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Abstract—Models of interaction tasks are quantitative descriptions of relationships between human temporal performance and the

spatial characteristics of the interactive tasks. Examples include Fitts’ law for modeling the pointing task and Accot and Zhai’s steering

law for the path steering task. Interaction models can be used as guidelines to design efficient user interfaces and quantitatively
evaluate interaction techniques and input devices. In this paper, we introduce and experimentally verify an interaction model for a 3D

object-pursuit interaction task. Object pursuit requires that a user continuously tracks an object that moves with constant velocities in a
desktop virtual environment. For modeling purposes, we divide the total object-pursuit movement into a tracking phase and a

correction phase. Following a two-step modeling methodology that is originally proposed in this paper, the time for the correction phase
is modeled as a function of path length, path curvature, target width, and target velocity. The object-pursuit model can be used to

quantitatively evaluate the efficiency of user interfaces that involve 3D interaction with moving objects.

Index Terms—3D interaction, interaction modeling, object pursuit.
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1 INTRODUCTION

IN physiology, pursuit is defined as the action of the eye in
following a moving object. In this paper, we introduce

object pursuit to describe a 3D interaction task, in which
users are required to continuously track a 3D moving object
with an input device. Object-pursuit tasks can be found in
gaming, video surveillance systems, and air traffic control
systems. For example, locating and returning a virtual ball
with a bat in a virtual reality ping-pong game would be a
typical object-pursuit task.

In human-computer interaction, models describe quanti-
tative relationships between human temporal performance
and the spatial characteristics of an interactive task. Well-
known examples include Fitts’ law [1] for modeling object
pointing and Accot and Zhai’s steering law [2] for path
steering. Interaction models have been used to guide
interface designers in designing efficient interfaces [3], [4],
to compare the performance of input devices [5], [6] or to
evaluate the efficiency of interaction techniques [7].

The aim of this study is to derive interaction models for
object pursuit in a desktop virtual environment. Our
motivation originated from the observation that object
pursuit differs from object pointing and path steering in
two fundamental ways. First, in an object-pursuit task, users
are required to track a moving target. In object pointing tasks,
the position of the target object remains fixed throughout the

task. Similarly, in path steering, the path that must be
traversed is fixed. A second difference is that the final
destination of the object in a pursuit task is not known in
advance by the user. For pointing and steering, the final
target destination is known by the user before the task is
initiated. These observations raise two motivating questions

1. How do these differences affect the object-pursuit inter-
action model?

Fitts’ law and the steering law are interaction
models that describe performance in terms of spatial
characteristics of pointing and steering. For example,
the index of difficulty for these laws is driven by
spatial factors that model the distance to the target,
width of the target, width of the path, etc. Since
object pursuit involves the tracking of a moving
object at a certain velocity, it is quite obvious that
temporal characteristics of the task will play a role.
How can these temporal characteristics be modeled?

2. Does the underlying movement made by a user to
complete a pursuit task differ from the movement made
during a pointing and steering task?

A pointing movement can be considered as a
movement which has an initial ballistic phase fol-
lowed by a perceptually driven corrective phase [8].
Accot and Zhai’s steering law was formulated with
the idea that a path steering task is composed of an
infinite number of continuous goal-crossing tasks, i.e.,
a smooth movement. One assumption in both of these
laws is that the target destination is known in advance
and the user can take this into account when
performing the task. For object pursuit, the final
destination is not known by the user in advance. The
decision on how to track the moving object is based
solely on the feedback received by the user. Will this
affect the movement made by the user?

In a previous paper [9], we reported on the design and
analysis of an object-pursuit experiment in a desktop virtual
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environment. In this paper, we extended this work by
providing a more accurate modeling methodology and
more insight into the object-pursuit movements. For
completeness, some of the material from [9] is repeated.
Our main contributions are as follows:

. We propose to model the total movement time of the
object-pursuit task in two phases: a tracking phase
and a correction phase. The tracking phase is
modeled as: Ttracking ¼ L=v. For the correction phase,
we statistically propose a model that can best
describe the empirical data

logðTcorrectionÞ ¼ aþ blog
L
W
þ cvþ d! þ elog

L
W

v;

where L , W , v, and ! represent path length, object
size, object velocity, and path curvature; a; b; c, and d
are empirically determined constants.

