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1 IntrodutionThe area of ommuniation omplexity deals with the following type of prob-lem. There are two separated parties, alled Alie and Bob. Alie reeives someinput x 2 X, Bob reeives some y 2 Y , and together they want to omputesome funtion f(x; y). As the value f(x; y) will generally depend on both xand y, neither Alie nor Bob will have suÆient information to do the om-putation by themselves, so they will have to ommuniate in order to ahievetheir goal. In this model, individual omputation is free, but ommuniationis expensive and has to be minimized. How many bits do they need to om-muniate between them in order to solve this? Clearly, Alie an just sendher omplete input to Bob, but sometimes more eÆient shemes are possible.This model was introdued by Yao [64℄ and has been studied extensively, both1 Supported by Talent grant S 62{565 from the Netherlands Organization for Si-enti� Researh (NWO). Most of this paper was written when the author was aPhD student at CWI and the University of Amsterdam, partially supported by theEU Fifth Framework projet QAIP, IST{1999{11234.Preprint submitted to Elsevier Preprint 3 August 2002



for its appliations (like lower bounds on VLSI and iruits) and for its ownsake. We refer to [45,38℄ for de�nitions and results.An interesting variant of the above is quantum ommuniation omplexity:suppose that Alie and Bob eah have a quantum omputer at their dis-posal and are allowed to exhange quantum bits (qubits) and/or to make useof the quantum orrelations given by shared EPR-pairs (entangled pairs ofqubits named after Einstein, Podolsky, and Rosen [31℄). Can Alie and Bobnow ompute f with less ommuniation than in the lassial ase? Quantumommuniation omplexity was �rst onsidered by Yao [65℄ for the model withqubit ommuniation and no prior EPR-pairs, and it was shown later that forsome problems the amount of ommuniation required in the quantum worldis indeed onsiderably less than the amount of lassial ommuniation.In this survey, we �rst give brief explanations of quantum omputation andommuniation, and then over the main results of quantum ommuniationomplexity: upper bounds (Setion 5), lower bounds (Setion 6), and applia-tions (Setion 7). We inlude proofs of some of the entral results and refer-enes to others. Some other reent surveys of quantum ommuniation om-plexity are [60,18,41,16℄, and a more popular aount an be found in [59℄.Our survey di�ers from these in being a bit more extensive and up to date.2 Quantum ComputationIn this setion we briey give the relevant bakground from quantum ompu-tation, referring to the book of Nielsen and Chuang [53℄ for more details.2.1 States and operationsThe lassial unit of omputation is a bit, whih an take on the values 0 or1. In the quantum ase, the unit of omputation is a qubit, whih is a linearombination or superposition of the two lassial values:�0j0i+ �1j1i:More generally, an m-qubit state j�i is a superposition of all 2m di�erentlassial m-bit strings: j�i = Xi2f0;1gm �ijii:The lassial state jii is alled a basis state. The oeÆient �i is a om-plex number, whih is alled the amplitude of jii. The amplitudes form a 2m-dimensional omplex vetor, whih we require to have norm 1 (i.e. Pi j�ij2 =2



1). If some system is in state j�i and some other is in state j i, then theirjoint state is the tensor produt j�i 
 j i = j�ij i.We an basially do two things to a quantum state: measure it or perform aunitary operation to it. If we measure j�i, then we will see a basis state; wewill see jii with probability j�ij2. Beause j�i has norm 1, the probabilitiesj�ij2 sum to 1, as they should. A measurement \ollapses" the measured stateto the measurement outome: if we see jii, then j�i has ollapsed to jii, andall other information in j�i is gone.Apart from measuring, we an also transform the state, i.e., hange the am-plitudes. Quantum mehanis stipulates that this transformation U must bea linear transformation on the 2m-dimensional vetor of amplitudes:U 0BBBBB��0:::0...�1:::1
1CCCCCA = 0BBBBB��0:::0...�1:::1

1CCCCCA :Sine the new vetor of amplitudes �i must also have norm 1, it follows that thelinear transformation U must be norm-preserving and hene unitary. 2 Thisin turn implies that U has an inverse (in fat equal to its onjugate transposeU�), hene non-measuring quantum operations are reversible.2.2 Quantum algorithmsWe desribe quantum algorithms in the quantum iruit model [29,65℄, ratherthan the somewhat more umbersome quantum Turing mahine model [28,14℄.A lassial Boolean iruit is a direted ayli graph of elementary Booleangates (usually AND, OR, and NOT), only ating on one or two bits at a time.It transforms an initial vetor of bits (ontaining the input) into the output. Aquantum iruit is similar, exept that the lassial Boolean gates now beomeelementary quantum gates. Suh a gate is a unitary transformation ating onlyon one or two qubits, and impliitly ating as the identity on the other qubitsof the state. A simple example of a 1-qubit gate is the Hadamard transform,whih maps basis state jbi to 1p2(j0i+ (�1)bj1i). In matrix form, this isH = 1p2 0B� 1 11 �11CA :2 Both quantum measurements and quantum operations allow for a somewhatmore general desription than given here (POVMs and superoperators, respetively,see [53℄), but the above de�nitions suÆe for our purposes.3



