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Abstract. The rigidity of a matrix measures how many of its entries
need to be changed in order to reduce its rank to some value. Good lower
bounds on the rigidity of an explicit matrix would imply good lower
bounds for arithmetic circuits as well as for communication complexity.
Here we reprove the best known bounds on the rigidity of Hadamard
matrices, due to Kashin and Razborov, using tools from quantum com-
puting. Our proofs are somewhat simpler than earlier ones (at least for
those familiar with quantum) and give slightly better constants. More
importantly, they give a new approach to attack this longstanding open
problem.

1 Introduction

1.1 Rigidity

Suppose we have some n × n matrix M whose rank we want to reduce. The
rigidity of M measures the minimal number R of entries we need to change in
order to reduce its rank to r. Formally:

RM (r) = min{weight(M − M̃) | rank(M̃) ≤ r},

where “weight” counts the number of non-zero entries. Here the rank could be
taken over any field of interest; in this paper we consider the complex field.
Roughly speaking, high rigidity means that M ’s rank is robust against changes:
changes in few entries won’t change the rank much.

Rigidity was defined by Valiant [1, Section 6] in the 1970s with a view to
proving circuit lower bounds. In particular, he showed that an explicit n × n
matrix M with RM (εn) ≥ n1+δ for ε, δ > 0 would imply that log-depth arith-
metic circuits that compute the linear map M : R

n → R
n need superlinear

circuit size. Clearly, RM (r) ≥ n − r for every full-rank matrix, since reducing
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the rank by 1 requires changing at least 1 entry. This bound is optimal for the
identity matrix, but usually far from tight. Valiant showed that most matrices
have rigidity (n− r)2, but finding an explicit matrix with high rigidity has been
open for decades.

A very natural and widely studied candidate for such a high-rigidity matrix
are the Hadamard matrices. A Hadamard matrix is an orthogonal n× n matrix
H with entries +1 and −1. Such matrices exist whenever n is a power of 2,
but are conjectured to exist whenever n is a multiple of 4. Suppose we have a
matrix H̃ differing from H in R positions such that rank(H̃) ≤ r. The goal in
proving high rigidity is to lower bound R in terms of n and r. Alon [2] proved
R = Ω(n2/r2), which was reproved by Lokam [3] using spectral methods. Kashin
and Razborov [4] improved this to R = Ω(n2/r). This is currently the best known
for Hadamard matrices.

In view of the difficulty in proving strong lower bounds on rigidity proper,
Lokam [3] also introduced a relaxed notion of rigidity. This limits the size of
each change in entries to some parameter θ > 0. Formally

RM (r, θ) = min{weight(M − M̃) | rank(M̃) ≤ r, ‖M − M̃ ‖
∞

≤ θ},

where ‖ · ‖
∞

measures the largest entry (in absolute value) of its argument. For
Hadamard matrices, Lokam proved the bound RH(r, θ) = Ω(n2/θ) if θ ≤ n/r
and RH(r, θ) = Ω(n2/θ2) if θ > r/n. In particular, if entries can change at
most by a constant then the rigidity is Ω(n2). For the case θ > r/n, Kashin
and Razborov [4] improved the bound to RH(r, θ) = Ω(n3/rθ2). Study of this
relaxed notion of rigidity is further motivated by the fact that stronger lower
bounds would separate the communication complexity versions of the classes PH
and PSPACE [3].

Apart from Hadamard matrices, the rigidity of some other explicit matri-
ces has been studied as well, sometimes giving slightly better bounds RM (r) =
Ω(n2 log(n/r)/r), for instance for Discrete Fourier Transform matrices [5–7].
Very recently, Lokam [8] showed a near-optimal rigidity bound RP (n/17) =
Ω(n2) for the matrix P whose entries are the square roots of distinct primes,
and proved an Ω(n2/ logn) arithmetic circuit lower bound for the induced linear
map P : Rn → Rn. This matrix P , however, is “less explicit” than Hadamard
matrices and the rigidity bound has no consequences for communication com-
plexity because P is not a Boolean matrix. Moreover, the same circuit lower
bound was already shown by Lickteig [9] (see also [10, Exercise 9.5]) without the
use of rigidity.

