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ABSTRACT. We present several new examples of speed-ups obtainable by quantum algorithms in the
context of property testing.
First, motivated by sampling algorithms, we consider probability distributions given in the form of an
oracle f : [n] → [m]. Here the probability P f (j) of an outcome j ∈ [m] is the fraction of its domain
that f maps to j. We give quantum algorithms for testing whether two such distributions are identical
or ε-far in L1-norm. Recently, Bravyi, Hassidim, and Harrow [11] showed that if P f and Pg are both
unknown (i.e., given by oracles f and g), then this testing can be done in roughly

√
m quantum queries

to the functions. We consider the case where the second distribution is known, and show that testing
can be done with roughly m1/3 quantum queries, which we prove to be essentially optimal. In contrast,
it is known that classical testing algorithms need about m2/3 queries in the unknown-unknown case
and about

√
m queries in the known-unknown case. Based on this result, we also reduce the query

complexity of graph isomorphism testers with quantum oracle access.
While those examples provide polynomial quantum speed-ups, our third example gives a much larger
improvement (constant quantum queries vs polynomial classical queries) for the problem of testing
periodicity, based on Shor’s algorithm and a modification of a classical lower bound by Lachish and
Newman [30]. This provides an alternative to a recent constant-vs-polynomial speed-up due to Aaron-
son [1].



1 Introduction

Since the early 1990s, a number of quantum algorithms have been discovered that have much
better query complexity than their best classical counterparts [17, 34, 24, 4, 18, 5]. Around
the same time, the area of property testing gained prominence [9, 22, 19, 32]. Here the aim is
to design algorithms that can efficiently test whether a given very large piece of data satisfies
some specific property, or is “far” from having that property.

Buhrman et al. [13] combined these two strands, exhibiting various testing problems
where quantum testers are much more efficient than classical testers. There has been some
recent subsequent work on quantum property testing, such as the work of Friedl et al. [21]
on testing hidden group properties, Atici and Servedio [6] on testing juntas, Inui and Le
Gall [28] on testing group solvability, Childs and Liu [15] on testing bipartiteness and expan-
sion, Aaronson [1] on “Fourier checking”, and Bravyi, Hassidim, and Harrow [11] on testing
distributions. We will say more about the latter papers below.

In this paper we continue this line of research, coming up with a number of new examples
where quantum testers substantially improve upon their classical counterparts. It should be
noted that we do not invent new quantum algorithms here—rather, we use known quantum
algorithms as subroutines in otherwise classical testing algorithms.

1.1 Distribution Testing

How many samples are needed to determine whether two distributions are identical or have
L1-distance more than ε? This is a fundamental problem in statistical hypothesis testing and
also arises in other subjects like property testing and machine learning.

We use the notation [n] = {1, 2, 3, . . . , n}. For a function f : [n] → [m], we denote by
P f the distribution over [m] in which the weight P f (j) of every j ∈ [m] is proportional to
the number of elements i ∈ [n] that are mapped to j. We use this form of representation for
distributions in order to allow queries. Namely, we assume that the function f : [n] → [m]
is accessible by an oracle of the form |x〉|b〉 7→ |x〉|b⊕ f (x)〉, where x is a log n-bit string,
b and f (x) are log m-bit strings and ⊕ is bitwise addition modulo two. Note that a classical
random sample according to a distribution P f can be simply obtained by picking i ∈ [n]
uniformly at random and evaluating f (i). In fact, a classical algorithm cannot make a better
use of the oracle, since the actual labels of the domain [n] are irrelevant. See Section F in the
Appendix for more on the relation between sampling a distribution and querying a function.

We say that the distribution P f is known (or explicit) if the function f is given explicitly,
and hence all probabilities P f (j) can be computed. P f is unknown (or black-box) if we
only have oracle access to the function f , and no additional information about f is given.
Two distributions P f ,Pg defined by functions f , g : [n] → [m] are ε-far if the L1-distance
between them is at least ε, i.e., ‖P f −Pg‖1 = ∑m

j=1 |P f (j)−Pg(j)| ≥ ε. Note that f = g
implies P f = Pg but not vice versa (for instance, permuting f leaves P f invariant). Two
problems of testing distributions can be formally stated as follows:
• unknown-unknown case. Given n, m, ε and oracle access to f , g : [n] → [m], how

many queries to f and g are required in order to determine whether the distributions P f
and Pg are identical or ε-far?
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• known-unknown case. Given n, m, ε, oracle access to f : [n] → [m] and a known
distribution Pg (defined by an explicitly given function g : [n] → [m]), how many
queries to f are required to determine whether P f and Pg are identical or ε-far?

If only classical queries are allowed (where querying the distribution means asking for a
random sample), the answers to these problems are well known. For the unknown-unknown
case Batu, Fortnow, Rubinfeld, Smith, and White [8] proved an upper bound of Õ(m2/3)
on the query complexity, and Valiant [35] proved a matching (up to polylogarithmic factors)
lower bound. For the known-unknown case, Goldreich and Ron [23] showed a lower bound of
Ω(
√

m) queries and Batu, Fischer, Fortnow, Rubinfeld, Smith, and White [7] proved a nearly
tight upper bound of Õ(

√
m) queries.∗

Testing with Quantum Queries

Allowing quantum queries for accessing distributions, Bravyi, Hassidim, and Harrow [11]
recently showed that the L1-distance between two unknown distributions can actually be es-
timated up to small error with only O(

√
m) queries. Their result implies an O(

√
m) upper

bound on the quantum query complexity for the unknown-unknown testing problem defined
above. In this paper we consider the known-unknown case, and prove nearly tight bounds on
its quantum query complexity.

THEOREM 1. Given n, m, ε, oracle access to f : [n] → [m] and a known distribution
Pg (defined by an explicitly given function g : [n] → [m]), the quantum query complexity

of determining whether P f and Pg are identical or ε-far is O(m1/3 log2 m log log m
ε5 ) = m1/3 ·

poly( 1
ε , log m).

We prove Theorem 1 in two parts. First, in Section 3.1, we prove that with O(m1/3

ε2 )
quantum queries it is possible to test whether a black-box distribution P f (defined by some
f : [n] → [m]) is ε-close to uniform. We actually prove that this can be even done tolerantly
in a sense, meaning that a distribution that is close to uniform in the L∞ norm is accepted
with high probability (see Theorem 10 for the formal statement). Then, in Section 3.2, we use
the bucketing technique (see Section 2.1) to reduce the task of testing closeness to a known
distribution to testing uniformity.

We stress that the main difference between the classical algorithm of [7] and ours is that
in [7] they check the “uniformity” of the unknown distribution in every bucket by approximat-
ing the corresponding L2 norms of the conditional distributions. It is not clear if one can gain
anything (in the quantum case) using the same strategy, since we are not aware of any quan-
tum procedure that can approximate the L2 norm of a distribution with less than

√
m queries.