An example of a 2-qubit gate is the ontrolled-NOT (CNOT) gate, whihnegates the seond bit of the state depending on the �rst bit: j; bi ! j; b�i.In matrix form, this is C = 0BBBBBBBB� 1 0 0 00 1 0 00 0 0 10 0 1 0
1CCCCCCCCA :It is known that the set of gates onsisting of CNOT and all 1-qubit gates isuniversal, meaning that any other unitary transformation an be written as aprodut of gates from this set. We refer to [6,53℄ for more details.The produt of all elementary gates in a quantum iruit is a big unitarytransformation that transforms the initial state (usually a lassial bitstringontaining the input x) into a �nal superposition. The output of the iruitis then the outome of measuring some dediated part of the �nal state. Wesay that a quantum iruit omputes some funtion f : f0; 1gn ! Z exatly ifit always outputs the orret value f(x) on input x. The iruit omputes fwith bounded error if it outputs f(x) with probability at least 2=3, for all x.Notie that a quantum iruit involves only one measurement; this is withoutloss of generality, sine it is known that measurements an always be pushedto the end at the ost of a moderate amount of extra memory.The omplexity of a quantum iruit is usually measured by the number ofelementary gates it ontains. A iruit is deemed eÆient if its omplexity isat most polynomial in the length n of the input. The most spetaular instaneof an eÆient quantum iruit (rather, a uniform family of suh iruits, onefor eah n) is still Shor's 1994 eÆient algorithm for �nding fators of largeintegers. It �nds a fator of arbitrary n-bit numbers with high probabilityusing only n2polylog(n) elementary gates. This ompromises the seurity ofmodern publi-key ryptographi systems like RSA, whih are based on theassumed hardness of fatoring.2.3 Query algorithmsA type of quantum algorithms that we will refer to later are the query algo-rithms. In fat, most existing quantum algorithms are of this type. Here theinput is not part of the initial state, but enoded in a speial \blak box"quantum gate. The blak box maps basis state ji; bi to ji; b� xii, thus givingaess to the bits xi of the input. Note that a quantum algorithm an run theblak box on a superposition of basis states, gaining aess to several inputbits xi at the same time. One suh appliation of the blak box is alled a4



query. The omplexity of a quantum iruit for omputing some funtion f isnow the number of queries we need on the worst-ase input; we don't ountthe omplexity of other operations in this model. In the lassial world, thisquery omplexity is known as the deision tree omplexity of f .A simple but illustrative example is the Deutsh-Jozsa algorithm [30,27℄: sup-pose that n is a power of 2, and we get the promise that the input x 2 f0; 1gnis either 0 : : : 0 (\onstant") or has exatly n=2 0s and n=2 1s (\balaned").De�ne DeJo(x) = 1 in the �rst ase and DeJo(x) = 0 in the seond. It is easyto see that a deterministi lassial omputer needs n=2 + 1 queries for this(if the omputer has queried n=2 bits and they are all 0, then the funtionvalue is still undetermined). On the other hand, here is a 1-query quantumalgorithm for this problem:(1) Start in a basis state j0 : : : 01i of logn zeroes followed by a 1(2) Apply a Hadamard transform to eah of the logn+ 1 qubits(3) Query the blak box one(4) Apply a Hadamard transform to the �rst logn qubits(5) Measure the �rst logn qubits, output 1 if the observed state is j0 : : : 0iand output 0 otherwiseBy following the state through these steps, it may be veri�ed that the algo-rithm always outputs 1 if the input x is onstant, and 0 if it is balaned.Another important quantum query algorithm is Grover's searh algorithm [35℄,whih �nds an i suh that xi = 1 if suh an i exists in the n-bit input. Ithas error probability � 1=3 on eah input and uses O(pn) queries, whih isoptimal [12,15,66℄. Note that the algorithm an also be viewed as omputingthe OR-funtion: it an determine whether at least one of the input bits is 1.
3 Quantum CommuniationThe area of quantum information theory deals with the properties of quan-tum information and its ommuniation between di�erent parties. We referto [13,53℄ for general surveys, and will here restrit ourselves to explainingtwo important primitives: teleportation [10℄ and superdense oding [11℄. Thesepre-date quantum ommuniation omplexity and show some of the power ofquantum ommuniation.We �rst show how teleporting a qubit works. Alie has a qubit �0j0i + �1j1ithat she wants to send to Bob via a lassial hannel. Without further re-soures this would be impossible, but Alie also shares an EPR-pair 1p2(j00i+5