1.2 Our contribution

In this paper we give new proofs of the best known bounds on the rigidity of
Hadamard matrices, both the standard rigidity and the relaxed one:

– if r ≤ n/2, then RH(r) ≥ n2

4r



– RH(r, θ) ≥ n2(n− r)

2θn+ r(θ2 + 2θ)

Our constant in the former bound is a bit better than the one of Kashin and
Razborov [4] (their proof gives n2/256r), while in the latter bound it is essen-
tially the same. However, we feel our proof technique is more interesting than
our precise result. As detailed in Section 2, the proof relies on interpreting an
approximation H̃ of the Hadamard matrix H as a quantum communication sys-

tem, and then using quantum information theory bounds from [11] to relate the

rank of H̃ to the quality of its approximation.1 Actually our bounds hold for
all so-called generalized Hadamard matrices; these are the orthogonal matrices
where all entries have the same magnitude. However, for definiteness we will
state the results for Hadamard matrices only.

This paper fits in a recent but fast-growing line of research where results
about classical objects are proved or reproved using quantum computational
techniques. Other examples of this are lower bounds for locally decodable codes
and private information retrieval [13, 14], classical proof systems for lattice prob-
lems derived from earlier quantum proof systems [15, 16], strong limitations on
classical algorithms for local search [17] inspired by an earlier quantum computa-
tion proof, a proof that the complexity class PP is closed under intersection [18],
formula size lower bounds from quantum lower bounds [19], and a new approach
to proving lower bounds for classical circuit depth using quantum communication
complexity [20].

It should be noted that the use of quantum computing is not strictly necessary
for either of our results. The first is proved in two steps: (1) using the quantum
approach we show that every a×b submatrix of H has rank at least ab/n and (2)

using a non-quantum argument we show that an approximation H̃ with small R
contains a large submatrix ofH and hence by (1) must have high rank. The result
of (1) was already proved by Lokam [3, Corollary 2.2] using spectral analysis, so
one may obtain the same result classically using Lokam’s proof for (1) and our
argument for (2). Either way, we feel the proof is significantly simpler than that
of Kashin and Razborov [4], who show that a random a× a submatrix of H has
rank Ω(a) with high probability. In contrast, the quantum aspects of our proof
for the bound on RH(r, θ) cannot easily be replaced by a classical argument,
but that proof is not significantly simpler than the one of Kashin and Razborov
(which uses the Hoffman-Wielandt inequality) and the constant is essentially the
same.

Despite this, we feel our quantum approach has merit for two reasons. First,
it unifies the two results, both of which are now proved from the same quan-
tum information theoretic idea. And second, using quantum computational tools
gives a whole new perspective on the rigidity issue, and might just be the new
approach we need to solve this longstanding open problem. Our hope is that
these techniques not only reprove the best known bounds, but will also push

1 The connection between the Hadamard matrix and quantum communication was also
exploited in the lower bound for the communication complexity of inner product by
Cleve et al. [12].



them further. In Section 5 we discuss two non-quantum approaches to the rigid-
ity issue that followed a first version of the present paper, and point out ways
in which our approach is stronger.

2 Relation to Quantum Communication

Very briefly, an r-dimensional quantum state is a unit vector of complex ampli-
tudes, written |φ〉 =

∑r

i=1 αi|i〉 ∈ Cr. Here |i〉 is the r-dimensional vector that
has a 1 in its ith coordinate and 0s elsewhere. The inner product between |φ〉
and |ψ〉 =

∑r
i=1 βi|i〉 is 〈φ|ψ〉 =

∑
i α

∗
i βi. A measurement is described by a set

of positive semidefinite operators {Ei} that sum to identity. If this measurement
is applied to some state |φ〉, the probability of obtaining outcome i is given by
〈φ|Ei|φ〉. If {|vi〉} is an orthonormal basis, then a measurement in this basis cor-
responds to the projectors Ei = |vi〉〈vi|. In this case the probability of outcome
i is |〈vi|φ〉|2. We refer to [21] for more details about quantum computing. We
use ‖ E ‖ to denote the operator norm (largest singular value) of a matrix E,
and Tr(E) for its trace (sum of diagonal entries).