. From this model, we derive an optimal target velocity
with which the total time (Ttracking þ Tcorrection ) can be
minimized. This velocity can be expressed as a
function of path length, path curvature, and target
width and can be used by UI designers as a guideline
of designing a 3DUI with moving objects.

. It is demonstrated that user movement during the
tracking phase is not a smooth movement, but
consists of several small unsteady submovements.
The user movement during the correction phase can
be thought of as a collection of pointing movements
that can be modeled by Fitts’ law.

2 RELATED WORK

2.1 Pursuit
In physiology, pursuit is defined as the action of the eye in
following a moving object. Given the parts of the human
body that are used, pursuit can be categorized into eye
movement [10], [11], locomotion [12], and manual tasks
[13]. In this paper, we use the term object pursuit to describe
an interaction task in which users track a moving 3D target
with an input device. To our knowledge, object pursuit has
never been systematically investigated as an interaction task
in human-computer interaction.

2.2 Modeling Interaction

There are only a few well-formalized and accepted
quantitative models that can be used as tools to compare
the efficiency between interaction techniques or input
devices. One of the best known model is Fitts’ law which
has a widely applied scope [5], [14], [15]. Fitts’ law predicts
the time required to rapidly move from a source to a target
as a function of the distance to and the size of the target.
Fitts’ law has been used to model the act of pointing in both
the physical world [16] and a virtual environment [17], [18].
One common formulation of Fitts’ law is

T ¼ aþ b ID ¼ aþ blog2
L
W
þ 1

! "
; ð1Þ

where a and bare experimentally determined constants, L is
the distance to the target and W is the target width. The
term log2ðL=W þ 1Þ is commonly referred to as the index of
difficulty (ID ).

Accot and Zhai developed the steering law [2], [19] for
path steering tasks. The idea of the steering law assumes
that a path steering task is composed of an infinite number
of goal crossing tasks, each of which could be separately
modeled by Fitts’ law. If the path width is constant, the
steering law can be simply described as

T ¼ aþ b ID ¼ aþ b
L
W

; ð2Þ

with L and W representing the length and width of the path,
respectively. In [20], we revisited the steering law for 3D
manipulation tasks and extended the steering law as below

logðTÞ ¼ aþ b ID ¼ aþ b log
L
W
þ c!

! "
; ð3Þ

introducing the influence of curvature ! of the steering path.
The index of difficulty ID is then defined as logðL=W Þ þ c! .

3 METHODOLOGY

3.1 Modeling Methodology

The traditional procedure of modeling interaction tasks
involves the formulation, validation, and application of
interaction models. For validation, statistical methods are
usually directly applied in examining the relationship
between the data collected from the experiment and the
proposed model. In this paper, we also follow the traditional
procedure, but the methodology used for validation is
different.

We propose a two-step methodology to validate the
effect of different groups of independent variables. The first
step aims to verify how the task completion time can be
influenced by the distance (L ) to be traveled during the
interaction task, in parallel with the movement direction,
and the extent to which the movement is constrained (W ).
The reason is that L and W are the independent variables
that are incorporated in most of the common interaction
tasks, such as pointing, path steering, and object pursuit.
Specifically, in the first step, we focus on verifying if there is
a linear relationship between log T and logðL=W Þ, i.e.,

log T ¼ aþ b log
L
W

; ð4Þ

and if the term L=W is sufficient in modeling the movement
time, without considering other independent variables. This
can be implemented by categorizing L and W according to
other independent variables. For each condition, i.e., at each
level of other independent variables, we verify if there is
statistical evidence in the data that (4) holds or not. If no
evidence is found for (4) to fit the data, other terms such as a
separate L , W or other combinations rather than L=W need
to be introduced. There are several reasons we choose to
examine a linear relationship between log T and logðL=W Þ
instead of a direct relationship between T and L=W . From a
statistics point of view, T and L=W collected from the
experiments do not usually have normal distributions and
equal variances, which violates the assumptions of applying
statistical methods, such as ANOVA and regression
analysis. Taking the logarithm of both T and L=W can help
to meet these assumptions such that the validity of using
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these methods can be guaranteed. From a modeling point of
view, (4) can be transformed into Stevens’ power law [21]
((4) is the result of taking the logarithm of both sides of (5))

T ¼ 10a L
W

! " b

; ð5Þ

in which the exponent b can be used to distinguish between
different interaction tasks. For instance, it is demonstrated
[22] that Fitts’ law which describes the pointing time T as a
linear function of log2ðL=W þ 1Þ is very close to the power
law with an exponent around 1=3 and that the steering law
which describes the steering time T as a linear function of
L=W can be represented by the power function with an
exponent around 1. It is of particular interest to verify how
the exponent b derived for object pursuit differs from
pointing and path steering.