j11i) with Bob. Initially, their joint state is(�0j0i+ �1j1i)
 1p2(j00i+ j11i):The �rst two qubits belong to Alie, the third to Bob. Alie performs a CNOTon her two qubits and then a Hadamard transform on her �rst qubit. Theirjoint state an now be written as12 j00i(�0j0i+ �1j1i) +12 j01i(�0j1i+ �1j0i) +12 j10i(�0j0i � �1j1i) +12 j11i|{z}Alie (�0j1i � �1j0i)| {z }Bob :Alie then measures her two qubits and sends the result (2 random lassialbits) to Bob, who now knows whih transformation he must do on his qubit inorder to regain the qubit �0j0i+�1j1i. For instane, if Alie sent 11 then Bobknows that his qubit is �0j1i � �1j0i. A bit-ip (jbi ! j1� bi) followed by aphase-ip (jbi ! (�1)bjbi) will give him Alie's original qubit �0j0i+�1j1i. Infat, if Alie's qubit had been entangled with other qubits, then teleportationpreserves this entanglement: Bob then reeives a qubit that is entangled inthe same way as Alie's original qubit was.Note that the qubit on Alie's side has been destroyed: teleporting moves aqubit from A to B, rather than opying it. In fat, opying an unknown qubit isimpossible [62℄, whih an be seen as follows. Suppose C were a 1-qubit opier,i.e. Cj�ij0i = j�ij�i for every qubit j�i. In partiular Cj0ij0i = j0ij0i andCj1ij0i = j1ij1i. But then C would not opy j�i = 1p2(j0i+j1i) orretly, sineby linearity Cj�ij0i = 1p2(Cj0ij0i+ Cj1ij0i) = 1p2(j0ij0i+ j1ij1i) 6= j�ij�i.In teleportation, Alie uses 2 lassial bits and 1 EPR-pair to send 1 qubit toBob. Superdense oding ahieves the opposite: using 1 qubit and 1 EPR-pair,Alie an send 2 lassial bits b1; b2 to Bob. It works as follows. Initially theyshare an EPR-pair 1p2(j00i+ j11i). First, if b1 = 1 then Alie applies a phase-ip to her half of the pair. Seond, if b2 = 1 she applies a bit-ip. Third, shesends her half of the EPR-pair to Bob, who now has one of 4 states j�b1b2i:j�00i = 1p2(j00i+ j11i)j�01i = 1p2(j10i+ j01i)j�10i = 1p2(j00i � j11i)j�11i = 1p2(j10i � j01i)Sine these states are orthogonal, Bob an apply a unitary transformation6



that maps j�b1b2i ! jb1b2i and thus learn b1 and b2.Suppose Alie wants to send n lassial bits of information to Bob and they donot share any prior entanglement. Alie an just send her n bits to Bob, but,alternatively, Bob an also �rst send n=2 halves of EPR-pairs to Alie andthen Alie an send n bits in n=2 qubits using dense oding. In either ase, nqubits are exhanged between them. If Alie and Bob already share n=2 priorEPR-pairs, then n=2 qubits suÆe by superdense oding. The following resultshows that this is optimal. We will refer to it as Holevo's theorem, beausethe �rst part is an immediate onsequene of a result of [36℄ (the seond partwas derived in [26℄).Theorem 1 (Holevo [36℄) If Alie wants to send n bits of information toBob via a qubit hannel, and they don't share prior entanglement, then theyhave to exhange at least n qubits. If they do share unlimited prior entangle-ment, then Alie has to send at least n=2 qubits to Bob, no matter how manyqubits Bob sends to Alie.A somewhat stronger and more subtle variant of this lower bound was derivedby Nayak [48℄, improving upon [2℄. Suppose that Alie doesn't want to sendBob all of her n bits, but just wants to send a message that allows Bob to learnone of her bits xi, where Bob an hoose i after the message has been sent.Even for this weaker form of ommuniation, Alie has to send an 
(n)-qubitmessage.4 Quantum Communiation Complexity: The ModelFirst we sketh the setting for lassial ommuniation omplexity, referringto [45,38℄ for more details. Alie and Bob want to ompute some funtionf : D ! f0; 1g, where D � X � Y . If the domain D equals X � Y thenf is alled a total funtion, otherwise it is a promise funtion. Alie reeivesinput x 2 X, Bob reeives input y 2 Y , with (x; y) 2 D. As the value f(x; y)will generally depend on both x and y, some ommuniation between Alieand Bob is required in order for them to be able to ompute f(x; y). We areinterested in the minimal amount of ommuniation they need.A ommuniation protool is a distributed algorithm where �rst Alie doessome individual omputation, and then sends a message (of one or more bits)to Bob, then Bob does some omputation and sends a message to Alie, et.Eah message is alled a round. After one or more rounds the protool ter-minates and outputs some value, whih must be known to both players. Theost of a protool is the total number of bits ommuniated on the worst-aseinput. A deterministi protool for f always has to output the right value7



