Quantum Computing (5314QUCO6Y), Final exam

Ronald de Wolf

June 12, 2017 $14{:}00{-}17{:}00$ IWO 4.04B, Meibergdreef 29, Amsterdam ZO

The exam is "open book," meaning you can bring any kind of paper you want but no electronic devices. Please answer in English. Use a black or blue pen, not a pencil. Write clearly and explicitly, and explain your answers. For a multipart-question, you may assume answers for earlier parts of the question to answer later parts, even if you don't know the earlier answers. The total number of points adds up to 9; your exam grade will be your number of points +1. Your final grade will be 60% exam +40% homework, rounded to the nearest integer.

- 1. (1 point)
 - (a) Which quantum state do we get if we apply $(H \otimes I)$ CNOT to

$$\sqrt{\frac{1}{3}}|00\rangle + \sqrt{\frac{2}{3}}|11\rangle?$$

Here I is the 1-qubit identity operation, H is the 1-qubit Hadamard, and CNOT is the 2-qubit controlled-not operation with the first (=leftmost) qubit being the control.

- (b) What is the probability of seeing $|11\rangle$ if we measure the resulting state in the computational basis?
- 2. (2 points) The 3-bit majority function $f : \{0,1\}^3 \to \{0,1\}$ takes value 1 iff at least 2 of its 3 input bits are 1.
 - (a) Give a quantum algorithm that computes f(x) with success probability 1 (for every possible input $x \in \{0, 1\}^3$), using 2 queries. You do not need to give the exact circuit in full detail, an informal (but precise) description of the algorithm is good enough. Hint: Remember that we can compute the parity of 2 bits with 1 quantum query.
 - (b) Prove a corresponding lower bound: 2 queries are also *necessary* for every quantum algorithm that computes f with success probability 1.
 - (c) What is the quantum query complexity of this f if you allow an algorithm to have error probability at most 1/3 on every input?

- 3. (2.5 points) Consider the search problem: we have oracle access to $x \in \{0,1\}^N$, with unknown Hamming weight t = |x|. We want to find a solution, i.e., an index $i \in \{0, \ldots, N-1\}$ such that $x_i = 1$. If $x = 0^N$ then our search algorithm should output "no solution."
 - (a) Suppose we know an integer s such that $t \in \{1, \ldots, s\}$. Give a quantum algorithm that finds a solution with probability 1, using $O(\sqrt{sN})$ queries to x. Hint: Try running the exact version of Grover (see top of p.38 of the lecture notes) with different guesses for what the actual t is.
 - (b) Suppose we know that $t \in \{s + 1, ..., N\}$. Give a quantum algorithm that finds a solution with probability at least $1 2^{-s}$, using $O(\sqrt{sN})$ queries to x.
 - (c) For given $\varepsilon > 0$, give a quantum algorithm that solves the search problem with probability $\geq 1 \varepsilon$ using $O(\sqrt{N \log(1/\varepsilon)})$ queries, without assuming anything about t. *NB: The important part here is that the* $\log(1/\varepsilon)$ *is inside the square-root; usual amplification by* $O(\log(1/\varepsilon))$ repetitions of basic Grover would give the worse upper bound of $O(\sqrt{N}\log(1/\varepsilon))$ queries.
- 4. (1.5 points) Explain how Simon's problem (Chapter 3 of the notes) may be viewed as an instance of the Abelian Hidden Subgroup Problem. Say explicitly what the groups G and H are, what the function f is, and why these satisfy the requirements of the HSP. Also say explicitly what the QFT corresponding to G is, what the group H^{\perp} is, and why sampling from H^{\perp} a small number of times leads to an efficient solution to Simon's problem.
- 5. (2 points) This question is about the classical and quantum communication complexity of the *n*-bit equality function: Alice gets input $x \in \{0, 1\}^n$, Bob gets input $y \in \{0, 1\}^n$, and they have to decide whether x = y. Alice and Bob do not share randomness (or entanglement) but can use local (private) randomness.
 - (a) Fix a prime number $p \in [3n, 6n]$, then the set \mathbb{F}_p of integers modulo p is a finite field (i.e., it has a well-defined addition and multiplication). For $x = (x_0, \ldots, x_{n-1}) \in \{0, 1\}^n$, define the univariate polynomial $P_x : \mathbb{F}_p \to \mathbb{F}_p$ of degree < n as $P_x(t) = \sum_{i=0}^{n-1} x_i t^i$ (note that the n bits of x are used as coefficients here, not as the argument of the polynomial). Show that for distinct n-bit strings x and y, we have $\Pr_{t \in \mathbb{F}_p}[P_x(t) = P_y(t)] \le 1/3$, where the probability is taken over a uniformly random $t \in \mathbb{F}_p$.

