N+1)=2 di�erent Hamming weights (namely theHamming weights for whih f(X) = 0). Let q be the single-variate polynomial ofdegree � 2T obtained from symmetrizing P (Lemma 3.2). This q is non-onstantand has at least (N + 1)=2 zeroes, hene degree at least (N + 1)=2, and the resultfollows.Thus funtions like ORN , ANDN , PARITYN , threshold funtions et., all requireat least (N +1)=4 queries to be omputed exatly or with zero-error on a quantumnetwork. Sine N queries always suÆe, even lassially, we have QE(f) 2 �(N)and Q0(f) 2 �(N) for all non-onstant symmetri f .Seondly, for the exat setting we an prove slightly stronger lower bounds usingresults by Von zur Gathen and Rohe [Gathen and Rohe 1997, Theorems 2.6and 2.8℄:Theorem 4.6 (Von zur Gathen & Rohe). If f is non-onstant and sym-metri, then deg(f) = N � O(N0:548). If, in addition, N + 1 is prime, thendeg(f) = N .Corollary 4.7. If f is non-onstant and symmetri, then QE(f) � N=2 �O(N0:548). If, in addition, N + 1 is prime, then QE(f) � N=2.In Setion 6 we give more preise bounds for some partiular funtions. In par-tiular, this will show that the N=2 lower bound is tight, as it an be met forPARITYN .4.3 Lower Bounds for Bounded-Error Quantum ComputationHere we use similar tehniques to get bounds on the number of queries required forbounded-error omputation of some funtion. Consider the aeptane probability



Quantum Lower Bounds by Polynomials � 11of a T -query network that omputes f with bounded-error, written as a polynomialP (X) of degree � 2T . If f(X) = 0 then we have 0 � P (X) � 1=3, and if f(X) = 1then 2=3 � P (X) � 1. Hene P approximates f , and we obtain:Theorem 4.8. If f is a Boolean funtion, then Q2(f) �gdeg(f)=2.This result implies that a quantum algorithm that omputes f with boundederror probability an be at most polynomially more eÆient (in terms of number ofqueries) than a lassial deterministi algorithm: Nisan and Szegedy proved thatD(f) 2 O(gdeg(f)8) [Nisan and Szegedy 1994, Theorem 3.9℄, whih together with theprevious theorem implies D(f) 2 O(Q2(f)8). The fat that there is a polynomialrelation between the lassial and the quantum omplexity is also impliit in thegeneri orale-onstrutions of Fortnow and Rogers [Fortnow and Rogers 1999℄. InSetion 5 we will prove the stronger result D(f) 2 O(Q2(f)6).Combining Theorem 4.8 with Paturi's Theorem 3.3 gives a lower bound for sym-metri funtions in the bounded-error setting: if f is non-onstant and symmetri,then Q2(f) 2 
(pN(N � �(f))). We an in fat prove a mathing upper bound,using the following result about quantum ounting [Brassard et al. 2000, Theo-rem 13℄:Theorem 4.9 (Brassard, H�yer, Mosa, Tapp). There exists a quantumalgorithm with the following property. For every N-bit input X (with t = jX j)and number T , the algorithm uses T queries and outputs a number ~t suh thatjt� ~tj � 2�pt(N � t)T + �2 NT 2with probability at least 8=�2.Theorem 4.10. If f is non-onstant and symmetri, then we have that Q2(f) 2�(pN(N � �(f))).Proof. We desribe a strategy that omputes f with small error probability.Let fk = f(x) for x with jX j = k. First note that sine �(f) = minfj2k �N + 1j : fk 6= fk+1 and 0 � k � N � 1g, fk must be identially 0 or 1 fork 2 fd(N � �(f))=2e; : : : ; d(N + �(f)� 2)=2eg. Consider some X with jX j = t.In order to be able to ompute f(X), it is suÆient to know t exatly if t <d(N � �(f))=2e or t > d(N + �(f)� 2)=2e, or to know that d(N � �(f))=2e � t �d(N + �(f)� 2)=2e otherwise.Run the quantum ounting algorithm for �(p(N � �(f))N) steps to ount thenumber of 