f(x; y) for all (x; y) 2 D. In a bounded-error protool, Alie and Bob may ipoins and the protool has to output the right value f(x; y) with probability� 2=3 for all (x; y) 2 D. We use D(f) and R2(f) to denote the minimal ost ofdeterministi and bounded-error protools for f , respetively. The subsript`2' in R2(f) stands for 2-sided bounded error. For R2(f) we an either allowAlie and Bob to toss oins individually (private oin) or jointly (publi oin).This makes not muh di�erene: a publi oin an save at most O(logn) bitsof ommuniation [50℄, ompared to a protool with a private oin.Some often studied total funtions where X = Y = f0; 1gn:� Equality: EQ(x; y) = 1 i� x = y� Inner produt: IP(x; y) = PARITY(x ^ y) = Pi xiyi (mod 2)(for x; y 2 f0; 1gn, xi is the ith bit of x and x ^ y 2 f0; 1gn is the bit-wiseAND of x and y)� Disjointness: DISJ(x; y) = NOR(x ^ y). This funtion is 1 i� there is no iwhere xi = yi = 1 (viewing x and y as harateristi vetors of sets, the setsare disjoint)It is known that D(EQ) = D(IP) = D(DISJ) = n+ 1, R2(IP) = R2(DISJ) =
(n). However, R2(EQ) is only O(1), as follows. Alie and Bob jointly toss arandom string r 2 f0; 1gn. Alie sends the bit a = x � r to Bob (where `�' isinner produt mod 2). Bob omputes b = y � r and ompares this with a. Ifx = y then a = b, but if x 6= y then a 6= b with probability 1/2. Thus Alieand Bob an deide equality with small error using O(n) publi oin ips andO(1) ommuniation. Sine publi oin and private oin protools are lose,this also implies that R2(EQ) 2 O(logn) with a private oin.Now what happens if we give Alie and Bob a quantum omputer and allowthem to send eah other qubits and/or to make use of EPR-pairs that theyshare at the start of the protool? Formally speaking, we an model a quantumprotool as follows. The total state onsists of 3 parts: Alie's private spae,the hannel, and Bob's private spae. The starting state is jxij0ijyi: Aliegets x, the hannel is initially empty, and Bob gets y. Now Alie applies aunitary transformation to her spae and the hannel. This orresponds toher private omputation as well as to putting a message on the hannel (thelength of this message is the number of hannel-qubits a�eted by Alie'soperation). Then Bob applies a unitary transformation to his spae and thehannel, et. At the end of the protool Alie or Bob makes a measurementto determine the output of the protool. We use Q(f) to denote the minimalommuniation ost of a quantum protool that omputes f(x; y) exatly (=with error probability 0). This model was introdued by Yao [65℄. In theseond model, introdued by Cleve and Buhrman [25℄, Alie and Bob sharean unlimited number of EPR-pairs at the start of the protool, but now theyommuniate via a lassial hannel: the hannel has to be in a lassial state8