Hint: Two distinct polynomials, each of degree $\leq d$, are equal on at most d points of the domain \mathbb{F}_p .

- (b) Use (a) to give a classical communication protocol where Alice sends an $O(\log n)$ -bit message to Bob, and Bob can decide whether x = y with success probability $\ge 2/3$.
- (c) Use (a) to give a quantum fingerprinting scheme $x \mapsto |\phi_x\rangle$, where quantum state $|\phi_x\rangle$ has $O(\log n)$ qubits, and $|\langle \phi_x | \phi_y \rangle| \in [0, 1/3]$ for all distinct *n*-bit strings x and y (prove the latter property explicitly, it's not enough to write down only the states).

Solutions

1. (1 point)

- (a) After applying first CNOT, and then *H* on the first qubit (in that order!) we have $\frac{1+\sqrt{2}}{\sqrt{6}}|00\rangle + \frac{1-\sqrt{2}}{\sqrt{6}}|10\rangle$
- (b) 0, because $|11\rangle$ has 0 amplitude in the resulting state.

2. (2 points)

(a) Let $x = x_0 x_1 x_2$ be the 3-bit input.

Compute $x_0 \oplus x_1$ using one quantum query (for instance by Deutsch-Jozsa algorithm for n = 1) If $x_0 \oplus x_1 = 0$ then query and output x_0 ; else query and output x_2 .

This works because if $x_0 \oplus x_1 = 0$ then $x_0 = x_1$ and hence these bits are the majority; and if $x_0 \oplus x_1 = 1$ then $x_0 + x_1 = 1$ and hence x_2 determines the majority.

(b) Suppose we have a *T*-query quantum algorithm \mathcal{A} that computes 3-bit majority with success probability 1 for every possible input $x \in \{0, 1\}^3$. Then we can use \mathcal{A} to compute the AND of x_0 and x_1 with *T* queries: run \mathcal{A} on $x = x_0 x_1 0$. Since we know that computing the 2-bit AND function with success probability 1 requires at least 2 queries (Exercise 8.4), we get $T \geq 2$.

Alternative answer, using polynomial method:

Suppose we have a T-query algorithm \mathcal{A} that computes 3-bit majority with success probability 1 for every possible input $x \in \{0, 1\}^3$. As on page 51/52 of the notes, this induces a 3-variate polynomial p(x) of degree $\leq 2T$ that equals f(x) on every x. You can symmetrize this to a *univariate* polynomial r of degree $\leq 2T$ such that r(0) = 0, r(1) = 0, r(2) = 1, and r(3) = 1. Note that the derivative of r has roots in the intervals [0, 1] and [2, 3], and hence has degree at least 2. Therefore the degree of r itself is at least 3, implying $2T \geq 3$. Since T is an integer, we get $T \geq 2$.

NB: you cannot argue "p has k roots so degree at least k" here, because that type of argument assumes p is univariate, not multivariate. Also, the adversary method doesn't give the correct lower bound here because of the small constant hidden in the $\Omega(\cdot)$ -bound of Eq. (8.1) of the notes.

(c) Just 1, even for classical algorithms:

choose one of the 3 indices uniformly at random and query and output that bit. This equals the majority value with probability at least 2/3.

Clearly there is no 0-query algorithm for a non-constant function, so this 1-query algorithm has the minimal query complexity.