1s in X . If t is in one of the two tails (t < d(N � �(f))=2e or t >d(N + �(f)� 2)=2e), then with high probability the algorithm gives us an exatount of t. If d(N � �(f))=2e � t � d(N + �(f)� 2)=2e, then with high probabilitythe ounting algorithm returns some ~t that is in this interval as well. Thus withhigh probability f~t equals ft = f(X). This shows that we an ompute f usingonly O(pN(N � �(f))) queries.Theorem 4.10 implies that the above-stated result about quantum ounting (The-orem 4.9) is optimal, sine a better upper bound for ounting would give a betterupper bound on Q2(f) for symmetri f , whereas we already know that Theo-rem 4.10 is tight. In ontrast to Theorem 4.10, it an be shown that a randomized



12 � R. Beals, H. Buhrman, R. Cleve, M. Mosa, R. de Wolflassial strategy needs �(N) queries to ompute any non-onstant symmetri fwith bounded-error.Moreover, it an be shown that almost all funtions f satisfy deg(f) = N , see[Buhrman and Wolf 2001℄, hene almost all f have QE(f) � N=2. After readingthe preliminary version of this paper [Beals et al. 1998℄, Andris Ambainis [Ambainis1999℄ proved a similar result for the approximate ase: almost all f satisfygdeg(f) �N=2� O(pN logN) and hene have Q2(f) � N=4� O(pN logN). On the otherhand, Wim van Dam [Dam 1998℄ proved that with good probability we an learnall N variables in the blak-box using only N=2 + pN queries. This implies thegeneral upper bound Q2(f) � N=2 +pN for every f . This bound is almost tight,as we will show later on that Q2(f) = dN=2e for f = PARITY.4.4 Lower Bounds in Terms of Blok SensitivityAbove we gave lower bounds on the number of queries used, in terms of degreesof polynomials that represent or approximate the funtion f that is to be om-puted. Here we give lower bounds in terms of the blok sensitivity of f , a measureintrodued in [Nisan 1991℄.Definition 4.11. Let f : f0; 1gN ! f0; 1g be a funtion, X 2 f0; 1gN, andB � f0; : : : ; N � 1g a set of indies. Let XB denote the string obtained from X byipping the variables in B. We say that f is sensitive to B on X if f(X) 6= f(XB).The blok sensitivity bsX(f) of f on X is the maximum number t for whih thereexist t disjoint sets of indies B1; : : : ; Bt suh that f is sensitive to eah Bi on X.The blok sensitivity bs(f) of f is the maximum of bsX(f) over all X 2 f0; 1gN .For example, bs(ORN ) = N , beause if we take X = (0; : : : ; 0) and Bi = fig,then ipping Bi in X ips the value of ORN from 0 to 1.We an adapt the proof of [Nisan and Szegedy 1994, Lemma 3.8℄ on lower boundsof polynomials to get lower bounds on the number of queries in a quantum networkin terms of blok sensitivity.2 The proof uses a theorem from [Ehlih and Zeller1964; Rivlin and Cheney 1966℄:Theorem 4.12 (Ehlih & Zeller; Rivlin & Cheney). Let p : R ! R be apolynomial suh that b1 � p(i) � b2 for every integer 0 � i � N , and the derivativep0 satis�es jp0(x)j �  for some real 0 � x � N . Then deg(p) �pN=(+ b2 � b1).Theorem 4.13. If f is a Boolean funtion, thenQE(f) �rbs(f)8 and Q2(f) �r bs(f)16 :Proof. We prove the lower bound on Q2(f) here, the bound on QE(f) is om-pletely analogous. Consider a network using T = Q2(f) queries that omputes fwith error probability � 1=3. Let p be the polynomial of degree � 2T that approx-imates f , obtained as for Theorem 4.8. Note that p(X) 2 [0; 1℄ for all X 2 f0; 1gN ,beause p represents a probability.2This theorem an also be proved by an argument similar to the lower bound proof for quantumsearhing in [Bennett et al. 1997℄, see e.g. [Vazirani 1998℄.