The second step of the methodology focuses on examining
the influence of other independent variables on the coeffi-
cients a and b in (4). This is different from the traditional
modeling approach which directly verifies the relationship
between other independent variables and the movement
time. The reason is that through examining the dependency
of a and b on other independent variables, the methodology
allows a way to investigate the interaction terms between
L=W and other variables, which is difficult to handle using
the traditional approach. For object-pursuit tasks, we study
how a and bdepend on object velocity v and path curvature ! .
Specifically, the starting point is to verify if a and b linearly
depend on v, i.e.,

aðvÞ ¼ a0 þ a1v; ð6Þ

bðvÞ ¼ b0 þ b1v; ð7Þ

where a0, a1, b0, and b1 are empirically determined
constants. The new model can then be derived by
combining (4), (6), and (7), i.e.,

log T ¼ a0 þ a1vþ ðb0 þ b1vÞ log
L
W

: ð8Þ

By examining the effect of b1, (7) provides a way to verify if
the interaction term v logðL=W Þ also significantly affects the
movement time. To further include the effect of path
curvature ! , the same procedure can be applied, i.e., to
validate the following formulae:

a0ð! Þ ¼ a00 þ a01!; ð9Þ

a1ð! Þ ¼ a10 þ a11!; ð10Þ

b0ð! Þ ¼ b00 þ b01!; ð11Þ

b1ð! Þ ¼ b10 þ b11!: ð12Þ

The complete model can be constructed by combining the
above equations

log T ¼ a00 þ a01! þ ða10 þ a11! Þvþ ððb00 þ b01! Þ

þ ðb10 þ b11! ÞvÞ log
L
W

;
ð13Þ

which includes the effect of logðL=W Þ, v, and ! , as well as
the interaction terms. If, for example, statistical evidence

shows no effect of a1 in (6), there is no need to verify (10). In
addition, if it is statistically verified that the linear functions
in (6) to (12) are not sufficient in describing the relationship,
a polynomial function with a higher degree (e.g., a
quadratic, cubic, or quartic function) needs to be further
introduced and verified.

3.2 Movement Analysis Methodology
Our goal is to investigate whether object-pursuit move-
ments performed in the virtual environment are smooth.
This is motivated by the fact that the object is moving with a
uniform velocity. It is of particular interest to find out if
users also move with a constant velocity in order to keep
track of the selected object. To analyze the object-pursuit
movement, we investigate how instantaneous velocities
vary over time by examining the velocity profile for each of
the trials. An instantaneous velocity is calculated as the
displacement in a time frame (approximately 1/120 s in our
experiments) over the time frame in the direction of the
task. For each object-pursuit task, a velocity profile is a plot
of instantaneous velocities as a function of time.

The metric used to measure a movement “smoothness”
is variance-to-mean ratio " 2=#, which is also known as the
index of dispersion. It is a measure used to quantify
whether a set of instantaneous velocities are clustered or
dispersed compared to a standard statistical model. The
velocities are considered not dispersed if " 2=# ¼ 0, under-
dispersed if 0 < " 2=# < 1, or overdispersed if " 2=# > 1 [23],
[24]. For example, the object which moves with constant
velocities leads to a nondispersed movement, since the
variance of the velocities is 0.