Hence, we reduce the main problem directly to the problem of testing uniformity. For this
reduction to work, the uniformity tester has to be tolerant in the sense mentioned above (see
Section 3.2 for details).

A different quantum uniformity tester was recently discovered (independently) in [11].
We note that our version has the advantages of being tolerant, which is crucial for the appli-

∗These classical lower bounds are stated in terms of number of samples rather than number of queries, but it is
not hard to see that they hold in both models. In fact, the

√
m classical query lower bound for the known-unknown

case follows by the same argument as the quantum lower bound in Appendix D.
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cation above, and it has only polynomial dependence on ε (instead of exponential), which is
essentially optimal.

Quantum Lower Bounds

Known quantum query lower bounds for the collision problem [2, 3, 29] imply that in both
known-unknown and unknown-unknown cases roughly m1/3 quantum queries are required.
In fact, the lower bound applies even for testing uniformity (see proof in Appendix D):

THEOREM 2. Given n, m, ε and oracle access to f : [n] → [m], the quantum query com-
plexity of determining whether P f is uniform or ε-far from uniform is Ω(m1/3).

The main remaining open problem is to tighten the bounds on the quantum query com-
plexity for the unknown-unknown case. It would be very interesting if this case could also be
tested using roughly m1/3 quantum queries. In Appendix E we show that the easiest way to
do this (just reconstructing both unknown distributions up to small error) will not work—it
requires Ω(m/ log m) quantum queries.

1.2 Graph Isomorphism Testing

Fischer and Matsliah [20] studied the problem of testing graph isomorphism in the dense-
graph model, where the graphs are represented by their adjacency matrices, and querying the
graph corresponds to reading a single entry from its adjacency matrix. The goal in isomor-
phism testing is to determine, with high probability, whether two graphs G and H are isomor-
phic or ε-far from being isomorphic, making as few queries as possible. (The graphs are ε-far
from being isomorphic if at least an ε-fraction of the entries in their adjacency matrices need
to be modified in order to make them isomorphic.)

In [20] two models were considered:
• unknown-unknown case. Both G and H are unknown, and they can only be accessed

by querying their adjacency matrices.
• known-unknown case. The graph H is known (given in advance to the tester), and the

graph G is unknown (can only be accessed by querying its adjacency matrix).
As usual, in both models the query complexity is the worst-case number of queries

needed to test whether the graphs are isomorphic. [20] give nearly tight bounds of Θ̃(
√
|V|)

on the (classical) query complexity in the known-unknown model. For the unknown-unknown
model they prove an upper bound of Õ(|V|5/4) and a lower bound of Ω(|V|) on the query
complexity.

Allowing quantum queries†, we can use our aforementioned results to prove the follow-
ing query-complexity bounds for testing graph isomorphism (see proof in Appendix C):

THEOREM 3. The quantum query complexity of testing graph isomorphism in the known-
unknown case is Θ̃(|V|1/3), and in the unknown-unknown case it is between Ω(|V|1/3) and
Θ̃(|V|7/6).

†A quantum query to the adjacency matrix of a graph G can be of the form |i, j〉|b〉 7→ |i, j〉|b ⊕ G(i, j)〉,
where G(i, j) is the (i, j)-th entry of the adjacency matrix of G and ⊕ is addition modulo two.
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1.3 Periodicity Testing

The quantum testers mentioned above obtain polynomial speed-ups over their classical coun-
terparts, and that is the best one can hope to obtain for these problems. The paper by
Buhrman et al. [13], which first studied quantum property testing, actually provides two super-
polynomial separations between quantum and classical testers: a constant-vs-log n separation
based on the Bernstein-Vazirani algorithm, and a (roughly) log n-vs-

√
n separation based

on Simon’s algorithm. They posed as an open problem whether there exists a constant-vs-n
separation. Recently, in an attempt to construct oracles to separate BQP from the Polyno-
mial Hierarchy, Aaronson [1] analyzed the problem of “Fourier checking”: roughly, the input
consists of two m-bit Boolean functions f and g, such that g is either strongly or weakly
correlated with the Fourier transform of f (i.e., g(x) = sign( f̂ (x)) either for most x or for
roughly half of the x). He proved that quantum algorithms can decide this with O(1) queries
while classical algorithms need Ω(2m/4) queries. Viewed as a testing problem on an input of
length n = 2 · 2m bits, this is the first constant-vs-polynomial separation between quantum
and classical testers.

In Section 4 we obtain another separation that is (roughly) constant-vs-n1/4. Our testing
problem is reverse-engineered from the periodicity problem solved by Shor’s famous factoring
algorithm [33]. Suppose we are given a function f : [n] → [m], which we can query in the
usual way. We call f 1-1-p-periodic if the function is injective on [p] and repeats afterwards.
Equivalently:

f (i) = f (j) iff i = j mod p.
Note that we need m ≥ p to make this possible. In fact, for simplicity we will assume m ≥ n.
Let Pp be the set of functions f : [n] → [m] that are 1-1-p-periodic, and Pq,r = ∪r

p=qPp.
The 1-1-PERIODICITY TESTING problem, with parameters q ≤ r and small fixed constant ε,
is as follows:

given an f which is either in Pq,r or ε-far from Pq,r, find out which is the case.
Note that for a given p it is easy to test whether f is p-periodic or ε-far from it: choose an
i ∈ [p] uniformly at random, and test whether f (i) = f (i + kp) for a random positive integer
k. If f is p-periodic then these values will be the same, but if f is ε-far from p-periodic then
we will detect this with constant probability. However, r − q + 1 different values of p are
possible in Pq,r, and we will see below that we cannot efficiently test all of them—at least not
in the classical case. In the quantum case, however, we can.

THEOREM 4. There is a quantum tester for P√n/4,
√

n/2 using O(1) queries (and polylog(n)
time), while for every even integer r ∈ [2, n/2), every classical tester for Pr/2,r needs to
make Ω(

√
r/ log r log n) queries. In particular, testingP√n/4,

√
n/2 requires Ω(n1/4/ log n)

classical queries.

The quantum upper bound is obtained by a small modification of Shor’s algorithm: use
Shor to find the period (if there is one) and then test this purported period with another
O(1) queries.‡ The classical lower is based on ideas from Lachish and Newman [30], who

‡After a first version of this paper was written, Pranab Sen pointed out to us that the ingredients for our quantum
upper bound are already present in work of Hales and Hallgren [26], and in Hales’s PhD thesis [25]. However, as
also pointed out in the introduction of [21], their results are not stated in the context of property testing. Moreover,
no classical lower bounds are proved there; to the best of our knowledge, our lower bound in Section 4 is new.
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proved classical testing lower bounds for more general periodicity-testing problems. How-
ever, while we follow their general outline, we need to modify their proof since it specifically
applies to functions with range {0, 1}, which is different from our 1-1 case. The requirement
of being 1-1 within each period is crucial for the upper bound—quantum algorithms need
about

√
n queries to find the period of functions with range {0, 1}. While our separation is

slightly weaker than Aaronson’s separation for Fourier checking (our classical lower bound is
n1/4/ log n instead n1/4), the problem of periodicity testing is arguably more natural, and it
may have more applications than Fourier checking.