Quantum Lower Bounds by Polynomials � 13Let b = bs(f), and Z and B1; : : : ; Bb be the input and sets that ahieve the bloksensitivity. We assume without loss of generality that f(Z) = 0. We transformp(x0; : : : ; xN�1) into a polynomial q(y1; : : : ; yb) by replaing every xj in p as follows:(1) xj = (1� zj)yi + zj(1� yi) if j 2 Bi(2) xj = zj if j ours in none of the BiNow it is easy to see that q has the following properties:(1) q is a multilinear polynomial of degree � d � 2T(2) q(Y ) 2 [0; 1℄ for all Y 2 f0; 1gb(3) q(~0) = p(Z) 2 [0; 1=3℄(4) q(ei) = p(ZBi) 2 [2=3; 1℄ for all unit vetors ei 2 f0; 1gbLet r be the single-variate polynomial of degree � d obtained from symmetrizingq over f0; 1gb (Lemma 3.2). Note that 0 � r(i) � 1 for every integer 0 � i � b,and for some x 2 [0; 1℄ we have r0(x) � 1=3 (beause r(0) � 1=3 and r(1) � 2=3).Applying Theorem 4.12 we obtain d � p(1=3)b=(1=3+ 1� 0) = pb=4, heneT �pb=16.We an generalize this result to the omputation of partial Boolean funtions,whih are only de�ned on a domainD � f0; 1gN of inputs that satisfy some promise,by generalizing the de�nition of blok sensitivity to partial funtions in the obviousway.5. POLYNOMIAL RELATION FOR CLASSICAL AND QUANTUM COMPLEXITYHere we will ompare the lassial omplexities D(f) and R(f) with the quantumomplexities. First some separations: in the next setion we showQ2(PARITYN ) =dN=2e while D(PARITYN ) = N . In the bounded-error setting Q2(ORN ) 2 �(pN)by Grover's algorithm, while R(ORN ) 2 �(N) and D(ORN ) = N , so we have aquadrati gap between Q2(f) on the one hand and R(f) and D(f) on the other.3Nisan proved that the randomized omplexity is at most polynomially betterthan the deterministi omplexity: D(f) 2 O(R(f)3) [Nisan 1991℄. As mentionedin Setion 4, we an prove that also the quantum omplexity an be at most poly-nomially better than the best deterministi algorithm: D(f) 2 O(Q2(f)8). Here wegive the stronger result that D(f) 2 O(Q2(f)6). In other words, if we an omputesome funtion quantumly with bounded-error using T queries, we an ompute itlassially error-free using O(T 6) queries. We will need the notion of erti�ateomplexity :Definition 5.1. Let C be an assignment C : S ! f0; 1g of values to some subsetS of the N variables. We say that C is onsistent with X 2 f0; 1gN if xi = C(i)for all i 2 S.3In the ase of randomized deision trees, no funtion is known for whih there is a quadratigap between D(f) and R(f). The best known separation is for omplete binary AND/OR-trees,where D(f) = N and R(f) 2 �(N0:753:::), and it has been onjetured that this is the largestgap possible. This holds both for zero-error randomized trees [Saks and Wigderson 1986℄ and forbounded-error trees [Santha 1991℄.