4 EXPERIMENT

4.1 Apparatus
Fig. 1 shows the desktop virtual environment used in the
experiment. Users are seated 1.35 m away from the display
and the distance between the visual and motor space is 0.65 m.
The origin of the visual space is 0.4 m in front of the display
and 0.6 m above the desktop, the motor space is 0.3 m in front
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Fig. 1. The desktop virtual environment: a head tracked stereo display
and a 6DOF input stylus. Several depth cues were used, including the
stereoscopic viewing, head tracking, head lighting, wire-frame box, and
the chessboard pattern floor.



of the user and 0.3 m above the desktop (see Fig. 2). The
control and display ratio is set to 1, i.e., a 1 cm displacement of
the input stylus in the motor space results in a 1 cm
displacement of its cursor in the visual space. The apparatus
consists of

. A PC with stereo enabled GPU.

. A pair of Crystal Eyes stereoscopic LCD glasses.

. A 67-inch 3D-HDTV (resolution 1;920% 1;080 @
120 Hz).

. A Polhemus FASTRAK with one 6DOF stylus (@
120 Hz).

. A 6DOF Logitech head tracker (@ 60 Hz).

The end-to-end latency was measured to be approximately
80 ms with the method proposed in [25].

4.2 Subjects
Eleven right-handed subjects voluntarily participated in the
experiment. There were two females and nine males, aged
from 24 to 35. Six of them were nonexperienced VR users.
All participants had normal or corrected to normal vision
and none of them was stereo blind.

4.3 Task
The task was designed to emulate a simple object-pursuit
task. A ball is placed in the virtual environment for
tracking. The user uses the input stylus to select the ball
by placing the stylus within the radius of the ball. As soon
as the ball is selected, it will move along a predefined path
with a predefined constant velocity. The user must move
the input stylus in such a way that the ball stays selected.
Whenever the ball is not selected, i.e., the stylus is not
within the radius of the ball, the velocity of the ball is
instantaneously changed to zero. In this case, the user is
required to reselect the ball, then continue the task. Initially,
the ball is positioned at the start of the path. The task is
completed when the ball moves to the end of the path.

Variables for this task are the ball velocity, ball width,
path length, and path curvature. The variable values are set
at the start of the task and remain constant during the task.

The ball radius is denoted as W , the ball velocity v, path
length L , and curvature ! . The time that the velocity of the
ball is nonzero is defined as the tracking time. The time that
the velocity of the ball is zero is defined as the correction
time. The time for completing an object-pursuit task is the
sum of the tracking time and the correction time, which is
defined as the total time.

Fig. 3 illustrates the provided visual feedback. The feed-
back of the stylus is a pen with a small tip (3D coordinate axes)
and the ball is drawn as a sphere. The pen and the sphere are
colored red when the velocity of the ball is zero and green
when the velocity is not zero. The path of the ball is not drawn.
A 0:72 m% 0:4 m% 0:4 m sized wire-frame box with a
checkerboard floor was also rendered to enhance the depth
perception.

4.4 Procedure
An experiment of repeated measures design was conducted.
Two path curvatures, a straight and circular path, were used
(see Fig. 4). Two target ball radii of 0.015 and 0.02 m were
used. Three path lengths of 0.24, 0.30, and 0.36 m were used.
In a pilot study [9], we have selected five moving target
velocities, 0.10, 0.15, 0.20, 0.25, and 0.30 m/s. These
velocities were tested to be suitable to track for both
nonexperienced and experienced users. Each combination
of the above parameters was repeated three times, resulting
in 2% 2% 3% 5% 3 ¼ 180 trials for each subject (curvature%
target size % path length % velocity % repeats).

Trials were presented in a random order to compensate
the practice effect. Subjects were allowed to take breaks
between trials.

5 RESULTS

5.1 Modeling Object-Pursuit Tasks
For the modeling task, we have explored the relationship
between the task completion time and task variables,
including object size, object velocity, path length, and path
curvature. The total task completion time is defined as the
sum of the tracking time and the correction time, i.e., Ttotal ¼
Ttracking þ Tcorrection .

We model the total path as the sum of smaller path
segments. A path segment is defined as a part of the path
for which the ball is selected by the user. Since the ball
velocity is constant, the time needed to track the ball on the
path segment is L n

v , where L n is the length of the nth path
segment. The total tracking time can then be captured
through the equation

Ttracking ¼
L 1

v
þ L 2

v
þ & & & þ L n

v
¼ L

v
: ð14Þ
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Fig. 2. Schematic view of the desktop virtual environment.