2 Preliminaries
For any distribution P on [m] we denote by P(j) the probability mass of j ∈ [m] and for
any M ⊆ [m] we denote by P(M) the sum ∑j∈M P(j). For a function f : [n] → [m],
we denote by P f the distribution over [m] in which the weight P f (j) of every j ∈ [m] is
proportional to the number of elements i ∈ [n] that are mapped to j. Formally, for all j ∈ [m]
we define P f (j) , Pri∼U [ f (i) = j] = | f−1(j)|

n , where U is the uniform distribution on [n],
that is U(i) = 1/n for all i ∈ [n]. Whenever the domain is clear from context (and may be
something other than [n]), we also use U to denote the uniform distribution on that domain.

Let ‖·‖1 and ‖·‖∞ stand for L1-norm and L∞-norm respectively. Two distributions
P f ,Pg defined by functions f , g : [n] → [m] are ε-far if the L1-distance between them
is at least ε. Namely, P f is ε-far from Pg if ‖P f −Pg‖1 = ∑m

j=1 |P f (j)−Pg(j)| ≥ ε.

2.1 Bucketing

Bucketing is a general tool, introduced in [8, 7], that decomposes any explicitly given distri-
bution into a collection of distributions that are almost uniform. In this section we recall the
bucketing technique and the lemmas (from [8, 7]) that we will need for our proofs.

DEFINITION 5. Given a distribution P over [m], and M ⊆ [m] such that P(M) > 0, the
restriction P|M is a distribution over M with P|M(i) = P(i)/P(M).

Given a partitionM = {M0, M1, . . . , Mk} of [m], we denote by P〈M〉 the distribution
over {0} ∪ [k] in which P〈M〉(i) = P(Mi).

Given an explicit distribution P over [m], Bucket(P , [m], ε) is a procedure that gener-
ates a partition {M0, M1, . . . , Mk} of the domain [m], where k = 2 log m

log(1+ε) . This partition
satisfies the following conditions:
• M0 = {j ∈ [m] | P(j) < 1

m log m};

• for all i ∈ [k], Mi =
{

j ∈ [m] | (1+ε)i−1

m log m ≤ P(j) < (1+ε)i

m log m

}
.

LEMMA 6.[[7]] LetP be a distribution over [m] and let {M0, M1, . . . , Mk} ← Bucket(P , [m], ε).
Then (i) P(M0) ≤ 1/ log m; (ii) for all i ∈ [k], ‖P|Mi

−U|Mi
‖1 ≤ ε.

LEMMA 7.[[7]] Let P ,P ′ be two distributions over [m] and letM = {M0, M1, . . . , Mk} be
a partition of [m]. If ‖P|Mi

−P ′|Mi
‖1 ≤ ε1 for every i ∈ [k] and if in addition ‖P〈M〉 −P ′〈M〉‖1 ≤

ε2, then ‖P − P ′‖1 ≤ ε1 + ε2.
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COROLLARY 8. Let P ,P ′ be two distributions over [m] and letM = {M0, M1, . . . , Mk}
be a partition of [m]. If ‖P|Mi

−P ′|Mi
‖1 ≤ ε1 for every i ∈ [k] such that P(Mi) ≥ ε3/k,

and if in addition ‖P〈M〉 −P ′〈M〉‖1 ≤ ε2, then ‖P − P ′‖1 ≤ 2(ε1 + ε2 + ε3).

2.2 Quantum Queries and Approximate Counting

Since we only use specific quantum procedures as a black-box in otherwise classical algo-
rithms, we will not explain the model of quantum query algorithms in much detail (see [31, 14]
for that). Suffice it to say that the function f is assumed to be accessible by the oracle unitary
transformation O f , which acts on a (log n + log m)-qubit space by sending the basis vector
|x〉|b〉 to |x〉|b⊕ f (x)〉 where ⊕ is bitwise addition modulo two.

The following lemma allows us to estimate the size of the pre-image of a set S ⊆ [m] un-
der f . It follows easily from the work of Brassard, Høyer, Mosca, and Tapp [10, Theorem 13]
(see proof in Appendix A).

LEMMA 9. For every δ ∈ [0, 1], for every oracle O f for the function f : [n] → [m], and for
every set S ⊆ [m], there is a quantum algorithm QEstimate( f , S, δ) that makes O(m1/3/δ)
queries to f and, with probability at least 5/6, outputs an estimate p′ to p = P f (S) =
| f−1(S)|/n such that |p′ − p| ≤ δ

√
p

m1/3 + δ2

m2/3 .

3 Proof of Theorem 1
3.1 Testing Uniformity Tolerantly

Given ε > 0 and oracle access to a function f : [n] → [m], our task is to distinguish the
case ‖P f −U‖1 ≥ ε from the case ‖P f −U‖∞ ≤ ε/4m. Note that this is a stronger
condition than the one required for the usual testing task, where the goal is to distinguish the
case ‖P f −U‖1 ≥ ε from ‖P f −U‖∞ = ‖P f −U‖1 = 0.

THEOREM 10. There is a quantum testing algorithm (Algorithm 1, below) that given ε > 0
and oracle access to a function f : [n] → [m] makes O(m1/3

ε2 ) quantum queries and with
probability at least 2/3 outputs REJECT if ‖P f −U‖1 ≥ ε, and ACCEPT if ‖P f −U‖∞ ≤
ε/4m.

We need the following corollary for the actual application of Theorem 10:

COROLLARY 11. There is an “amplified” version of Algorithm 1 that given ε > 0 and
oracle access to a function f : [n] → [m] makes O(m1/3 log log m

ε2 ) quantum queries and
with probability at least 1 − 1

log2 m
outputs REJECT if ‖P f −U‖1 ≥ ε, and ACCEPT if

‖P f −U‖∞ ≤ ε/4m.

PROOF. [of Theorem 10] Notice that Algorithm 1 makes only O(m1/3

ε2 ) queries: t = m1/3

classical queries are made initially, and the call to QEstimate requires additional O(m1/3/δ) =
O(m1/3

ε2 ) queries.
Now we show that Algorithm 1 satisfies the correctness conditions in Theorem 10. Let

V ⊆ [m] denote the multi-set of values { f (x) | x ∈ T} (unlike S, the multi-set V may contain
6



Algorithm 1 (Tests closeness to the uniform distribution.)
pick a set T ⊆ [n] of t = m1/3 indices uniformly at random
query f on all indices in T; set S← { f (i) | i ∈ T}
if f (i) = f (j) for some i, j ∈ T, i 6= j (or equivalently, |S| < t) then

REJECT
end if
p′ ← QEstimate( f , S, δ), with δ , ε2

320
if |p′ − t

m | ≤ 32δ t
m then

ACCEPT
else

REJECT
end if

some element of [m] more than once). If ‖P f −U‖∞ ≤ ε/4m then P f (V) ≤ (1 + ε
4 )t/m,

and hence

p(t; m) , Pr[the elements in V are distinct] ≥
(

1−
(1 + ε

4 )t
m

)t

≥ 1−
(1 + ε

4)t2

m
> 1− o(1).