14 � R. Beals, H. Buhrman, R. Cleve, M. Mosa, R. de WolfFor b 2 f0; 1g, a b-erti�ate for f is an assignment C suh that f(X) = bwhenever X is onsistent with C. The size of C is jSj.The erti�ate omplexity CX(f) of f on X is the size of a smallest f(X)-erti�ate that is onsistent with X. The erti�ate omplexity of f is C(f) =maxX CX (f). The 1-erti�ate omplexity of f is C(1)(f) = maxfXjf(X)=1g CX(f),and similarly we de�ne C(0)(f).For example, if f is the OR-funtion, then the erti�ate omplexity on the input(1; 0; 0; : : : ; 0) is 1, beause the assignment x0 = 1 already fores the OR to 1. Thesame holds for the other X for whih f(X) = 1, so C(1)(f) = 1. On the otherhand, the erti�ate omplexity on (0; 0; : : : ; 0) is N , so C(f) = N .The �rst inequality in the next lemma is obvious from the de�nitions, the seondinequality is [Nisan 1991, Lemma 2.4℄. We inlude the proof for ompleteness.Lemma 5.2 (Nisan). C(1)(f) � C(f) � bs(f)2.Proof. Consider an input X 2 f0; 1gN and let B1; : : : ; Bb be disjoint minimalsets of variables that ahieve the blok sensitivity b = bsX(f) � bs(f). We willshow that C : [iBi ! f0; 1g that sets variables aording to X , is a erti�ate forX of size � bs(f)2.Firstly, if C were not an f(X)-erti�ate then let X 0 be an input that agreeswith C, suh that f(X 0) 6= f(X). Let X 0 = XBb+1 . Now f is sensitive to Bb+1 onX and Bb+1 is disjoint from B1; : : : ; Bb, whih ontradits b = bsX(f). Hene C isan f(X)-erti�ate.Seondly, note that for 1 � i � b we must have jBij � bsXBi (f): if we ip oneof the Bi-variables in XBi then the funtion value must ip from f(XBi) to f(X)(otherwise Bi would not be minimal), so every Bi-variable forms a sensitive set forf on input XBi . Hene the size of C is j [i Bij = Pbi=1 jBij � Pbi=1 bsXBi (f) �bs(f)2.The ruial lemma is the following, whih we prove along the lines of [Nisan 1991,Lemma 4.1℄.Lemma 5.3. D(f) � C(1)(f)bs(f).Proof. The following desribes an algorithm to ompute f(X), querying atmost C(1)(f)bs(f) variables of X (in the algorithm, by a \onsistent" erti�ateC or input Y at some point we mean a C or Y that agrees with the values of allvariables queried up to that point).(1) Repeat the following at most bs(f) times:Pik a onsistent 1-erti�ate C and query those of its variableswhose X-values are still unknown (if there is no suh C, then return0 and stop); if the queried values agree with C then return 1 andstop.(2) Pik a onsistent Y 2 f0; 1gN and return f(Y ).The nondeterministi \pik a C" and \pik a Y " an easily be made deterministiby hoosing the �rst C resp. Y in some �xed order. Call this algorithm A. SineA runs for at most bs(f) stages and eah stage queries at most C(1)(f) variables,A queries at most C(1)(f)bs(f) variables.



Quantum Lower Bounds by Polynomials � 15It remains to show thatA always returns the right answer. If it returns an answerin step 1, this is either beause there are no onsistent 1-erti�ates left (and henef(X) must be 0) or beause X is found to agree with a partiular 1-erti�ate C;in both ases A gives the right answer.Now onsider the ase where A returns an answer in step 2. We will showthat all onsistent Y must have the same f -value. Suppose not. Then there areonsistent Y; Y 0 with f(Y ) = 0 and f(Y 0) = 1. A has queried b = bs(f) 1-erti�ates C1; C2; : : : ; Cb. Furthermore, Y 0 ontains a onsistent 1-erti�ate Cb+1.We will derive from these Ci disjoint sets Bi suh that f is sensitive to eah Bion Y . For every 1 � i � b + 1, de�ne Bi as the set of variables on whih Y andCi disagree. Clearly, eah Bi is non-empty. Note that Y Bi agrees with Ci, sof(Y Bi) = 1 whih shows that f is sensitive to eah Bi on Y . Let v be a variablein some Bi (1 � i � b), then X(v) = Y (v) 6= Ci(v). Now for j > i, Cj has beenhosen onsistent with all variables queried up to that point (inluding v), so weannot have X(v) = Y (v) 6= Cj(v), hene v 62 Bj . This shows that all Bi andBj are disjoint. But then f is sensitive to bs(f) + 1 disjoint sets on Y , whih is aontradition. Aordingly, all onsistent Y in step 2 must have the same f -value,and A returns the right value