throughout the protool. We use C�(f) for the minimal omplexity of an exatprotool for f in this model. Note that we only ount the ommuniation, notthe number of EPR-pairs used. The third variant ombines the strengths of theother two: here Alie and Bob start out with an unlimited number of sharedEPR-pairs and they are allowed to ommuniate qubits. We use Q�(f) todenote the ommuniation omplexity in this third model. By teleportation, 1EPR-pair and 2 lassial bits an replae 1 qubit of ommuniation, so we haveQ�(f) � C�(f) � 2Q�(f). Similarly we de�ne Q2(f), Q�2(f), and C�2 (f) forbounded-error quantum protools. Note that a shared EPR-pair an simulatea publi oin toss: if Alie and Bob eah measure their half of the pair, theyget the same random bit.Before ontinuing to study this model, we �rst have to fae an important ques-tion: is there anything to be gained here? At �rst sight, the following argumentseems to rule out any signi�ant gain. By de�nition, in the lassial worldD(f)bits have to be ommuniated in order to ompute f . Sine Holevo's theoremsays that k qubits annot ontain more information than k lassial bits, itseems that the quantum ommuniation omplexity should be roughly D(f)qubits as well (maybe D(f)=2 to aount for superdense oding, but not less).Fortunately and surprisingly, this argument is false, and quantum ommuni-ation an sometimes be muh less than lassial ommuniation omplexity.The information-theoreti argument via Holevo's theorem fails, beause Alieand Bob do not need to ommuniate the information in the D(f) bits of thelassial protool; they are only interested in the value f(x; y), whih is just1 bit. Below we will survey the main examples that have so far been found ofgaps between quantum and lassial ommuniation omplexity.
5 Quantum Communiation Complexity: Upper bounds5.1 Initial stepsQuantum ommuniation omplexity was introdued by Yao [65℄ and studiedby Kremer [44℄, but neither showed any advantages of quantum over lassialommuniation. Cleve and Buhrman [25℄ introdued the variant with lassi-al ommuniation and prior entanglement, and exhibited the �rst quantumprotool provably better than any lassial protool. It uses quantum entan-glement to save 1 bit of lassial ommuniation. This gap was extended byBuhrman, Cleve, and van Dam [19℄ and, for arbitrary k parties, by Buhrman,van Dam, H�yer, and Tapp [23℄. 9



5.2 Buhrman, Cleve, WigdersonThe �rst impressively large gaps between quantum and lassial ommuni-ation omplexity were exhibited by Buhrman, Cleve, and Wigderson [21℄.Their protools are distributed versions of known quantum query algorithms,like the Deutsh-Jozsa and Grover algorithms. The following lemma showshow a query algorithm indues a ommuniation protool:Lemma 1 (BCW [21℄) Let g : f0; 1gn ! f0; 1g and f(x; y) = g(x ? y),where ? is any binary onnetive (for instane � or ^). If there is a T -queryquantum algorithm for g, then there is a protool for f that ommuniatesT (2 logn+ 4) qubits (and uses no prior entanglement) and that has the sameerror probability as the query algorithm.Proof. The quantum protool onsists of Alie's simulating the quantumquery algorithm A on input x?y. Every query in A will orrespond to 2 roundsof ommuniation. Namely, suppose Alie at some point wants to apply a queryto the state j�i = Pi;b �ibji; bi (for simpliity we omit Alie's workspae).Then she adds a j0i-qubit to the state, applies the unitary mapping ji; b; 0i !ji; b; xii, and sends the resulting state to Bob. Bob now applies the unitarymapping ji; b; xii ! ji; b�(xi ?yi); xii and sends the result bak to Alie. Alieapplies ji; b; xii ! ji; b; 0i, takes o� the last qubit, and ends up with the statePi;b �ibji; b� (xi ? yi)i, whih is exatly the result of applying an x ? y-queryto j�i. Thus every query to x ? y an be simulated using 2 logn + 4 qubitsof ommuniation. The �nal quantum protool will have T (2 logn+4) qubitsof ommuniation and omputes f(x; y) with the same error probability as Ahas on input x ? y. 2Now onsider the disjointness funtion: DISJ(x; y) = NOR(x ^ y). SineGrover's algorithm an ompute the NOR of n variables with O(pn) querieswith bounded-error, the previous lemma implies a bounded-error protool fordisjointness with O(pn logn) qubits. On the other hand, the linear lowerbound for disjointness is a well-known result of lassial ommuniation om-plexity [39,56℄. Thus we obtain the following near-quadrati separation:Theorem 2 (BCW [21℄) Q2(DISJ) 2 O(pn logn) and R2(DISJ) 2 
(n).H�yer and de Wolf [37℄ slightly improved the upper bound on Q2(DISJ) toO(pnlog� n) for some onstant  > 1, thus showing that the logn in the upperbound an be replaed by a funtion that grows slower than any iteratedlogarithm. 10