Thus if ‖P f −U‖∞ ≤ ε/4m then with probability at least 1− o(1), the tester does not dis-
cover any collision. If, on the other hand, ‖P f −U‖1 ≥ ε and a collision is discovered, then
the tester outputs REJECT, as expected. Hence the following lemma suffices for completing
the proof of Theorem 10.

LEMMA 12. Conditioned on the event that all elements in V are distinct, we have
• if ‖P f −U‖∞ ≤ ε/4m then Pr

[
|P f (V)− t/m| ≤ 3ε2t

32m

]
≥ 1− o(1);

• if ‖P f −U‖1 ≥ ε then Pr
[
|P f (V)− t/m| > 3ε2t

16m

]
≥ 1− o(1).

Assuming Lemma 12, we first prove Theorem 10. Set p , P f (V), and recall that
t/m = 1/m2/3.

If ‖P f −U‖∞ ≤ ε/4m then with probability at least 1− o(1) the elements in V are
distinct and also |p− 1/m2/3| ≤ 30δ

m2/3 . In this case, by Lemma 9, with probability at least 5/6

the estimate p′ computed by QEstimate satisfies |p− p′| ≤ δ
√

p
m1/3 + δ2

m2/3 ≤
δ
√

(1+30δ)/m2/3

m1/3 +
δ2

m2/3 ≤ 2δ
m2/3 , and by the triangle inequality |p′ − t

m | ≤ 32δ t
m . Hence the overall probability

that Algorithm 1 outputs ACCEPT is at least 5/6− o(1) > 2/3.
If ‖P f −U‖1 ≥ ε, then either Algorithm 1 discovers a collision and outputs REJECT,

or otherwise, |p− 1/m2/3| > 60δ
m2/3 with probability 1− o(1). In the latter case, we make the

following case distinction.
• Case p ≤ 10/m2/3: By Lemma 9, with probability at least 5/6 the estimate p′ of

QEstimate satisfies |p− p′| ≤ δ
√

p
m1/3 + δ2

m2/3 < 10δ
m2/3 . Then by the triangle inequality,

|p′ − t
m | >

60δ
m2/3 − 10δ

m2/3 > 32δ t
m .

• Case p > 10/m2/3: In this case it is sufficient to prove that with probability at least
5/6, p′ ≥ p/2 (which clearly implies |p′ − t

m | > 32δ t
m ). This follows again by
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Lemma 9, since p > 10/m2/3 implies δ
√

p
m1/3 + δ2

m2/3 ≤ p/2.
So the overall probability that Algorithm 1 outputs REJECT is at least 5/6− o(1) > 2/3.

PROOF. [of Lemma 12] Let W f (V) = ∑y∈V P f (y). Assuming that all elements in V
are distinct, P f (V) = W f (V). For the first item of the lemma, it suffices to prove that if
‖P f −U‖∞ ≤ ε/4m then

Pr
[
|W f (V)− t

m
| > 3ε2t

32m

]
≤ o(1)

and for the second item of the lemma, it suffices to prove that if ‖P f −U‖1 ≥ ε then

Pr
[
W f (V) > (1 +

3ε2

16
)

t
m

]
≥ 1− o(1).

Note that the standard concentration inequalities cannot be used for proving the last inequality
directly, because the probabilities of certain elements underP f can be very high. To overcome
this problem, we define P̃ f (y) , min{3/m,P f (y)} and W̃ f (V) , ∑y∈V P̃ f (y). Clearly

W̃ f (V) ≤ W f (V) for any V, hence proving Pr
[
W̃ f (V) > (1 + 3ε2

16 ) t
m

]
≥ 1 − o(1) is

sufficient. Surprisingly, this turns out to be easier:

LEMMA 13. The following three statements hold
1. if ‖P f −U‖∞ ≤ ε/4m, then t

m ≤ E[W̃ f (V)] <
(

1 + ε2

16

)
t
m

2. if ‖P f −U‖1 ≥ ε, then E[W̃ f (V)] >
(

1 + ε2

4

)
t
m ;

3. Pr
[∣∣∣W̃ f (V)−E[W̃ f (V)]

∣∣∣ > ε2t
32m

]
= o(1).

Assuming Lemma 13 we have:
• if ‖P f −U‖∞ ≤ ε/4m then clearly W̃ f (V) = W f (V), therefore

Pr
[
|W f (V)− t

m
| > 3ε2t

32m

]
≤ Pr

[∣∣∣W f (V)−E[W f (V)]
∣∣∣ >

ε2t
32m

]
= o(1);

• if ‖P f −U‖1 ≥ ε then

Pr
[

W f (V) < (1 +
3ε2

16
)

t
m

]
≤ Pr

[
W̃ f (V) < (1 +

3ε2

16
)

t
m

]
≤ Pr

[∣∣∣W̃ f (V)−E[W̃ f (V)]
∣∣∣ >

ε2t
16m

]
≤ Pr

[∣∣∣W̃ f (V)−E[W̃ f (V)]
∣∣∣ >

ε2t
32m

]
= o(1).

Hence Lemma 12 follows. The proof of Lemma 13 is more technical, and it appears in
Appendix B.

3.2 Testing Closeness to a Known Distribution

In this section we prove Theorem 1 based on Theorem 10. Let P f be an unknown distribution
and let Pg be a known distribution, defined by f , g : [n] → [m] respectively. We show that
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for any ε > 0, Algorithm 2 makes O(m1/3 log2 m log log m
ε5 ) queries and distinguishes the case

‖P f −Pg‖1 = 0 from the case ‖P f −Pg‖1 > 5ε with probability at least 2/3, satisfying
the requirements of Theorem 1.§

Algorithm 2 (Tests closeness to a known distribution.)

1: letM , {M0, . . . , Mk} ← Bucket(Pg, [m], ε
4 ) for k = 2 log m

log(1+ε/4)
2: for i = 1 to k do
3: if Pg(Mi) ≥ ε/k then
4: if ‖(P f )|Mi

−U|Mi
‖1 ≥ ε (check using the amplified version of Algorithm 1 from

Corollary 11) then
5: REJECT
6: end if
7: end if
8: end for
9: if ‖(P f )〈M〉 − (Pg)〈M〉‖1 > ε/4 (check classically with O(

√
k) = O(log m) queries

[7]) then
10: REJECT
11: end if
12: ACCEPT

Observe that no queries are made by Algorithm 2 itself, and the total number of queries

made by calls to Algorithm 1 is bounded by k ·O( k
ε ·

m1/3 log log m
ε2 )+O(

√
k) = O(m1/3 log2 m log log m

ε5 ).¶

In addition, the failure probability of Algorithm 1 is at most 1/ log2 m � 1/k, so we can
assume that with high probability none of its executions failed.