Our proofs are instantiations of the following general idea, which relates
(approximations of) the Hadamard matrix to quantum communication. Let H
be an n× n Hadamard matrix. Its rows, after normalization by a factor 1/

√
n,

form an orthonormal set known as the Hadamard basis. If Alice sends Bob the
n-dimensional quantum state |Hi〉 corresponding to the normalized ith row of
H , and Bob measures the received state in the Hadamard basis, then he learns
i with probability 1.

Now suppose that instead of H we have some rank-r n × n matrix H̃ that
approximates H in some way or other. Then we can still use the quantum states
|H̃i〉 corresponding to its normalized rows for quantum communication. Alice

now sends the state |H̃i〉. Crucially, she can do this by means of an r-dimensional
quantum state. Let |v1〉, . . . , |vr〉 be an orthonormal basis for the row space of

H̃ . In order to send |H̃i〉 =
∑r

j=1 αj |vj〉, Alice sends
∑r

j=1 αj |j〉 and Bob applies

the unitary map |j〉 7→ |vj〉 to obtain |H̃i〉. He measures this in the Hadamard
basis, and now his probability of getting the correct outcome i is

pi = |〈Hi|H̃i〉|2.

The “quality” of these pi’s correlates with the “quality” of H̃ : the closer the ith
row of H̃ is to the ith row of H , the closer pi will be to 1.

Accordingly, Alice can communicate a random element i ∈ [n] via an r-
dimensional quantum system, with average success probability p =

∑n

i=1 pi/n.
But now we can apply the following upper bound on the average success proba-
bility, due to Nayak [11, Theorem 2.4.2]:2

p ≤ r

n
.

2 NB: this is not the well-known and quite non-trivial random access code lower bound
from the same paper, but a much simpler statement about average decoding proba-
bilities.



Intuitively, the “quality” of the approximation H̃, as measured by the average
success probability p, gives a lower bound on the required rank r of H̃ . In the
next sections we instantiate this idea in two different ways to get our two bounds.

We end this section with a simple proof of Nayak’s bound due to Oded
Regev. In general, let |φ1〉, . . . , |φn〉 be the r-dimensional states encoding 1, . . . , n,
respectively, and E1, . . . , En be the measurement operators applied for decoding.
Then, using that the eigenvalues of Ei are nonnegative reals and that the trace
of a matrix is the sum of its eigenvalues:

pi = 〈φi|Ei|φi〉 ≤ ‖ Ei ‖ ≤ Tr(Ei)

and
n∑

i=1

pi ≤
n∑

i=1

Tr(Ei) = Tr

(
n∑

i=1

Ei

)
= Tr(I) = r.

3 Bound on RH(r)

The next theorem was proved by Lokam [3, Corollary 2.7] using some spectral
analysis. We reprove it here using a quantum argument.

Theorem 1 (Lokam). Every a× b submatrix A of H has rank r ≥ ab/n.

Proof. Obtain rank-r matrix H̃ from H by setting all entries outside of A to 0.
Consider the a quantum states |H̃i〉 corresponding to the nonempty rows; they
have normalization factor 1/

√
b. For each such i, Bob’s success probability is

pi = |〈Hi|H̃i〉|2 =

∣∣∣∣
b√
bn

∣∣∣∣
2

=
b

n
.

But we’re communicating one of a possibilities using r dimensions, so Nayak’s
bound implies

1

n

n∑

i=1

pi = p ≤ r

a
.

Combining both bounds gives the theorem. ⊓⊔

Surprisingly, Lokam’s result allows us quite easily to derive Kashin and
Razborov’s [4] bound on rigidity, which is significantly stronger than Lokam’s
(and Alon’s). We also obtain a slightly better constant than [4]: their proof
gives 1/256 instead of our 1/4. This is the best bound known on the rigidity of
Hadamard matrices.

