
1 The Yao Principle (from Minimax)

In classical computing, the Yao principle (Yao, 77) gives an equivalence between two kinds of randomness
in algorithms: randomness inside the algorithm itself, and randomness on the inputs. Let us fix some model
of computation for computing a Boolean function F , like query complexity, communication complexity, etc.
Let Rǫ(F ) be the minimal complexity among all randomized algorithms that compute F (x) with success
probability at least 1 − ǫ, for all inputs x. Let Dµ

ǫ (F ) be the minimal complexity among all deterministic

algorithms that compute F correctly on a fraction of at least 1 − ǫ of all inputs, weighed according to a
distribution µ on the inputs. The Yao principle now states that these complexities are equal if we look at
the “hardest” input distribution µ:

Rǫ(F ) = max
µ

Dµ
ǫ (F ).

Since its introduction, the Yao principle has been an extremely useful tool in computational complexity
analysis. In particular, it allows us to derive lower bounds on randomized algorithms from lower bounds on
deterministic algorithms: choose some “hard” input distribution µ, prove a lower bound on deterministic
algorithms that compute f correctly for “most” inputs, weighted according to µ, and then use Rǫ(F ) ≥
Dµ

ǫ (F ) to get a lower bound on Rǫ(F ). This method is used very often, because it is usually much easier to
analyze deterministic algorithms than to analyze randomized ones. Below we derive this principle from the
theory of 2-player games.

Consider the following setting: player 1 has a choice between some m “pure” strategies and player 2
has a choice between n “pure” strategies. If player 1 plays i and player 2 plays j, then player 1 receives
“payoff” Pij . Player 1 wants to maximize the payoff, player 2 wants to minimize. Viewing P as an m × n
matrix, and using ei and ej to denote the appropriate unit column vectors with a 1 in place i, respectively j,
the payoff corresponds to the matrix product eT

i Pej. However, the players may also use “mixed” strategies
(probability distributions over “pure” strategies) to further their goals. Mixed strategies of players 1 and 2
correspond to m- and n-dimensional column vectors ρ and µ, respectively, of non-negative reals that sum
to 1. Now the expected payoff is ρT Pµ. Note that if player 1 can choose his strategy ρ knowing player 2’s
strategy µ, then he would choose ρ to maximize the payoff ρT Pµ; in this situation player 2 would do best
to choose µ to minimize maxρ ρT Pµ, giving expected payoff minµ maxρ ρT Pµ. Conversely, if player 2 could
choose his strategy knowing player 1’s strategy, then the expected payoff would be maxρ minµ ρT Pµ. The
minimax theorem tells us that these two quantities are in fact equal:

min
µ

max
ρ

ρT Pµ = max
ρ

min
µ

ρT Pµ.

It is not hard to see that without loss of generality the “inner” choices can be assumed to be pure strategies,
so as an easy consequence we also have

min
µ

max
i

eT
i Pµ = max

ρ
min

j
ρT Pej.

Yao was the first to interpret this result in computational terms. Player 1 chooses an algorithm to compute
function F and player 2 chooses an input x that is hard for player 1. The pure strategies for player 1 are
all deterministic classical algorithms of query complexity ≤ c, so his mixed strategies are all randomized

classical algorithms of complexity ≤ c. The pure strategies for player 2 are the possible inputs, so his
mixed strategies are all possible input distributions µ. We define the payoff matrix such that Pax = 1 if
deterministic algorithm a computes the function correctly on input x; and Pax = 0 otherwise. In this setting,
the minimax theorem states

min
µ

max
a

eT
a Pµ = max

ρ
min

x
ρT Pex.

Let us interpret both sides of this equation. On the left, the quantity eT
a Pµ is the fraction of inputs on

which deterministic algorithm a is correct, weighed according to µ, and maxa eT
a Pµ denotes this fraction for

the optimal deterministic algorithm of complexity ≤ c. Thus the left-hand-side of the equation gives this
optimal correct fraction for the hardest distribution µ achievable by deterministic complexity-c algorithms.

1



On the other hand, ρT Pex is the success probability on input x achieved by the randomized algorithm given
by probability distribution ρ over deterministic algorithms, and minx ρT Pex is its success probability on
the hardest input. Thus the right-hand-side gives the highest worst-case success probability achievable by
randomized complexity-c algorithms. Since these two quantities are equal for all c, we obtain:

Rǫ(F ) = max
µ

Dµ
ǫ (F ).

2 Classical Lower Bound for Simon’s Problem

We will use the Yao principle to prove a classical lower bound for a decision version of Simon’s problem:

Given: input x = (x0, . . . , xN−1) which we can query, where N = 2n

Promise: there is an s ∈ {0, 1}n such that: xi = xj iff (i = j or i = j ⊕ s)
Task: decide whether s = 0n

Consider the input distribution µ defined as follows. With probability 1/2, f is a random permutation of
{0, 1}n; this corresponds to the case s = 0n. With probability 1/2, we pick a non-zero string s at random,
and for each i, i ⊕ s pair, we pick a unique value for xi = xi⊕s at random. Now consider a deterministic
algorithm with error ≤ 1/3 under µ, that makes T queries to x. We want to show that T = Ω(

√
2n).

First consider the case s = 0n. We can assume the algorithm never queries the same point twice. Then
the T outcomes of the queries are T distinct n-bit strings, and each sequence of T strings is equally likely.

Now consider the case s 6= 0n. Suppose the algorithm queries the indices i1, . . . , iT (this sequence depends
on x) and gets outputs xi1 , . . . , xiT

. Call a sequence of queries i1, . . . , iT good if it shows a collision (i.e.,
xik

= xiℓ
for some k 6= ℓ), and bad otherwise. If the sequence of queries of the algorithm is good, then we

can find s, since ik ⊕ iℓ = s. On the other hand, if the sequence is bad, then each sequence of T distinct
outcomes is equally likely—just as in the s = 0n case! We will now show that the probability of the bad case
is very close to 1 for small T .

If i1, . . . , ik−1 is bad, then we have excluded
(

k−1

2

)

values of s, and all other values of s are equally likely.
The probability that the next query ik makes the sequence good, is the probability that xik

= xij
for some

j < k, equivalently, that the set S = {ik ⊕ ij | j < k} happens to contain the string s. But S has only k − 1

members, while there are 2n − 1 −
(

k−1

2

)

equally likely remaining possibilities for s. This means that the
probability that the sequence is still bad after query ik is made, is very close to 1. In formulas:

Pr[x1, . . . , xT is bad] =
T
∏

k=2

Pr[i1, . . . , ik is bad | i1, . . . , ik−1 is bad]

=

T
∏

k=2

(

1 − k − 1

2n − 1 −
(

k−1

2

)

)

≥ 1 −
T
∑

k=2

k − 1

2n − 1 −
(

k−1

2

) .

Here we used the fact that (1 − a)(1 − b) ≥ 1 − (a + b) if a, b ≥ 0.
We can approximate the last formula by 1 − T 2/2n. Hence T has to be Ω(

√
2n) in order to enable the

algorithm to get a good sequence of queries with decent probability (if it gets a bad sequence, it cannot “see”
the difference between the s = 0n case and the s 6= 0n case).

2