For any i ∈ [k] and any x ∈ Mi, by the definition of the buckets (1+ε/4)i−1

m log m ≤ Pg(x) ≤
(1+ε/4)i

m log m . Thus, for any i ∈ [k] and x ∈ Mi, (1− ε
4)/|Mi| < 1/(1 + ε

4 )|Mi| < (Pg)|Mi
(x) <

(1 + ε
4)/|Mi|, or equivalently for any i ∈ [k] we have ‖(Pg)|Mi

−U|Mi
‖∞ ≤ ε

4|Mi | . This
means that if ‖P f −Pg‖1 = 0 then

1. for any i ∈ [k], ‖(P f )|Mi
−U|Mi

‖∞ ≤ ε
4|Mi | and thus the tester never outputs REJECT

in Line 5 (since we assumed that Algorithm 1 did not err in any of its executions).
2. ‖(P f )〈M〉 − (Pg)〈M〉‖1 = 0, and hence the tester does not output REJECT in Line 10

either.
On the other hand, if ‖P f −Pg‖1 > 5ε then by Corollary 8 we know that either

|(P f )〈M〉 − (Pg)〈M〉| > ε/4 or there is at least one i ∈ [k] for which P f (Mi) ≥ ε/k
and ‖(P f )|Mi

− (Pg)|Mi
‖1 > 5ε/4 (otherwise ‖P f −Pg‖1 must be smaller than 2(5ε/4 +

ε/4 + ε) = 5ε). In the first case the tester will reject in Line 10. In the second case the tester
will reject in Line 5 as ‖(P f )|Mi

− (Pg)|Mi
‖1 > 5ε/4 implies (by the triangle inequality)

‖(P f )|Mi
−U|Mi

‖1 > ε, since ‖(Pg)|Mi
−U|Mi

‖1 < ε/4 by Lemma 6.

§We use 5ε instead ε for better readability in the sequel.
¶The additional factor of k

ε is for executing Algorithm 1 on the conditional distributions (P f )|Mi
, with

P f (Mi) ≥ ε
k .
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4 Proof of Theorem 4

4.1 Quantum Upper Bound

The quantum tester is very simple, and completely based on existing ideas. First, run a variant
of Shor’s algorithm to find the period of f (if there is one), using O(1) queries. Second, test
whether the purported period is indeed the period, using another O(1) queries as described
above. Accept iff the latter test accepts.

For the sake of completeness we sketch here how Shor’s algorithm can be used to find the
unknown period p of an f that is promised to be 1-1-p-periodic for some value of p ≤

√
n/2.

Here is the algorithm:‖

1. First prepare the 2-register quantum state
1√
n ∑

i∈[n]
|i〉|0〉

2. Query f once (in superposition), giving
1√
n ∑

i∈[n]
|i〉| f (i)〉

3. Measure the second register, which gives some f (s) for s ∈ [p] and collapses the first

register to the i having the same f -value:
1√
bn/pc ∑

i∈[n],i=s mod p
|i〉| f (i)〉

4. Do a quantum Fourier transform∗∗ on the first register and measure.
Some analysis shows that with high probability the measurement gives an i such that∣∣∣∣ i
n
− c

p

∣∣∣∣ <
1

2n
, where c is a random (essentially uniform) integer in [p]. Using con-

tinued fraction expansion, we can then calculate the unknown fraction c/p from the
known fraction i/n.††

5. Doing the above 4 steps k times gives fractions c1/p, . . . , ck/p, each given as a numer-
ator and a denominator (in lowest terms). Each of the k denominators divides p, and
if k is a sufficiently large constant then with high probability (over the ci’s), their least
common multiple is p.

4.2 Classical Lower Bound

We saw above that quantum computers can efficiently test 1-1-PERIODICITY P√n/4,
√

n/2.
Here we will show that this is not the case for classical testers: those need roughly

√
r queries

for 1-1-periodicity testing Pr/2,r, in particular roughly n1/4 queries for r =
√

n/2. Our proof

‖For this to work, the 1-1 property on [p] is crucial; for instance, quantum algorithms need about
√

n queries
to find the period of functions with range {0, 1}. Also the fact that p = O(

√
n) is important, because the quantum

algorithm needs to see many repetitions of the period on the domain [n].
∗∗This is the unitary map |x〉 → 1√

n ∑y∈[n] e2πixy/n|y〉. If n is a power of 2 (which we can assume here

without loss of generality), then the QFT can be implemented using O((log n)2) elementary quantum gates [31,
Section 5.1].

††Two distinct fractions each with denominator≤
√

n/2 are at least 4/n apart. Hence there is only one fraction
with denominator at most

√
n/2 within distance 2/n from the known fraction i/n. This unique fraction can only

be c/p, and CFE efficiently finds it for us. Note that we do not obtain c and p separately, but just their ratio given
as a numerator and a denominator in lowest terms. If c and p were coprime that would be enough, but that need
not happen with high probability.
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follows along the lines of Lachish and Newman [30]. However, since their proof applies to
functions with range 0/1 that need not satisfy the 1-1 property, some modifications are needed.

Fix a sufficiently large even integer r < n/2. We will use Yao’s principle, proving a
lower bound for deterministic query testers with error probability≤ 1/3 in distinguishing two
distributions, one on negative instances and one on positive instances. First, the “negative”
distribution DN is uniform on all f : [n] → [m] that are ε-far from Pr/2,r. Second, the
“positive” distribution DP chooses a prime period p ∈ [r/2, r] uniformly, then chooses a 1-1
function [p] → [m] uniformly (equivalently, chooses a sequence of p distinct elements from
[m]), and then completes f by repeating this period until the domain [n] is “full”. Note that
the last period will not be completed if p 6 |n.

Suppose q = o(
√

r/ log r log n) is the number of queries of our deterministic tester.
Fix a set Q = {i1, . . . , iq} ⊆ [n] of q queries. Let f (Q) ∈ [m]q denote the concatenated
answers f (i1), . . . , f (iq). We prove two lemmas, one for the negative and one for the positive
distribution, showing f (Q) to be close to uniformly distributed in both cases.

LEMMA 14. For all η ∈ [m]q, we have PrDN [ f (Q) = η] = (1± o(1))m−q.

PROOF. We first upper bound the number of functions f : [n] → [m] that are ε-close to
p-periodic for a specific p. The number of functions that are perfectly p-periodic is mp, since
such a function is determined by its first p values. The number of functions ε-close to a fixed
f is at most ( n

εn)mεn. Hence the number of functions ε-close to Pp is at most mp( n
εn)mεn.