Fig. 3. The correction phase (left) and the tracking phase (right) for an
object-pursuit task.

Fig. 4. The curvature of the path, represented by ! , is defined as the
inverse of the path radius.



The tracking time is the actual time when the object is
moving and thus depends only on the length of the path
and the velocity of the object, and not on the path curvature
or ball radius, as can be seen in (14).

Different from Ttracking , Tcorrection , and Ttotal cannot be
precisely derived and thus require regression analysis. The
collected data were logarithmically transformed to meet
the requirements of the statistical methods. The left plot of
Fig. 5 shows the associated probability density function of
Tcorrection for ! ¼ 0 before the transformation. As illustrated,
the histogram deviates from the normal distribution that
fits onto the data (right-skewed). However, as the right
plot of Fig. 5 shows, the data after transformation follow a
bell-shaped density function. The Kolmogorov-Smirnov
test shows that the null hypothesis, i.e., the transformed
data have a normal distribution, cannot be rejected (h ¼ 0)
at the 5 percent significance level.

For each subject, logðTcorrectionÞ is averaged according to
logðL=W Þ, v, and ! . We first perform a three-way ANOVA
with repeated measures on factors logðL=W Þ, v, and ! , each
of which is treated as a within-subject variable. The goal is
to examine whether logðTcorrectionÞ is significantly influenced
by logðL=W Þ, v, ! and the interaction terms between them.
As shown in Table 1, statistical evidence indicates that all
three factors have significant effects on logðTcorrectionÞ. There
is also an effect for the interaction term logðL=W Þ % v. This
gives us an idea of which terms should be involved in the
model, but cannot be used to determine how the model
should exactly be constructed. In the following, we provide
the statistical evidence of how a model for the correction
phase can be derived following the modeling methodology
as described in Section 3.1.

5.1.1 Step 1: The Effect of Path Length and Width
We first examine if there is a linear relationship between
log T and logðL=W Þ at each level of v and ! , i.e., to

statistically verify (4) for different values of v and ! . Table 2
demonstrates that for each of the five velocities in case of
! ¼ 8, a linear regression between log T and logðL=W Þ can
be statistically evidenced (the linear model has a significant
effect with p < 0:05 and the confidence intervals for the
terms a and b exclude zero). There is no evidence for lack of
fit (lack-of-fit tests show no significant effect at 5 percent
level (p > 0:05)), i.e., given v and ! , L=W is an adequate
predictor of the correction time and it is not necessary to
involve other combinations of L and W . The results
presented in Table 2 are illustrated in Fig. 6, where the
correction time linearly increases as the growth of L=W and
each linear model passes through the associate confidence
intervals. There are strong correlations (R2 > 0:95) between
the models represented by the lines and the empirical data
represented by the asterisks.

We have also performed the same analysis in case of
! ¼ 0. Statistical evidence here also shows that (4) is
adequate in describing the effect of path length L and path
width W . For the first step of the modeling methodology,
our results indicate that logðTcorrectionÞ can be modeled as a
linear function of logðL=W Þ.

5.1.2 Step 2: The Effect of Object Velocity and Path
Curvature

The second step aims to verify if and how the coefficients a
and b in Table 2 are influenced by the velocity v and path
curvature ! . We first assume that both a and b can be
modeled as a linear function of v, i.e., the relationship as
described by (6) and (7). For circular path-pursuit tasks
(! ¼ 8), the regression estimates of (6) are shown in Table 3
(R2 ¼ 0:9109; F ð1; 3Þ ¼ 21:34; p¼ 0:019), where both a0 and
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Fig. 5. Left: the distribution of Tcorrection . The histogram represents the
distribution of Tcorrection , while the red curves represent the probability
density function of the normal distribution fitted onto the data. Right: the
distribution of logðTcorrectionÞ.

TABLE 1
Comparison between logðTcorrectionÞ: Three-Way ANOVA

with Repeated Measures on logðL=W Þ, v, and !

* Denotes significance level of 1 percent.

