
Quantum Computing (5314QUCO6Y), Final exam

Ronald de Wolf

June 12, 2017
14:00–17:00

IWO 4.04B, Meibergdreef 29, Amsterdam ZO

The exam is “open book,” meaning you can bring any kind of paper you want but no
electronic devices. Please answer in English. Use a black or blue pen, not a pencil.
Write clearly and explicitly, and explain your answers. For a multipart-question, you
may assume answers for earlier parts of the question to answer later parts, even if you
don’t know the earlier answers. The total number of points adds up to 9; your exam
grade will be your number of points +1. Your final grade will be 60% exam + 40%
homework, rounded to the nearest integer.

1. (1 point)

(a) Which quantum state do we get if we apply (H ⊗ I)CNOT to√
1

3
|00〉+

√
2

3
|11〉?

Here I is the 1-qubit identity operation, H is the 1-qubit Hadamard, and CNOT is the
2-qubit controlled-not operation with the first (=leftmost) qubit being the control.

(b) What is the probability of seeing |11〉 if we measure the resulting state in the computa-
tional basis?

2. (2 points) The 3-bit majority function f : {0, 1}3 → {0, 1} takes value 1 iff at least 2 of its
3 input bits are 1.

(a) Give a quantum algorithm that computes f(x) with success probability 1 (for every
possible input x ∈ {0, 1}3), using 2 queries. You do not need to give the exact circuit in
full detail, an informal (but precise) description of the algorithm is good enough.
Hint: Remember that we can compute the parity of 2 bits with 1 quantum query.

(b) Prove a corresponding lower bound: 2 queries are also necessary for every quantum
algorithm that computes f with success probability 1.

(c) What is the quantum query complexity of this f if you allow an algorithm to have error
probability at most 1/3 on every input?

1

3. (2.5 points) Consider the search problem: we have oracle access to x ∈ {0, 1}N , with
unknown Hamming weight t = |x|. We want to find a solution, i.e., an index i ∈ {0, . . . , N−1}
such that xi = 1. If x = 0N then our search algorithm should output “no solution.”

(a) Suppose we know an integer s such that t ∈ {1, . . . , s}. Give a quantum algorithm that
finds a solution with probability 1, using O(

√
sN) queries to x.

Hint: Try running the exact version of Grover (see top of p.38 of the lecture notes) with different guesses

for what the actual t is.

(b) Suppose we know that t ∈ {s + 1, . . . , N}. Give a quantum algorithm that finds a
solution with probability at least 1− 2−s, using O(

√
sN) queries to x.

(c) For given ε > 0, give a quantum algorithm that solves the search problem with proba-
bility ≥ 1− ε using O(

√
N log(1/ε)) queries, without assuming anything about t.

NB: The important part here is that the log(1/ε) is inside the square-root; usual amplification by

O(log(1/ε)) repetitions of basic Grover would give the worse upper bound of O(
√
N log(1/ε)) queries.

4. (1.5 points) Explain how Simon’s problem (Chapter 3 of the notes) may be viewed as an
instance of the Abelian Hidden Subgroup Problem. Say explicitly what the groups G and H
are, what the function f is, and why these satisfy the requirements of the HSP. Also say
explicitly what the QFT corresponding to G is, what the group H⊥ is, and why sampling
from H⊥ a small number of times leads to an efficient solution to Simon’s problem.

5. (2 points) This question is about the classical and quantum communication complexity of
the n-bit equality function: Alice gets input x ∈ {0, 1}n, Bob gets input y ∈ {0, 1}n, and they
have to decide whether x = y. Alice and Bob do not share randomness (or entanglement)
but can use local (private) randomness.

(a) Fix a prime number p ∈ [3n, 6n], then the set Fp of integers modulo p is a finite field
(i.e., it has a well-defined addition and multiplication). For x = (x0, . . . , xn−1) ∈ {0, 1}n,
define the univariate polynomial Px : Fp → Fp of degree < n as Px(t) =

∑n−1
i=0 xit

i (note
that the n bits of x are used as coefficients here, not as the argument of the polynomial).
Show that for distinct n-bit strings x and y, we have Prt∈Fp [Px(t) = Py(t)] ≤ 1/3, where
the probability is taken over a uniformly random t ∈ Fp.
Hint: Two distinct polynomials, each of degree ≤ d, are equal on at most d points of the domain Fp.

(b) Use (a) to give a classical communication protocol where Alice sends an O(log n)-bit
message to Bob, and Bob can decide whether x = y with success probability ≥ 2/3.

(c) Use (a) to give a quantum fingerprinting scheme x 7→ |φx〉, where quantum state |φx〉
has O(log n) qubits, and |〈φx|φy〉| ∈ [0, 1/3] for all distinct n-bit strings x and y (prove
the latter property explicitly, it’s not enough to write down only the states).

2

Solutions

1. (1 point)

(a) After applying first CNOT, and then H on the first qubit (in that order!) we have
1 +
√

2√
6
|00〉+

1−
√

2√
6
|10〉

(b) 0, because |11〉 has 0 amplitude in the resulting state.

2. (2 points)

(a) Let x = x0x1x2 be the 3-bit input.
Compute x0⊕ x1 using one quantum query (for instance by Deutsch-Jozsa algorithm for n = 1)

If x0 ⊕ x1 = 0 then query and output x0; else query and output x2.