Therefore, under the uniform distribution U on all mn functions f : [n]→ [m], the probability
that there is a period p ≤ r for which f is ε-close to Pp is at most

r ·mr( n
εn)mεn

mn ≤ mn/2+H(ε)n/ log m+εn−n,

where we used r < n/2, n ≤ m, and ( n
εn) ≤ 2H(ε)n with H(·) denoting binary entropy. If

ε is a sufficiently small constant, then this probability is o(m−q) (in fact much smaller than
that). Hence the variation distance between DN and the uniform distribution U is o(m−q),
and we have∣∣∣∣Pr

DN
[ f (Q) = η]−m−q

∣∣∣∣ =
∣∣∣∣Pr
DN

[ f (Q) = η]− Pr
U

[ f (Q) = η]
∣∣∣∣ = o(m−q).

LEMMA 15. There exists an event B such that PrDP [B] = o(1), and for all η ∈ [m]q with
distinct coordinates, we have PrDP [ f (Q) = η | B] = (1± o(1))m−q.

PROOF. The distribution DP uniformly chooses a prime period p ∈ [r/2, r]. By the
prime number theorem (assuming r is at least a sufficiently large constant, which we may do
because the lower bound is trivial for constant r), the number of distinct primes in this interval
is asymptotically

r
ln(r)

− r/2
ln(r/2)

≥ r
2 log r

.

Let B be the event that a p is chosen for which there exist distinct i, j ∈ Q satisfying i = j mod
p (equivalently, p divides i − j). For each fixed i, j there are at most log n primes dividing
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i− j. Hence at most (q
2) log n = o(r/ log r) p’s out of the at least r/2 log r possible p’s can

cause event B, implying PrDP [B] = o(1).
Conditioned on B not happening, f (Q) is a uniformly random element of [m]q with

distinct coordinates, hence for each η ∈ [m]q with distinct coordinates we have

Pr
DP

[ f (Q) = η | B] =
1
m

1
m− 1

· · · 1
m− q + 1

= m−q
q−1

∏
i=0

(
1 +

i
m− i

)
= (1 + o(1))m−q.

Since (1− o(1))mq of all η ∈ [m]q have distinct coordinates, their weight under DP
sums to 1− o(1), and the other possible η comprise only a o(1)-fraction of the overall weight.
The query-answers f (Q) are the only access the algorithm has to the input. Hence the previ-
ous two lemmas imply that an algorithm with o(

√
r/ log r log n) queries cannot distinguish

DP and DN with probability better than 1/2 + o(1). This establishes the claimed classical
lower bound.

5 Summary and Open Problems
In this paper we studied and compared the quantum and classical query complexities of a
number of testing problems. The first problem is deciding whether two probability distribu-
tions on a set [m] are equal or ε-far. Our main result is a quantum tester for the case where
one of the two distributions is known (i.e., given explicitly) while the other is unknown and
represented by a function that can be queried. Our tester uses roughly m1/3 queries to the
function, which is essentially optimal. It would be very interesting to extend this quantum
upper bound to the case where both distributions are unknown. Such a quantum tester would
show that the known-unknown and unknown-unknown cases have the same complexity in
the quantum world. In contrast, they are known to have different complexities in the classi-
cal world: about m1/2 queries for the known-unknown case and about m2/3 queries for the
unknown-unknown case. The classical counterparts of these tasks play an important role in
many problems related to property testing. We already mentioned one example, the graph
isomorphism problem, where distribution testers are used as a black-box. We hope that the
quantum analogues developed here and in [11] will find similar use.

The second testing problem is deciding whether a given function f : [n] → [m] is
periodic or far from periodic. For the specific version of the problem that we considered
(where in the first case the period is at most about

√
n, and the function is injective within

each period), we proved that quantum testers need only a constant number of queries (using
Shor’s algorithm), while classical algorithms need about n1/4 queries. Both this result and
Aaronson’s recent result on “Fourier checking” [1] contrast with the constant-vs-log n and
log n-vs-

√
n separations obtained by Buhrman et al. [13] for other testing problems, but still

leave open their question: is there a testing problem where the separation is “maximal”, in the
sense that quantum testers need only O(1) queries while classical testers need Ω(n)?
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A Quantum Queries and Approximate Counting – Proof of
Lemma 9

Recall that the function f is assumed to be accessible by the oracle unitary transformation O f ,
which acts on a (log n + log m)-qubit space by sending the basis vector |x〉|b〉 to |x〉|b ⊕
f (x)〉 where ⊕ is bitwise addition modulo two.

For any set S ⊆ [m], let US
f denote the unitary transformation which maps |x〉|b〉 to

|x〉|b ⊕ 1〉 if f (x) ∈ S, and to |x〉|b ⊕ 0〉 otherwise. This unitary transformation can be
easily implemented using log m ancilla bits and two queries to O f .‡‡ If fS : [n] → {0, 1}
is defined as fS(x) = 1 if and only if f (x) ∈ S, then the unitary transformation US

f acts as
an oracle to the function fS. Brassard, Høyer, Mosca, and Tapp [10, Theorem 13] gave an
algorithm to approximately count the size of certain sets.

THEOREM 16.[BHMT] For every positive integer q and ` > 1, and given quantum oracle
access to a Boolean function h : [n] → {0, 1}, there is an algorithm that makes q queries to

h and outputs an estimate t′ to t = |h−1(1)| such that |t′ − t| ≤ 2π`

√
t(n−t)

q + π2`2 n
q2 with

probability at least 1− 1/2(`− 1).

Lemma 9 follows easily from this theorem: PROOF. [of Lemma 9] The algorithm is
basically required to estimate | f−1

S (1)|. Using two queries to the oracle O f we can construct
a unitary US

f that acts like an oracle for the Boolean function fS. Estimate t = | f−1
S (1)| using

the algorithm in Theorem 16, with q = cm1/3/δ queries. Choosing c a sufficiently large

constant, with probability at least 5/6, the estimate t′ satisfies |t − t′| ≤ δ
√

t(n−t)
m1/3 + δ2n

m2/3 .
Setting p′ = t′/n and bounding (n − t) with n we get that with probability at least 5/6,
|p− p′| = |t−t′|

n ≤ δ
√

p
m1/3 + δ2

m2/3 .

B Proof of Lemma 13
We start by computing the expected value of W̃ f (V).

E[W̃ f (V)] = ∑
y∈V

∑
z∈[m]
P f (z)P̃ f (z) = t

 ∑
z:P f (z)<3/m

P f (z)2 + ∑
z:P f (z)≥3/m

3P f (z)/m



= t

 ∑
z∈[m]
P f (z)2 − ∑

z:P f (z)≥3/m
P f (z)(P f (z)− 3/m)

 .