Another separation is given by a distributed version of the Deutsh-Jozsaproblem of Setion 2.3: de�ne EQ0(x; y) = DeJo(x � y). This is a promiseversion of equality, where the promise is that x and y are either equal or areat Hamming distane n=2. Sine there is an exat 1-query quantum algorithmfor DeJo, Lemma 1 implies Q(EQ0) 2 O(logn). In ontrast, Buhrman, Cleve,and Wigderson use a ombinatorial result of Frankl and R�odl [33℄ to prove thelassial lower bound D(EQ0) 2 
(n). Thus we have the following exponentialseparation for exat protools:Theorem 3 (BCW [21℄) Q(EQ0) 2 O(logn) and D(EQ0) 2 
(n).5.3 RazNotie the ontrast between the two separations of the previous setion. Forthe Deutsh-Jozsa problem we get an exponential quantum-lassial separa-tion, but the separation only holds if we fore the lassial protool to be exat;it is easy to see that O(logn) bits are suÆient if we allow some error (thelassial protool an just try a few random positions i and hek if xi = yi ornot). On the other hand, the gap for the disjointness funtion is only quadrati,but it holds even if we allow lassial protools to have some error probability.Ran Raz [55℄ has exhibited a funtion where the quantum-lassial separationhas both features: the quantum protool is exponentially better than the las-sial protool, even if the latter is allowed some error probability. Considerthe following promise problem P:Alie reeives a unit vetor v 2 Rm and a deomposition of the orrespond-ing spae in two orthogonal subspaes H(0) and H(1). Bob reeives an m�munitary transformation U . Promise: Uv is either \lose" to H(0) or to H(1).Question: whih of the two?As stated, this is a problem with ontinuous input, but it an be disretizedin a natural way by approximating eah real number by O(logm) bits. Alieand Bob's input is now n = O(m2 logm) bits long. There is a simple yeteÆient 2-round quantum protool for this problem: Alie views v as a logm-qubit vetor and sends this to Bob. Bob applies U and sends bak the result.Alie then measures in whih subspae H(i) the vetor Uv lies and outputsthe resulting i. This takes only 2 logm = O(logn) qubits of ommuniation.The eÆieny of this protool omes from the fat that an m-dimensionalvetor an be \ompressed" or \represented" as a logm-qubit state. Similarompression is not possible with lassial bits, whih suggests that any lassialprotool for P will have to send the vetor v more or less literally and henewill require a lot of ommuniation. This turns out to be true but the proof(given in [55℄) is surprisingly hard. The result is the �rst exponential gap11



between Q2 and R2:Theorem 4 (Raz [55℄) Q2(P) 2 O(logn) and R2(P) 2 
(n1=4= logn).6 Quantum Communiation Complexity: Lower BoundsIn the previous setion we exhibited some of the power of quantum ommuni-ation omplexity. Here we will look at its limitations, �rst for exat protoolsand then for the bounded-error ase.6.1 Lower bounds on exat protoolsQuite good lower bounds are known for exat quantum protools for totalfuntions. For a total funtion f : X � Y ! f0; 1g let Mf [x; y℄ = f(x; y)be the ommuniation matrix of f . This is an jXj � jY j Boolean matrix thatompletely desribes f . Let rank(f) denote the rank of Mf over the reals.Mehlhorn and Shmidt [47℄ proved that D(f) � log rank(f), whih is themain soure of lower bounds on D(f). For Q(f) a similar lower bound followsfrom tehniques of Yao and Kremer [65,44℄, as �rst observed in [21℄. Thisbound was later extended to the ase where Alie and Bob share unlimitedprior entanglement by Buhrman and de Wolf [24℄. Their result turned out tobe equivalent to a result in Nielsen's thesis [52, Setion 6.4.2℄. The result is:Theorem 5 Q�(f) � 12 log rank(f) and C�(f) � log rank(f).Hene quantum ommuniation omplexity in the exat model with prior en-tanglement is maximal whenever Mf has full rank, whih happens for al-most all funtions, inluding equality, (the omplement of) inner produt,and disjointness. For Q(f), the model without prior entanglement, the samebounds apply and it is open whether the fator of 12 an be removed inthis ase. For the equality and disjointness funtions, the optimal boundsQ(EQ) = Q(DISJ) = n+ 1 were shown reently by H�yer and de Wolf [37℄.How tight is the log rank(f) lower bound? It has been onjetured thatD(f) �(log rank(f))O(1) for all total funtions, in whih ase log rank(f) would har-aterize D(f) up to polynomial fators. If this log-rank onjeture is true, thenTheorem 5 implies that Q�(f) and D(f) are polynomially lose for all totalf , sine then Q�(f) � D(f) � (log rank(f))O(1) � (2Q�(f))O(1). Some smalllasses of funtions where this provably holds are identi�ed in [24℄. It shouldbe noted that, in fat, no total f is known where Q�(f) is more than a fatorof 2 smaller than D(f) (the fator of 2 an be ahieved by superdense oding).12