Theorem 2. If r ≤ n/2, then RH(r) ≥ n2/4r.

Proof. Consider some rank-r matrix H̃ with at most R = RH(r) “errors” com-

pared to H . By averaging, there exists a set of a = 2r rows of H̃ with at most
aR/n errors. Now consider the submatrix A of H̃ consisting of those a rows



and the b ≥ n − aR/n columns that have no errors in those a rows. If b = 0
then R ≥ n2/2r and we are done, so we can assume A is nonempty. This A is
errorfree, hence a submatrix of H itself, and the previous theorem implies

r = rank(H̃) ≥ rank(A) ≥ ab

n
≥ a(n− aR/n)

n
.

Rearranging gives the theorem. ⊓⊔

The condition r ≤ n/2 is important here. If H is symmetric then its eigen-
values are all ±√

n (because HTH = nI), so we can reduce the rank to n/2 by
adding or subtracting the diagonal matrix

√
nI. This shows that RH(n/2) ≤ n.

4 Bound on RH(r, θ)

We now consider the case where the maximal change in entries of H is bounded
by θ.

Theorem 3. RH(r, θ) ≥ n2(n− r)

2θn+ r(θ2 + 2θ)
.

Proof. Consider some rank-r matrix H̃ with at most R = RH(r, θ) errors, and

‖ H − H̃ ‖
∞

≤ θ. As before, define the quantum states corresponding to its
rows:

|H̃i〉 = ci

n∑

j=1

H̃ij |j〉,

where ci = 1/
√∑

j H̃
2
ij is a normalizing constant. Note that

∑
j H̃

2
ij ≤ (n −

∆(Hi, H̃i))+∆(Hi, H̃i)(1+θ)2 = n+∆(Hi, H̃i)(θ
2 +2θ), where ∆(·, ·) measures

Hamming distance. Bob’s success probability pi is now

pi = |〈Hi|H̃i〉|2

≥ c2i
n

(n− θ∆(Hi, H̃i))
2

≥ c2i (n− 2θ∆(Hi, H̃i))

≥ n− 2θ∆(Hi, H̃i)

n+∆(Hi, H̃i)(θ2 + 2θ)
.

Since pi is a convex function of Hamming distance and the average ∆(Hi, H̃i) is
R/n, we also get a lower bound for the average success probability:

p ≥ n− 2θR/n

n+R(θ2 + 2θ)/n
.

Nayak’s bound implies p ≤ r/n. Rearranging gives the theorem. ⊓⊔



For θ ≥ n/r we obtain the second result of Kashin and Razborov [4]:

RH(r, θ) = Ω(n2(n− r)/rθ2).

If θ ≤ n/r we get an earlier result of Lokam [3]:

RH(r, θ) = Ω(n(n− r)/θ).

5 Non-Quantum Proofs

Of course, quantum mechanical arguments like the above can always be stripped
of their quantum aspects by translating to the underlying linear algebra lan-
guage, thus giving a non-quantum proof. In this section we discuss the relation
between our proof and two recent non-quantum approaches to rigidity. Both are
significantly simpler than the Kashin-Razborov proofs [4].

5.1 Midrijanis’s proof

After reading a first version of this paper, Midrijanis [22] published a very sim-
ple argument giving the same bound RH(r) ≥ n2/4r for the special class of
Hadamard matrices defined by k-fold tensor product of the basic 2 × 2 matrix
(so n = 2k)

H2k =

(
1 1
1 −1

)⊗k

.

Let r ≤ n/2 be a power of 2. This H2k consists of (n/2r)2 disjoint copies of
±H2r and each of those has full rank 2r. Each of those copies needs at least r
errors to reduce its rank to r, so we need at least (n/2r)2r = n2/4r errors to
reduce the rank of H2k to r. Notice, however, that this approach only obtains
bounds for the case where H is defined in the above manner.3

5.2 The referee’s proof

An anonymous referee of an earlier version of this paper suggested that the quan-
tum aspects were essentially redundant and could be replaced by the following
spectral argument. Suppose for simplicity that the Hadamard matrix H and its
rank-r approximation H̃ have normalized rows, and as before let |Hi〉 and |H̃i〉
denote their rows. The Frobenius norm of a matrix A is ‖ A ‖F =

√∑
i,j A

2
ij .