Let δ(z) , P f (z)− 1/m and let r , |{z | δ(z) < 2/m}|. Then

E[W̃ f (V)] = t

(
∑

z∈[m]
(1/m + δ(z))2 − ∑

z:δ(z)≥2/m
(1/m + δ(z))(δ(z)− 2/m)

)

‡‡We need two queries to f instead of one, because the quantum algorithm has to “uncompute” the first query
in order to clean up its workspace.
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and since ∑z∈[m] δ(z) = 0 we have

= t

(
1/m + ∑

z:δ(z)<2/m
δ(z)2 + 2(m− r)/m2 + ∑

z:δ(z)≥2/m
δ(z)/m

)

For the first item of the lemma, since δ(z) ≤ ε/4m we have r = m, and hence the
equality W f (V) = W̃ f (V) always holds as there are no z for which δ(z) ≥ 2/m. Therefore,
from the above equation we have

E[W f (V)] = t

(
1/m + ∑

z:δ(z)<2/m
δ(z)2

)
≥ t

m

and

E[W f (V)] = t

(
1/m + ∑

z:δ(z)<2/m
δ(z)2

)
< t

(
1/m + ∑

z:δ(z)<2/m
(ε/4m)2

)
≤
(

1 +
ε2

16

)
t
m

.

Now we move to the second item of the lemma, where ‖P f −U‖1 ≥ ε. By Cauchy-
Schwarz we have

∑
z:δ(z)<2/m

δ(z)2 = ∑
z:δ(z)<2/m

|δ(z)|2 ≥ 1
r

(
∑

z:δ(z)<2/m
|δ(z)|

)2
,

hence

E[W̃ f (V)] ≥ t

(
1/m +

1
r

(
∑

z:δ(z)<2/m
|δ(z)|

)2
+

1
m ∑

z:δ(z)≥2/m
δ(z)

)

≥ t
m

(
1 +

(
∑

z:δ(z)<2/m
|δ(z)|

)2
+ ∑

z:δ(z)≥2/m
δ(z)

)
.

Since ∑z∈[m] |δ(z)| = ‖P f −U‖1 ≥ ε, at least one of

∑
z:δ(z)<2/m

|δ(z)| > ε/2

or
∑

z:δ(z)≥2/m
|δ(z)| = ∑

z:δ(z)≥2/m
δ(z) ≥ ε/2

must hold. In both cases we have E[W̃ f (V)] > t
m (1 + ε2

4 ), as required.
Finally, we prove the third statement of the lemma. By Hoeffding’s Inequality we have

Pr
[

E[W̃ f (V)]− W̃ f (V) >
ε2t

32m

]
≤ exp

(
− 2ε4t2

1024m2 ∑y∈V(by − ay)2

)
,

where by and ay are upper and lower bounds on P̃(y). Since by ≤ 3/m and ay ≥ 0 for all
y ∈ [m], we get

Pr
[

E[W̃ f (V)]− W̃ f (V) >
ε2t

32m

]
≤ exp(−Ω(ε4t)) = o(1).
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C Proof of Theorem 3

In [20], the bottleneck (with respect to the query complexity) of the algorithm for testing graph
isomorphism in the known-unknown case is the subroutine that tests closeness between two
distributions over V. All other parts of the algorithm make only a polylogarithmic number
of queries. Therefore, our main theorem implies that with quantum oracle access, graph
isomorphism in the known-unknown setting can be tested with Õ(|V|1/3) queries.

On the other hand, a general lower bound on the query complexity of testing distributions
in the known-unknown case need not imply a lower bound for testing graph isomorphism. But
still, in [20] it is proved that a lower bound on the query complexity for deciding whether the
function f : [n] → [n] is one-to-one (that is injective) or is two-to-one (that is pre-image
of any j ∈ [n] is either empty or size 2) is sufficient for showing a matching lower bound
for graph isomorphism. Since our quantum lower bound for the known-unknown testing case
is derived from exactly that problem (see Appendix D), we get a matching lower bound of
Ω(|V|1/3) on the number of quantum queries necessary for testing graph isomorphism in the
known-unknown case.

For the unknown-unknown case, the lower bound mentioned in Theorem 3 follows from
the lower bound for the known-unknown case. To get the upper bound of Õ(|V|7/6) queries,
we have to slightly modify the algorithm from [20]. We start by outlining the ideas in the
algorithm of [20] for testing isomorphism between two unknown graphs G and H.

Let G be a graph and CG ⊆ V(G). A CG-label of a vertex v ∈ V(G) is a binary vector
of length |CG| that represents the neighbors of v in CG. The distribution PCG over {0, 1}|CG |

is defined according to the graph G, where for every x ∈ {0, 1}|CG | the probability PCG(x) is
proportional to the number of vertices in G with CG-label equal to x. Notice that the support
of PCG is bounded by |V(G)|.

The algorithm of [20] is based on two main observations:
1. if there is an isomorphism σ between G and H, then for every CG ⊆ V(G) and the

corresponding CH , σ(CG), the distributions PCG and PCH are identical.
2. if G and H are far from being isomorphic, then for every equally-sized (and not too

small) CG ⊆ V(G) and CH ⊆ V(H), either the distributions PCG and PCH are far, or
otherwise it is possible to “realize” with only a poly-logarithmic number of queries that
there exists no isomorphism that maps CG to CH.

Once these observations are made, the high level idea in the algorithm of [20] is to go over
a sequence of pairs of sets CG, CH (such that with high probability at least one of them sat-
isfies CH , σ(CG) if indeed an isomorphism σ exists), and to test closeness between the
corresponding distributions PCG and PCH .

This sequence of pairs is defined as follows: first we pick (at random) a set UG of
|V|1/4 log3 |V| vertices from G and a set UH of |V|3/4 log3 |V| vertices from H. Then
we make all |V|5/4 log3 |V| possible queries in UG × V(G). After this, for any CG ⊆ UG
the distribution PCG is known exactly. Indeed, the sequence of sets CG, CH will consist of
all pairs CG ⊆ UG, CH ⊆ UH , where both CG and CH are of size log2 |V|. It is not hard
to prove that if G and H have an isomorphism σ, then with probability 1− o(1) the size of
UH ∩ σ(UG) will exceed log2 |V|, and hence one of the pairs will satisfy CH , σ(CG).

Now, for each pair CG, CH we test if the distributions PCG and PCH are identical. Since
17



we know the distributions PCG (for every CG ⊆ UG), we only need to sample the distributions
PCH . Sampling the distributions PCH is done by taking a set S ⊆ V(H) of size Õ(

√
|V|) and

re-using it for all these tests. In total, the algorithm in [20] makes roughly |UG × V(G)|+
|UH × S| = Õ(|V|5/4) queries.

To get the desired improvement, we follow the same path, but use our quantum dis-
tribution tester instead of the classical one. This allows us to reduce the size of the set S
to Õ(|V|1/3). Consequently, in order to balance the amount of queries we make in both
graphs, we will resize the sets UG and UH to Õ(|V|1/6) and Õ(|V|5/6) respectively, which
still satisfies the “large-intersection” property and brings the total number of queries down to
|UG ×V(G)|+ |UH × S| = Õ(|V|7/6).