f(Y ) = f(X) in step 2, beause X is one of thoseonsistent Y .The inequality of the previous lemma is tight, beause if f =OR, thenD(f) = N ,C(1)(f) = 1, bs(f) = N .The previous two lemmas imply D(f) � bs(f)3. Combining this with Theo-rem 4.13 (bs(f) � 16 Q2(f)2), we obtain the main result:Theorem 5.4. If f is a Boolean funtion, then D(f) � 4096 Q2(f)6.We do not know if the D(f) 2 O(Q2(f)6)-relation is tight, and suspet thatit is not. The best separation we know is for OR and similar funtions, whereD(f) = N and Q2(f) 2 �(pN). However, for suh symmetri Boolean funtionwe an do no better than a quadrati separation: D(f) � N always holds, and wehave Q2(f) 2 
(pN) by Theorem 4.10, hene D(f) 2 O(Q2(f)2) for symmetrif . For monotone Boolean funtions, where the funtion value either inreases ordereases monotonially if we set more input bits to 1, we an use [Nisan 1991,Proposition 2.2℄ (bs(f) = C(f)) to prove D(f) � 256 Q2(f)4. For the ase ofexat omputation we an also give a better result: Nisan and Smolensky provedD(f) � 2 deg(f)4 for any f (they never published this, but allowed their proofto be inluded in [Buhrman and Wolf 2001℄). Together with our Theorem 4.3 thisyieldsTheorem 5.5. If f is a Boolean funtion, then D(f) � 32 QE(f)4.As a by-produt, we improve the polynomial relation between D(f) andgdeg(f).Nisan and Szegedy [Nisan and Szegedy 1994, Theorem 3.9℄ provedgdeg(f) � D(f) �1296 gdeg(f)8: Using our result D(f) � bs(f)3 and Nisan and Szegedy's bs(f) �6gdeg(f)2 [Nisan and Szegedy 1994, Lemma 3.8℄ we obtainCorollary 5.6. gdeg(f) � D(f) � 216gdeg(f)6:



16 � R. Beals, H. Buhrman, R. Cleve, M. Mosa, R. de Wolf6. SOME PARTICULAR FUNCTIONSIn this setion we onsider the preise omplexity of various spei� funtions.First we onsider the OR-funtion, whih is related to searh. By Grover's well-known searh algorithm [Grover 1996; Boyer et al. 1998℄, if at least one xi equals1, we an �nd an index i suh that xi = 1 with high probability of suess inO(pN) queries. This implies that we an also ompute the OR-funtion with highsuess probability in O(pN): let Grover's algorithm generate an index i, andreturn xi. Sine bs(ORN ) = N , Theorem 4.13 gives us a lower bound of 14pNon omputing ORN with bounded error probability (this 
(pN) bound was �rstshown in [Bennett et al. 1997℄ and is given in a tighter form in [Boyer et al. 1998;Zalka 1999℄, but the way we obtained it here is rather di�erent from those proofs).Thus Q2(ORN ) 2 �(pN), where lassially we require �(N) queries. Now supposewe want to get rid of the probability of error: an we ompute ORN exatly orwith zero-error using O(pN) queries? If not, an quantum omputation give us atleast some advantage over the lassial deterministi ase? Both questions have anegative answer:Proposition 6.1. Q0(ORN ) = N .Proof. Consider a zero-error network for ORN that uses T = Q0(ORN ) queries.By Lemma 4.1, there are omplex-valued polynomials pk of degree at most T , suhthat the �nal state of the network on blak-box X isj�X i = Xk2K pk(X)jki:Let B be the set of all basis states having 10 as rightmost bits (i.e., where theoutput is the answer 0). Then for every k 2 B we must have pk(X) = 0 if X 6=~0 = (0; : : : ; 0), otherwise the probability of getting the inorret answer 0 on j�X iwould be non-zero. On the other hand, there must be at least one k0 2 B suh thatpk0(~0) 6= 0, sine the probability of getting the orret answer 0 on j�~0imust be non-zero. Let p(X) be the real part of 1� pk0(X)=pk0(~0). This polynomial p has degreeat most T and represents ORN . But then p must have degree deg(ORN ) = N , soT � N .Corollary 6.2. A quantum network for exat or zero-error searh requires Nqueries.In ontrast, under the promise that the number of solutions is either 0 or t,for some �xed known t, exat searh an be done in O(pN=t) queries [Brassardet al. 2000℄. A partial blok sensitivity argument (see the omment following The-orem 4.13) shows that this is optimal up to a multipliative onstant.Like the OR-funtion, PARITY has deg(PARITYN ) = N , so by Theorem 4.3exat omputation requires at least dN=2e queries. This is also suÆient. It is wellknown that the XOR of 2 variables an be omputed using only one query [Cleveet al. 1998℄. Assuming N even, we an group the variables of X as N=2 pairs:(x0; x1); (x2; x3); : : : ; (xN�2; xN�1), and ompute the XOR of all pairs using N=2queries. The parity of X is the parity of these N=2 XOR values, whih an beomputed without any further queries. If we allow bounded-error, then dN=2e



