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The exam is “open book”, meaning you can bring any kind of paper you want but no
electronic devices. You are allowed to answer in English or Dutch.

1. Let U be a 1-qubit unitary that we would like to implement in a controlled way, i.e., we
want to implement a map |c〉|b〉 7→ |c〉U c|b〉 for all c, b ∈ {0, 1}. Suppose there exist 1-qubit
unitaries A, B, and C, such that ABC = I and AXBXC = U (remember that X is the
NOT-gate). Give a circuit that acts on two qubits and implements a controlled-U gate, using
CNOTs and (uncontrolled) A, B, and C gates.

2. (a) Suppose x is an n-bit string. What happens if we apply a Hadamard transform to each

qubit of the n-qubit state
1√
2n

∑
y∈{0,1}n

(−1)x·y|y〉?

(b) Give a quantum algorithm that uses T queries to n-bit string x, and that maps |y〉 7→
(−1)x·y|y〉 for every y ∈ {0, 1}n that contains at most T 1s (i.e., for every y of Hamming
weight ≤ T ). You can argue on a high level, no need to write out circuits in detail.

(c) Give a quantum algorithm that with high probability outputs x, using at most n/2+2
√

n
queries to x. Hint: Approximate the state of part (a) using the subroutine of part (b), and see what

happens if you apply Hadamards to the approximate state. Use the fact that 1
2n

∑n/2+2
√

n

w=0

(
n
w

)
is nearly 1.

3. Consider the sorting problem: there are N numbers a1, . . . , aN and we want to sort these. We
can only access the numbers by making comparisons. A comparison is similar to a black-box
query: it takes 2 indices i, j as input and outputs whether ai < aj or not. The output of
a sorting algorithm should be the list of N indices, sorted in increasing order. It is known
that for classical computers, N log(N) + O(N) comparisons are necessary and sufficient for
sorting. Prove that a quantum algorithm needs at least Ω(N) comparisons for sorting.
Hint: Show how you can use sorting to solve one of the problems we analyzed in the lecture (Chapter 8 and

exercises), and then invoke the lower bound for that problem.

4. Consider the following communication complexity problem, called the “Hidden Matching
Problem.” Alice’s input is some x ∈ {0, 1}n. Bob’s input is a matching M , i.e., a partition of
{1, . . . , n} into n/2 disjoint pairs (assume n is a power of 2). Their goal is that Bob outputs a
pair (i, j) ∈M together with the parity xi⊕xj of the two bits indexed by that pair. It doesn’t
matter which pair (i, j) ∈M Bob outputs, as long as the additional bit of output equals the
parity of the two indexed bits of x. Show that they can solve this problem with success
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probability 1 using only a message of log n qubits from Alice to Bob (and no communication
from Bob to Alice).
Hint: The matching M induces a projective measurement that Bob can do on the message he receives.

5. Shor’s 9-qubit code allows to correct a bitflip and/or a phaseflip on one of its 9 qubits. Below
we give a 4-qubit code which allows to detect a bitflip and/or a phaseflip. By this we mean
that after the detection procedure we either have the original uncorrupted state back, or we
know that an error occurred (though we do not know which one). The logical 0 and 1 are
encoded as:

|0〉 = 1
2(|00〉+ |11〉)⊗ (|00〉+ |11〉)

|1〉 = 1
2(|00〉 − |11〉)⊗ (|00〉 − |11〉)

(a) Show how we can detect a bitflip error.

(b) Show how we can detect a phaseflip error.

(c) Does that mean that we can now detect any 1-qubit error? Explain your answer.
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