This works because if x0 ⊕ x1 = 0 then x0 = x1 and hence these bits are the majority;
and if x0 ⊕ x1 = 1 then x0 + x1 = 1 and hence x2 determines the majority.

(b) Suppose we have a T -query quantum algorithm A that computes 3-bit majority with
success probability 1 for every possible input x ∈ {0, 1}3. Then we can use A to compute
the AND of x0 and x1 with T queries: run A on x = x0x10. Since we know that
computing the 2-bit AND function with success probability 1 requires at least 2 queries
(Exercise 8.4), we get T ≥ 2.

Alternative answer, using polynomial method:
Suppose we have a T -query algorithm A that computes 3-bit majority with success
probability 1 for every possible input x ∈ {0, 1}3. As on page 51/52 of the notes, this
induces a 3-variate polynomial p(x) of degree ≤ 2T that equals f(x) on every x. You
can symmetrize this to a univariate polynomial r of degree ≤ 2T such that r(0) = 0,
r(1) = 0, r(2) = 1, and r(3) = 1. Note that the derivative of r has roots in the intervals
[0, 1] and [2, 3], and hence has degree at least 2. Therefore the degree of r itself is at
least 3, implying 2T ≥ 3. Since T is an integer, we get T ≥ 2.
NB: you cannot argue “p has k roots so degree at least k” here, because that type of argument assumes

p is univariate, not multivariate. Also, the adversary method doesn’t give the correct lower bound here

because of the small constant hidden in the Ω(·)-bound of Eq. (8.1) of the notes.

(c) Just 1, even for classical algorithms:
choose one of the 3 indices uniformly at random and query and output that bit. This
equals the majority value with probability at least 2/3.
Clearly there is no 0-query algorithm for a non-constant function, so this 1-query algo-
rithm has the minimal query complexity.

3. (2.5 points)

(a) Run the exact version of Grover s times, once for each possible value of t. For each
of those runs, check whether the output-i is a solution. If |x| ∈ {1, . . . , s}, then one of
those runs will find a solution with probability 1. The total number of queries is

s∑
k=1

O(
√
N/k) + 1 = O(

√
sN).

3

(b) There exists a version of Grover’s algorithm that uses O(
√
N/s) queries, and that (if

|x| > s) finds a solution with probability at least 1/2 (see p.38 of the lecture notes).
Run this algorithm s times, each time checking whether the output is a solution. The
probability that none of these s runs finds a solution is ≤ (1/2)s. The total query
complexity is s(O(

√
N/s) + 1) = O(

√
sN).

(c) Set s = dlog(1/ε)e. First run the algorithm of (a), then the algorithm of (b). If |x| ∈
{1, . . . , s} then the algorithm of (a) will find a solution with probability 1. If |x| > s
then the algorithm of (b) will find a solution with probability ≥ 1 − 2−s ≥ 1 − ε.
If no solution exists, neither algorithm will return a solution. Both algorithms use
O(
√
sN) = O(

√
N log(1/ε)) queries.

4. (1.5 points) The input to Simon’s problem is x = (x0, . . . , xN−1), where N = 2n and each
xi is an n-bit string. Set G = Zn

2 = {0, 1}n (the corresponding QFT is the n-fold Hadamard
gate), with subgroup H = {0, s}, and f : {0, 1}n → {0, 1}n is defined as f(i) = xi. Since
f(i) = f(j) iff (i = j or i = j ⊕ s), this f is constant within each coset of H, and distinct on
distinct cosets of H. Since G = Zn

2 , the characters are χj : G → {+1,−1} that factor as n
characters of Z2:

χj(g) =

n∏
k=1

χjk(gk) =

n∏
k=1

(−1)gkjk = (−1)g·j .

We have χj(0
n) = 1 for all j, and χj(s) = 1 iff s · j = 0 mod 2. Hence

H⊥ = {χj | χj(h) = 1 for all h ∈ H} = {χj | s · j = 0 mod 2}.

If you sample uniformly O(n) times from the labels of H⊥, then with high probability you
will see n − 1 linearly independent j’s, all satisfying s · j = 0 (mod 2). From these, using
classical Gaussian elimination (mod 2) you can calculate s, thus solving Simon’s problem.

5. (2 points)

(a) If x 6= y, then the polynomial Px−Py has degree ≤ n−1 and is not identically equal to 0,
hence it has at most n − 1 roots. Accordingly, the probably that a uniformly random
t ∈ Fp makes Px(t) and Py(t) equal, is at most (n− 1)/p ≤ 1/3.

(b) Alice chooses a uniformly random t ∈ Fp and sends Bob t and Px(t), at the expense of
2dlog pe = O(log n) bits of communication. Bob computes Py(t) from t and his input y,
and outputs “equal” if Px(t) = Py(t), and outputs “not equal” otherwise. This protocol
has success probability 1 if x = y, and success probability ≥ 2/3 if x 6= y (because of
part (a)).

(c) For each x ∈ {0, 1}n, define the 2dlog pe-qubit state as follows:

|φx〉 =
1
√
p

∑
t∈Fp

|t〉|Px(t)〉.

If x 6= y then we have

〈φx|φy〉 =
1

p

∑
t∈Fp

(〈t|〈Px(t)|)·(|t〉|Py(t)〉) =
1

p

∑
t∈Fp

〈Px(t)|Py(t)〉 =
|{t | Px(t) = Py(t)}|

p
∈ [0, 1/3],

where the last step is by part (a).

4