TABLE 2
Step 1: The Statistical Evidence for the Linear Regression between log T and log ID

for Each Velocity (! ¼ 8)



a1 are demonstrated with significant effects (p < 0:05). The
ordinary least squares (OLS) is used as the estimator
between (6) and the empirical data, and minimizes the
sum of squared residuals. Since a1, which represents the
effect of v, is significantly different from 0, a is evidenced to
linearly depend on v. Fig. 7 illustrates how (6) fits onto the
empirical data. It can be seen that a increases as v increases
and the linear model crosses all of the confidence intervals.
There is conclusive evidence in the data that a can be
modeled as a linear function of v. Similarly, the statistical
evidence in Table 4 and Fig. 8 show that b also linearly
depends on v. However, b shows a different trend as v
increases, which can be described by a linear function with
a negative slope.

The same results apply to the case when the object is
pursued on linear paths (! ¼ 0), i.e., both a and b are
linearly dependent on v. Hence, the correction time of the
object-pursuit tasks can be modeled with (8) (for both ! ¼ 0
and ! ¼ 8).

Similarly, the effect of path curvature ! can be included
by examining the dependency of a0, a1, b0, and b1 on ! , to
verify (9), (10), (11), and (12). Statistical evidence has been
found that only a0 linearly depends on ! , while a1, b0, and b1

are all independent of ! . As this procedure is very similar to
the above analysis, statistical evidence is not demonstrated.
It is worth pointing out that two path curvatures are not
sufficient for modeling of path curvature and thus new
experiments are required to further verify (9).

Following the results presented above, the complete
model can finally be expressed by the following form:

log T ¼ a00 þ a01! þ a1vþ ðb0 þ b1vÞ log
L
W

; ð15Þ

which can be transformed into

logðTcorrectionÞ ¼ aþ blog
L
W
þ cvþ d! þ elog

L
W

v: ð16Þ

Table 5 shows the associate regression parameter estimates,
where each term is evidenced to be significant in modeling
the correction time.

5.2 Analyzing Object-Pursuit Movements

Fig. 9 demonstrates a typical velocity profile for an object-
pursuit task selected from the experiment. The blue dotted
line represents the object velocity in the tracking phase,
which was fixed to 0.15 m/s in this example. As the object
remains where it was during the correction phase, the object
velocity in the correction phase represented by the red
dotted line is always zero. The solid curve is the velocity
profile of the tracker that is controlled by the user and thus
is defined as user velocity, with tracking phase represented
by the blue part and correction phase by the red part. In this
section, we analyze the user velocity in the tracking phase
and the correction phase, respectively.

5.2.1 Tracking Phase
In the tracking phase, though users were asked to pursue the
object that moves with a uniform velocity, it is illustrated in
Fig. 9 that the user velocity is still not as constant as the object
velocity. Instead, the user velocity tends to oscillate up and
down around the object velocity. To examine the dispersion
of the user velocity in the tracking phase, for each trial, the
variance-to-mean ratio " 2=# is calculated. Fig. 10 plots how
variance-to-mean is distributed. As can be seen, the disper-
sion spreads out over a large range (between ½0; 3(). In
particular, a large amount of values fall into ½0:5; 1:5(. This is
evidence that the instantaneous velocities in the tracking
phase are dispersed, indicating that the user tracking
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Fig. 7. Step 2: the relationship between coefficient a and v (! ¼ 8) with
respect to Table 3.

Fig. 8. Step 2: the relationship between coefficient b and v (! ¼ 8) with
respect to Table 4.

TABLE 3
Step 2: Regression Parameter Estimates for (6) (! ¼ 8)

Fig. 6. Step 1: the illustration of the linear regression between log T and
log ID for each velocity (! ¼ 8).

TABLE 5
Regression Parameter Estimates for (16)

TABLE 4
Step 2: Regression Parameter Estimates for (7) (! ¼ 8)



movement is not as smooth as the object movement. As can
be seen in Fig. 9, the movement is composed of a large
number of peaks and valleys, which may be used to define
submovements. This also implies that the user dynamically
adjusts its instantaneous velocity in order to keep up with the
moving object.