We can factor H̃∗ = DE, where D is an n× r matrix with orthonormal columns

3 It’s not clear how new this proof is, see the comments at Lance Fortnow’s weblog
http://weblog.fortnow.com/2005/07/matrix-rigidity.html



and E is an r × n matrix with ‖ E ‖F = ‖ H̃ ‖F . Using the Cauchy-Schwarz
inequality, we bound

n∑

i=1

〈Hi|H̃i〉 = Tr(HH̃∗) = Tr(HDE)

≤ ‖ HD ‖F · ‖ E ‖F

= ‖ D ‖F · ‖ E ‖F

=
√
r · ‖ H̃ ‖F .

This approach is quite interesting. It gives the same bounds when applied to the
two cases of this paper (where

∑
i〈Hi|H̃i〉 and ‖ H̃ ‖F are easy to bound), with

less effort than the Kashin-Razborov proofs [4]. However, it is not an unrolling
of the quantum proof, since the latter upper bounds the sum of squares of the
inner products:

n∑

i=1

|〈Hi|H̃i〉|2 ≤ r.

An upper bound on the sum of squares implies a bound on the sum of inner prod-
ucts via the Cauchy-Schwarz inequality, but not vice versa. Thus, even though
the two bounds yield the same results in the two cases treated here, the quantum
approach is potentially stronger than the referee’s.

6 Discussion

As mentioned in the introduction, this paper is the next in a recent line of papers
about classical theorems with quantum proofs. So far, these results are somewhat
ad hoc and it is hard to see what unifies them other than the use of some quantum
mechanical apparatus. A “quantum method” in analogy to the “probabilistic
method” [23] is not yet in sight but would be a very intriguing possibility. Using
quantum methods as a mathematical proof tool shows the usefulness of the study
of quantum computers, quantum communication protocols, etc., irrespective of
whether a large quantum computer will ever be built in the lab. Using the
methods introduced here to prove stronger rigidity lower bounds would enhance
this further.

Most lower bounds proofs for the rigidity of a matrix M in the literature
(including ours) work in two steps: (1) show that all or most submatrices of M
have fairly large rank, and (2) show that if the number of errors R is small, there

is some (or many) big submatrix of M̃ that is uncorrupted. Such an uncorrupted

submatrix of M̃ is a submatrix of M and hence by (1) will have fairly large rank.
As Lokam [7] observes, this approach will not yield much stronger bounds on
rigidity than we already have: it is easy to show that a random set of R =

O(max(a,b)n2

ab
log(n/max(a, b))) positions hits every a× b submatrix of an n× n

matrix. Lokam’s [8] recent Ω(n2) rigidity bound for a matrix consisting of the
roots of distinct primes indeed does something quite different, but unfortunately
this technique will not work for matrices over {+1,−1} like Hadamard matrices.



To end this paper, let me describe two vague directions for improvements.
First, the approach mentioned above finds a submatrix of rank at least r in
M̃ and concludes from this that M̃ has rank at least r. However, the approach
usually shows that most submatrices of M̃ of a certain size have rank at least r.
If we can somehow piece these lower bounds for many submatrices together, we
could get a higher rank bound for the matrix M̃ as a whole and hence obtain
stronger lower bounds on rigidity.

A second idea that might give a stronger lower bound for RH(r) is the fol-
lowing. We used the result that every a × b submatrix of H has rank at least
ab/n. This bound is tight for some submatrices but too weak for others. We
conjecture (or rather, hope) that submatrices for which this bound is more or
less tight, are very “redundant” in the sense that each or most of its rows are
spanned by many sets of rows of the submatrix. Such a submatrix can tolerate a
number of errors without losing much of its rank, so then we don’t need to find
an uncorrupted submatrix of H̃ (as in the current proof), but could settle for a
submatrix with little corruption.
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