6.2 Lower bounds on bounded-error protoolsThe previous setion showed some strong lower bounds for exat quantum pro-tools. The situation is worse in the ase of bounded-error protools, for whihonly a few good lower bounds are known. One of the few general lower boundtehniques known to hold for bounded-error quantum omplexity (withoutprior entanglement), is the so-alled \disrepany method". This was shownby Kremer [44℄, who used it to derive an 
(n) lower bound for Q2(IP). Cleve,van Dam, Nielsen, and Tapp [26℄ later independently proved suh a lowerbound for Q�2(IP).We will sketh the very elegant proof of [26℄ here for the ase of exat protools.The proof uses the IP-protool to ommuniate Alie's n-bit input to Bob, andthen invokes Holevo's theorem to onlude that many qubits must have beenommuniated in order to ahieve this. Suppose Alie and Bob have someprotool for IP. They an use this to ompute the following mapping:jxijyi ! jxi(�1)x�yjyi:Now suppose Alie starts with an arbitrary n-bit state jxi and Bob starts withthe uniform superposition 1p2n Py2f0;1gn jyi. If they apply the above mapping,the �nal state beomes jxi 1p2n Xy2f0;1gn(�1)x�yjyi:If Bob applies a Hadamard transform to eah of his n qubits, then he obtainsthe basis state jxi, so Alie's n lassial bits have been ommuniated to Bob.Theorem 1 now implies that the IP-protool must ommuniate n=2 qubits,even if Alie and Bob share unlimited prior entanglement. With some moretehnial ompliation, the same idea gives an 12(1� 2")2n lower bound for "-error protools [26℄. The onstant fator in this bound was reently improvedto the optimal 12 by Nayak and Salzman [49℄.The above proof works for IP, but does not easily yield good bounds in general.Neither does the disrepany method, or an approximate version of the ranklower bound that was noted in [21℄. New lower bound tehniques for quantumommuniation are required. Of partiular interest is whether the upper boundof roughly pn on Q2(DISJ) is tight. Beause disjointness an be redued tomany other problems (it is in fat \oNP-omplete" [4℄), a good lower boundfor disjointness would imply many other lower bounds as well. H�yer and deWolf proved an 
(pn) lower bound for a restrited lass of protools, namelythose whose aeptane probability is a funtion of x^ y, rather than x and yseparately. All known quantum protools for disjointness fall in this lass, butit is still rather limited. Klauk [42℄ extended the lassial Fourier analysis-13



based lower bound tehnique of Raz [54℄ to the quantum ase. The tehniquegives good lower bounds on Q2(f) for threshold funtions (where f(x; y) = 1i� jx ^ yj � t) with suÆiently large threshold t. Unfortunately, it fails togive good bounds for the t = 1 ase, whih is exatly the omplement ofdisjointness.Then, in a reent breakthrough, Razborov [57℄ established the expeted lowerbound, using a lever multidimensional version of the disrepany method:Theorem 6 (Razborov [57℄) Q�2(DISJ) = 
(pn).Moreover, his lower bound method gives nearly optimal lower bounds onQ�2(f)for all funtions that are of the form f(x; y) = g(x ^ y) for some g dependingonly on the Hamming weight of its input.7 Quantum Communiation Complexity: AppliationsThe main appliations of lassial ommuniation omplexity have been inproving lower bounds for various models like VLSI, Boolean iruits, formulasize, Turing mahine omplexity, data strutures, automata size et. We re-fer to [45,38℄ for many examples. Typially one proeeds by showing that aommuniation omplexity problem f is \embedded" in the omputationalproblem P of interest, and then uses ommuniation omplexity lower boundson f to establish lower bounds on P . Similarly, quantum ommuniation om-plexity has been used to establish lower bounds in various models of quantumomputation, though suh appliations have reeived relatively little attentionso far. We will briey mention some.Yao [65℄ initially introdued quantum ommuniation omplexity as a toolfor proving a superlinear lower bound on the quantum formula size of themajority funtion (a \formula" is a iruit of restrited form). More reently,Klauk [40℄ used one-round quantum ommuniation omplexity lower boundsto prove lower bounds on the size of quantum formulae.Sine upper bounds on query omplexity give upper bounds on ommuniationomplexity (Lemma 1), lower bounds on ommuniation omplexity give lowerbounds on query omplexity. For instane, IP(x; y) = PARITY(x ^ y), so the
(n) bound for IP (Setion 6.2) implies an 
(n= logn) lower bound for thequantum query omplexity of the parity funtion, as observed by Buhrman,Cleve, and Wigderson [21℄. This query lower bound was later strengthened ton=2 in [7,32℄.Furthermore, as in the lassial ase, lower bounds on one-round ommunia-14