We have also performed a three-way ANOVA to verify
whether " 2=# is influenced by logðL=W Þ, v, and ! , i.e.,
whether the index of dispersion of the velocities depends on
the index of difficulty of the tasks. As shown in Table 6, all
three factors are evidenced to have significant effects. There
is also an effect for the interaction term v% ! . Fig. 11
illustrates the relationship between the dispersion of the user
velocity " 2=# and the object velocity v. As shown, the
dispersion tends to grow as the object velocity increases, i.e.,
the faster the object moves, the stronger the user velocity
fluctuates in the tracking phase. The influence of logðL=W Þ
and ! on " 2=# is similar to that of v, i.e., the greater logðL=W Þ
(or ! ), the greater the dispersion. This is conclusive evidence
that users’ tracking motion during object-pursuit tasks in the
virtual environment is not a smooth movement, but rather
consists of small unsteady submovements, and the unsteadi-
ness depends on the difficulty of the tasks, which can be
defined by logðL=W Þ, v, and ! .

5.2.2 Correction Phase
In the correction phase, the movement analysis methodology
is also applied. Here, statistical evidence shows that user
movement is not smooth, either. Particularly, as shown in
Fig. 9, the velocity profile in the correction phase closely

resembles the velocity profile of pointing movements, which
can be described by the two-component model [26], [27], i.e.,
a big ballistic movement followed by several small corrective
movements. This can be attributed to the fact that during the
correction phase, the object was kept stationary and users
need to rapidly reach the object from the place the object was
lost, which is similar to 3D pointing movements. The
complete correction phase can then be considered to consist
of several pointing tasks that can be modeled by Fitts’ law.
Inspired by this idea, we propose a different object-pursuit
model, in which each of the correction movement is modeled
by Fitts’ law with the same coefficients
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Fig. 10. The histogram of index of dispersion for instantaneous
velocities.

Fig. 11. The relationship between the dispersion of the user velocity
" 2=# and the object velocity v.

TABLE 6
Comparison between " 2=#: Three-Way ANOVA with

Repeated Measures on logðL=W Þ, v, and !

* Denotes significance level of 1 percent.

Fig. 9. A typical velocity profile. Red solid curve: user velocity in correction phase; blue solid curve: user velocity in tracking phase; red dotted line:
object velocity in correction phase; blue dotted line: object velocity in tracking phase.



Ti ¼ aþ b ID i ¼ aþ blog2
L i

W
þ 1

! "
; ð17Þ

where Ti is the time needed to correct the ith correction
movement, L 0i is the distance between the cursor and the
target before starting the ith correction movement and W is
the ball radius. The total correction time can then be
modeled as

Tcorr ¼
Xn

i¼1

Ti ¼ naþ b
Xn

i¼1

ID i ; ð18Þ

where n is the number of correction movements involved in
one complete trial.

The correspondence between the empirical data and the
model given in (17) can be assessed in Fig. 12, which plots
the time for each correction movement as a function of the
index of difficulty. Note, the correction time related to the
(approximately) same index of difficulty is averaged.
Statistical differences between the correction times stem-
ming from different ID s have been found (F ð1; 48Þ ¼ 492:0;
p < 0:001), i.e., the correction time is significantly affected
by ID i . The goodness of fit for this correction model with
the experimental data is R2 ¼ 0:9111. The regression
parameter estimates for (17) are shown in Table 7, where
both terms (constant and ID ) are evidenced to be significant
(p < 0:05 and the 95 percent confidence intervals exclude
zero) in modeling the correction time.

The statistical evidence confirms our assumption that
each correction movement can be thought of as a pointing
movement, which can be modeled by Fitts’ law with the
same coefficients.

6 DISCUSSION

6.1 Modeling Object Pursuit

Similar to Fitts’ law, it should be defined what the index of
difficulty (ID ) is. We propose to define ID as

logðTcorrectionÞ ¼ aþ c b0 log
L
W
þ vþ d0! þ e0 log

L
W

v
! "

;

ð19Þ

where b0, d0, and e0 are derived as b=c, d=c, and e=cfrom (16).
The definition of ID involves the effect of logðL=W Þ; ! , and v.
b0, d0, and e0 determine the way how they influence the
correction time. From the values in Table 5, b0, d0, and e0

are approximately 0.315, 0.016, and )0:790, indicating that
the same amount of change in v results in a bigger amount of
change in T due to the larger coefficient of v. Note that the
coefficients are affected by adjusting the unit (e.g., from
meter to centimeter the coefficients will decrease to 1/100).
To remove any ambiguity, we consistently use the Interna-
tional System of Units (SI) in our study. Therefore, it is
evidenced that the velocity has a much larger effect on the
correction time than logðL=W Þ and ! . From this we can
deduce that the velocity is the dominant factor influencing
the performance of the object-pursuit task, and not
logðL=W Þ, ! or logðL=W Þ % v. This answers our first research
question as raised in Section 1.