Quantum Lower Bounds by Polynomials � 17queries of ourse still suÆe. It follows from Theorem 4.8 that this annot beimproved, beausegdeg(PARITYN ) = N [Minsky and Papert 1968℄:Lemma 6.3 (Minsky, Papert). gdeg(PARITYN ) = N .Proof. Let f be PARITY on N variables. Let p be a polynomial of degreegdeg(f) that approximates f . Sine p approximates f , its symmetrization psym alsoapproximates f . By Lemma 3.2, there is a polynomial q, of degree at mostgdeg(f),suh that q(jX j) = psym(X) for all inputs. Thus we must have jf(X)� q(jX j)j �1=3, soq(0) � 1=3, q(1) � 2=3, . . . , q(N � 1) � 2=3, q(N) � 1=3 (assuming Neven).We see that the polynomial q(x) � 1=2 must have at least N zeroes, hene q hasdegree at least N andgdeg(f) = N .Proposition 6.4. If f is PARITY on f0; 1gN , then QE(f) = Q0(f) = Q2(f) =dN=2e.4Note that this result also implies that Theorems 4.3 and 4.8 are tight. Forlassial algorithms, N queries are neessary in the exat, zero-error, and bounded-error settings. Note that while omputing PARITY on a quantum network is muhharder than OR in the bounded-error setting (dN=2e versus �(pN)), in the exatsetting PARITY is atually easier (dN=2e versus N).The upper bound on PARITY uses the fat that the XOR onnetive an beomputed with only one query. Using polynomial arguments, it turns out thatXOR and its negation are the only examples among all 16 onnetives on 2 variableswhere quantum gives an advantage over lassial omputation.Sine ORN an be redued to MAJORITY on 2N � 1 variables (if we set the�rst N � 1 variables to 1, then the MAJORITY of all variables equals the ORof the last N variables) and OR requires N queries to be omputed exatly orwith zero-error, it follows that MAJN takes at least (N + 1)=2 queries. Hayes,Kutin, and Van Melkebeek [Hayes et al. 1998℄ found an exat quantum algorithmthat uses at most N + 1 � w(N) queries, where w(N) is the number of 1s in thebinary representation of N ; this an save up to logN queries. This also followsfrom lassial results [Saks and Werman 1991; Alonso et al. 1993℄ that show thatan item with the majority value an be identi�ed lassially deterministially withN � w(N) omparisons between bits (a omparison between two input bits is theparity of the two bits, whih an be omputed with 1 quantum query). For thezero-error ase, the same (N + 1)=2 lower bound applies; Van Melkebeek, Hayesand Kutin give a zero-error quantum algorithm that works in roughly 23N queries.For the bounded-error ase, we an apply Theorem 4.10: �(MAJN ) = 1, so we needQ2(MAJN ) 2 �(N) queries. The best upper bound we have here is N=2 + pN ,whih follows from [Dam 1998℄.4This has also been proved independently by Farhi, Goldstone, Gutmann, and Sipser [Farhi et al.1998℄, using a di�erent tehnique. As noted independently by Terhal [Terhal 1997℄ and [Farhiet al. 1998℄, this result immediately implies results by Ozhigov [Ozhigov 1998℄ to the e�et thatno quantum omputer an signi�antly speed up the omputation of all funtions (this followsbeause no quantum omputer an signi�antly speed up the omputation of PARITY).



18 � R. Beals, H. Buhrman, R. Cleve, M. Mosa, R. de WolfThe 
(N) lower bound for MAJORITY also implies a lower bound for the numberof omparisons required to sort N totally ordered elements. It is well known thatN logN + �(N) omparisons between elements are neessary and suÆient forsorting on a lassial omputer. Note that if we an sort then we an omputeMAJORITY: if we sort the N -bit blak-box then the bit at the (N=2)th positiongives the MAJORITY-value (a omparison between 2 blak-box bits an easily besimulated by a few queries). Hene our 
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