tion omplexity imply lower bounds on the size of quantum �nite automata.This was used by Klauk [40℄ to show that Las Vegas (zero-error) quantum�nite automata annot be muh smaller than lassial deterministi �nite au-tomata.Again, as in the lassial ase, lower bounds on quantum ommuniation om-plexity give rise to lower bounds on the size of ertain quantum data strutures.For example, tradeo�s between size and aess time for the \stati predees-sor" and \stati membership" problems were obtained reently by Sen andVenkatesh [58℄.Finally, Ben-Or [9℄ has applied the lower bounds for IP in a new proof of theseurity of quantum key distribution.8 Other Developments and Open ProblemsHere we mention some other results in quantum ommuniation omplexityor related models:� Quantum sampling. For the sampling problem, Alie and Bob do notwant to ompute some f(x; y), but instead want to sample an (x; y)-pairaording to some known joint probability distribution, using as little om-muniation as possible. Ambainis et al. [3℄ give a tight algebrai harater-ization of quantum sampling omplexity, and exhibit an exponential gapbetween the quantum and lassial ommuniation required for a samplingproblem related to disjointness.� Spooky ommuniation. Referring to Einstein's desription of ertainquantum e�ets as \spooky ation at a distane" (\spukhafte Fernwirku-ngen"), Brassard, Cleve, and Tapp [17℄ exhibit tasks that an be ahieved inthe quantum world with entanglement and no ommuniation whatsoever,but that would require ommuniation in the lassial world. They also giveupper and lower bounds on the amount of lassial ommuniation neededto \simulate" EPR-pairs. Their results|and subsequent ones [46℄|may beviewed as quantitative extensions of the famous Bell inequalities [8℄.� Las Vegas protools. In this survey we just onsidered two modes of om-putation: exat and bounded-error. An intermediate type of protools arezero-error or Las Vegas protools. These never output an inorret answer,but may laim ignorane with probability at most 1/2. Some quantum-lassial separations for zero-error protools may be found in [22,40℄.� One-round ommuniation. Suppose the ommuniation onsists of justone round: Alie sends a message (depending on x) to Bob, who should thenompute f(x; y). Klauk [40℄ showed for all total funtions that quantumone-round ommuniation is not signi�antly better than lassial one-round15



ommuniation in the ase of exat or zero-error protools. For the ase ofbounded-error protools this is still open.� Quantum �ngerprinting. The model of simultaneous message passing iseven more restrited than the one-round setting. Here there are three par-ties: Alie has x, Bob has y, they don't share entanglement or randomnessbut they an eah send one message to a referee, who wants to determinef(x; y). Buhrman, Cleve, Watrous, and de Wolf [20℄ gave an eÆient quan-tum protool for the equality funtion in this model: Alie and Bob sendO(logn)-qubit \quantum �ngerprints" of their respetive inputs to the ref-eree, who an then deide with high suess probability whether x = y. Inontrast, lassially the equality funtion requires �(pn) bits of ommuni-ation in this model [1,51,5℄.� Rounds. In lassial ommuniation omplexity it is well known that al-lowing Alie and Bob k + 1 rounds of ommuniation instead of k reduesthe required ommuniation exponentially for some funtions. An analogousresult has been shown for quantum ommuniation by Klauk, Nayak, Ta-Shma, and Zukerman [43℄, using a quantum version of the lassial \roundelimination" tehnique. This tehnique has been further strengthened bySen and Venkatesh [58℄, giving for instane tight ommuniation-roundstradeo�s for the \greater than" funtion.� Non-deterministi ommuniation omplexity. A non-deterministiprotool has positive aeptane probability on input (x; y) i� f(x; y) = 1.Classially, the non-deterministi ommuniation omplexity is harater-ized by the logarithm of the over number of the ommuniation matrixMf . The quantum non-deterministi ommuniation omplexity has beenshown equal to the logarithm of the rank of a non-deterministi version ofMf [61,37℄. There exist total funtions where the quantum non-deterministiomplexity is exponentially smaller than the lassial one [61℄.Finally, here's a list of interesting open problems in quantum ommuniationomplexity:� Very few interesting quantum protools are known. For what other problemsan quantum mehanis save ommuniation?� Raz's exponential gap only holds for a promise problem. Are R2(f) andQ�2(f) polynomially related for all total f? A similar question an be posedfor the relation between D(f) and Q�(f). As we showed in Setion 6.1,a positive answer to this last question would be implied by the lassiallog-rank onjeture.� Does entanglement add muh power to qubit ommuniation? That is, whatare the biggest gaps between Q(f) and Q�(f), and between Q2(f) andQ�2(f)? (We only know Q2(EQ) 2 �(logn) and Q�2(EQ) 2 O(1).)� Classially, Yao [63℄ used the minimax theorem from game theory to show anequivalene between deterministi protools with a probability distributionon the inputs, and bounded-error protools. Is some relation like this true16
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