D Quantum Lower Bounds for Testing Distributions

Here we show that our quantum testing algorithm for the known-unknown case is close to
optimal: even for testing an unknown distribution (given as f : [n] → [m]) against the

uniform one, we need Ω
(

m1/3
)

quantum queries. As Bravyi, Hassidim, and Harrow [11]
also independently observed, such a lower bound can be derived from known lower bounds
for the collision problem. However, one has to be careful to use the version of the lower bound
that applies to functions f : [m] → [m], due to Ambainis [3] and Kutin [29], rather than the
earlier lower bound of Aaronson and Shi [2] that had to assume a larger range-size.

THEOREM 17. Let A be a quantum algorithm that given a fixed ε ∈ [0, 1] tests whether
an unknown distribution is equal to uniform or at least ε-far from it, meaning that for ev-
ery f : [n] → [m], with success probability at least 2/3, it decides whether P f = U or
‖P f −U‖1 ≥ ε (under the promise that one of these two cases holds). Then A makes

Ω
(

m1/3
)

queries to f .

PROOF. Consider the following distribution on f : [m] → [m]: with probability 1/2, f
is a random 1-1 function (equivalently, a random permutation on [m]), and with probability
1/2, f is a random 2-to-1 function. In the first case we have P f = U, while in the second
case P f (j) ∈ {0, 2/m} for all j ∈ [m] and hence ‖P f −U‖1 = 1. Thus a quantum testing
algorithm like A can decide between these two cases with high success probability. But
Ambainis [3] and Kutin [29] showed that this requires Ω(m1/3) queries.

E Quantum Lower Bounds for Reconstructing Distributions

Previously we studied the problem of deciding whether an unknown distribution, given by
f : [n] → [m], is close to or far from another distribution (which itself may be known or un-
known). Of course, the easiest way to solve such a decision problem would be to reconstruct
the unknown distribution, up to some small L1-error. Efficiently solving the reconstruction
problem, say in m1/2 or even m1/3 queries, would immediately allow us to solve the de-
cision problem. However, below we prove that even quantum algorithms cannot solve the
reconstruction problem efficiently.
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THEOREM 18. Let 0 < ε < 1/2 be a fixed constant. Let A be a quantum algorithm that
solves the reconstruction problem, meaning that for every f : [n] → [m], with probability at
least 2/3, it outputs a probability distribution P ∈ [0, 1]m such that ‖P − P f ‖1 ≤ ε. Then
A makes Ω(m/ log m) queries to f .

PROOF. The proof uses some basic quantum information theory, and is most easily stated in
a communication setting. Suppose Alice has a uniformly distributed m-bit string x of weight
m/2. This is a random variable with entropy log ( m

m/2) = m − O(log m) bits. Let q be
the number of queries A makes. We will show below that Alice can give Bob Ω(m) bits of
information (about x), by a process that (interactively) communicates O(q log m) qubits. By
Holevo’s Theorem [27] (see also [16, Theorem 2]), establishing k bits of mutual information
requires communicating at least k qubits, hence q = Ω(m/ log m).

Given an x ∈ {0, 1}m of weight n = m/2, let f : [n]→ [m] be an injective function to
{j | xj = 1}, and let P f be the corresponding probability distribution over m elements (which
is P f (j) = 2/m where xj = 1, and P f (j) = 0 where xj = 0). Let P be the distribution
output by algorithm A on f . We have ‖P − P f ‖1 ≤ ε with probability at least 2/3. Define
a string x̃ ∈ {0, 1}m by x̃j = 1 iff P(j) ≥ 1/m. Note that at each position j ∈ [m]
where xj 6= x̃j, we have |P(j)− P f (j)| ≥ 1/m. Hence ‖P − P f ‖1 ≥ d(x, x̃)/m. Since
‖P − P f ‖1 ≤ ε (with probability at least 2/3), the algorithm’s output allows us to produce
(with probability at least 2/3) a string x̃ ∈ {0, 1}m at Hamming distance d(x, x̃) ≤ εm from
x. But then it is easy to calculate that the mutual information between x and x̃ is Ω(m) bits.

Finally, to put this in the communication setting, note that Bob can run the algorithm
A, implementing each query to f by sending the O(log n)-qubit query-register to Alice, who
plugs in the right answer and sends it back (this idea comes from [12]). The overall commu-
nication is O(q log m) qubits.

F From Sampling Problems to Oracle Problems
A standard way to access a probability distribution P on [m] is by sampling it: sampling
once gives the outcome y ∈ [m] with probability P(y). However, in this paper we usually
assume that we can access the distribution by querying a function f : [n] → [m], where the
probability of y is now interpreted as the fraction of the domain that is mapped to y. Below
we describe the connection between these two approaches.

Suppose we sample P n times, and estimate each probability P(y) by the fraction P̃(y)
of times y occurs among the n outcomes. We will analyze how good an estimator this is for
P(y). For all j ∈ [n], let Yj be the indicator random variable that is 1 if the jth sample is y, and
0 otherwise. This has expectation E[Yj] = P(y) and variance Var[Yj] = P(y)(1−P(y)).
Our estimator is P̃(y) = ∑j∈[n] Yj/n. This has expectation E[P̃(y)] = P(y) and variance
Var[P̃(y)] = P(y)(1− P(y))/n, since the Yj’s are independent. Now we can bound the
expected error of our estimator for P(y) by

E
[
|P̃(y)−P(y)|

]
≤
√

E
[
|P̃(y)−P(y)|2

]
=
√

Var
[
P̃(y)

]
≤
√
P(y)/n.

And we can bound the expected L1-distance between the original distribution P and its ap-
19



proximation P̃ by

E
[
‖P̃ − P‖1

]
= ∑

y∈[m]
E
[
|P̃(y)−P(y)|

]
≤ ∑

y∈[m]

√
P(y)/n ≤

√
m/n,

where the last inequality used Cauchy-Schwarz and the fact that ∑y P(y) = 1. For in-
stance, if n = 10000m then E[‖P̃ − P‖1] ≤ 1/100, and hence (by Markov’s Inequality)
‖P̃ − P‖1 ≤ 1/10 with probability at least 9/10. If we now define a function f : [n]→ [m]
by setting f (j) to the jth value in the sample, we have obtained a representation which is
a good approximation of the original distribution. Note that if n = o(m) then we cannot
hope to be able to approximately represent all possible m-element distributions by some
f : [n] → [m], since all probabilities will be integer multiples of 1/n. For instance if
P is uniform and n = o(m), then the total L1-distance between P and a P̃ induced by
any f : [n] → [m] is near-maximal. Accordingly, the typical case we are interested in is
n = Θ(m).
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