3. (2.5 points)

(a) Run the exact version of Grover s times, once for each possible value of t. For each of those runs, check whether the output-i is a solution. If $|x| \in \{1, \ldots, s\}$, then one of those runs will find a solution with probability 1. The total number of queries is

$$\sum_{k=1}^{s} O(\sqrt{N/k}) + 1 = O(\sqrt{sN}).$$

- (b) There exists a version of Grover's algorithm that uses $O(\sqrt{N/s})$ queries, and that (if |x| > s) finds a solution with probability at least 1/2 (see p.38 of the lecture notes). Run this algorithm s times, each time checking whether the output is a solution. The probability that none of these s runs finds a solution is $\leq (1/2)^s$. The total query complexity is $s(O(\sqrt{N/s}) + 1) = O(\sqrt{sN})$.
- (c) Set $s = \lceil \log(1/\varepsilon) \rceil$. First run the algorithm of (a), then the algorithm of (b). If $|x| \in \{1, \ldots, s\}$ then the algorithm of (a) will find a solution with probability 1. If |x| > s then the algorithm of (b) will find a solution with probability $\geq 1 2^{-s} \geq 1 \varepsilon$. If no solution exists, neither algorithm will return a solution. Both algorithms use $O(\sqrt{sN}) = O(\sqrt{N\log(1/\varepsilon)})$ queries.
- 4. (1.5 points) The input to Simon's problem is $x = (x_0, \ldots, x_{N-1})$, where $N = 2^n$ and each x_i is an *n*-bit string. Set $G = \mathbb{Z}_2^n = \{0, 1\}^n$ (the corresponding QFT is the *n*-fold Hadamard gate), with subgroup $H = \{0, s\}$, and $f : \{0, 1\}^n \to \{0, 1\}^n$ is defined as $f(i) = x_i$. Since f(i) = f(j) iff $(i = j \text{ or } i = j \oplus s)$, this f is constant within each coset of H, and distinct on distinct cosets of H. Since $G = \mathbb{Z}_2^n$, the characters are $\chi_j : G \to \{+1, -1\}$ that factor as n characters of \mathbb{Z}_2 :

$$\chi_j(g) = \prod_{k=1}^n \chi_{j_k}(g_k) = \prod_{k=1}^n (-1)^{g_k j_k} = (-1)^{g \cdot j_k}$$

We have $\chi_j(0^n) = 1$ for all j, and $\chi_j(s) = 1$ iff $s \cdot j = 0 \mod 2$. Hence

$$H^{\perp} = \{\chi_j \mid \chi_j(h) = 1 \text{ for all } h \in H\} = \{\chi_j \mid s \cdot j = 0 \mod 2\}.$$

If you sample uniformly O(n) times from the labels of H^{\perp} , then with high probability you will see n-1 linearly independent j's, all satisfying $s \cdot j = 0 \pmod{2}$. From these, using classical Gaussian elimination (mod 2) you can calculate s, thus solving Simon's problem.

5. (2 points)

- (a) If $x \neq y$, then the polynomial $P_x P_y$ has degree $\leq n-1$ and is not identically equal to 0, hence it has at most n-1 roots. Accordingly, the probably that a uniformly random $t \in \mathbb{F}_p$ makes $P_x(t)$ and $P_y(t)$ equal, is at most $(n-1)/p \leq 1/3$.
- (b) Alice chooses a uniformly random $t \in \mathbb{F}_p$ and sends Bob t and $P_x(t)$, at the expense of $2\lceil \log p \rceil = O(\log n)$ bits of communication. Bob computes $P_y(t)$ from t and his input y, and outputs "equal" if $P_x(t) = P_y(t)$, and outputs "not equal" otherwise. This protocol has success probability 1 if x = y, and success probability $\geq 2/3$ if $x \neq y$ (because of part (a)).
- (c) For each $x \in \{0,1\}^n$, define the $2\lceil \log p \rceil$ -qubit state as follows:

$$|\phi_x\rangle = \frac{1}{\sqrt{p}} \sum_{t \in \mathbb{F}_p} |t\rangle |P_x(t)\rangle$$

If $x \neq y$ then we have

$$\langle \phi_x | \phi_y \rangle = \frac{1}{p} \sum_{t \in \mathbb{F}_p} (\langle t | \langle P_x(t) | \rangle \cdot (|t\rangle | P_y(t) \rangle) = \frac{1}{p} \sum_{t \in \mathbb{F}_p} \langle P_x(t) | P_y(t) \rangle = \frac{|\{t \mid P_x(t) = P_y(t)\}|}{p} \in [0, 1/3]$$

where the last step is by part (a).