In addition, we have modeled the total task time as the
sum of the tracking and correction time. This raises the
obvious question: Can an object velocity be chosen such that
the total task time is minimized? Recall that the tracking
time, Ttracking ¼ L

v , will decrease when v increases. However,
the correction time logðTcorrectionÞ ¼ aþ b L

W þ c! þ dv will
increase when v increases (see Fig. 13). Hence, the velocity
that minimizes the total task time can be computed by
finding the minimum of the following equation:

Ttotal ¼ Ttracking þ Tcorrection ¼
L
v
þ 10aþblog L

Wþðcþd log L
WÞv: ð20Þ

An extreme of (20) can be found analytically by taking the
derivative of the right side of (20) in terms of v and setting it
equal to 0, i.e.,

d
dv

L
v
þ 10aþblog L

Wþd!þðcþelog L
WÞv

! "
¼ 0: ð21Þ

The solution of (21) is described as

v ¼
2 ProductLog

#########################
L ðc ln 10þeln L

WÞ
p

210
aþd!

2 ðL=W Þ
b
2

$ %

c ln 10þ elnðL=W Þ ; ð22Þ

where ProductLogðxÞ is the Lambert W function (also called
Omega function or product logarithm) which gives the
principal solution for w in x ¼ wew (complex-valued
solutions for v have been discarded). It can be seen from
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Fig. 12. Modeling each of the correction movements in one trial as
a pointing movement using Fitts’ law. Asterisk: average; error bar:
95 percent confidence interval; oblique line: (17).

Fig. 13. Tracking and correction time as a function of object velocity for
L ¼ 0:24 m and ! ¼ 0.

TABLE 7
Regression Parameter Estimates for (17)



(22) that, if the target size W and the path length L are
known, an optimal velocity to minimize the total pursuit
time can be derived. Fig. 14 plots this function for a given
path length, path curvature, ball radius as well as constants
a, b, c, and d. Under these conditions, the minimum of this
function is at voptimal ¼ 0:17 m=s. The experimental data is
also plotted at each of the 5 velocity points.

6.2 Object-Pursuit Movement
In previous studies, we examined the movement made by a
user during 3D pointing and 3D steering tasks [20], [28]. For
pointing, we validated a model of aimed movements that
divides them into two components. According to this
model, aimed movements consist of an initial ballistic phase
and a perceptually guided correction phase. The ballistic
phase is planned to reach the target, and the unintended
errors are corrected during the correction phase using
sensory feedback. For path steering, we have shown that the
overall steering movement can best be described as a
sequence of smaller ballistic-like movements, rather than
one smooth movement.

What is the underlying movement that the user makes
when performing an object-pursuit task? In our object-
pursuit experiments, the target was given a constant
velocity. In order to track the target ball, users should
move roughly at the same velocity as the target ball. If, for
some reason, the user is not able to keep track of the ball,
the user must first correct the movement and then continue
to track the ball. We first look at the average velocity of the
user’s movement. In Fig. 15, we plot the average user
movement velocity as a function of the target ball velocity
during the tracking phase. As can be seen, the average user
velocity is not equal to the velocity of the target ball. The
user velocity is somewhat higher than the target velocity for
low target velocities, while the user velocity is lower than
the target velocity for high target velocities. The user
velocity is approximately equal to the the target velocity
when the target velocity is in the range [0.15, 0.20] m/s.

From this data, we postulate that, under the conditions
and apparatus of the experiment, users tend to overshoot the
target when the target velocity is less than 0.15 m/s and
undershoot the target when the target velocity is more than
0.2 m/s. More importantly, as shown in Section 5.2.1, even
during the tracking phase, the user’s instantaneous velocity

seems not to be the same as the object velocity and the user is
continuously adjusting the movement velocity in order to
stay in the tracking phase. In addition, it is also shown that
the dispersion of the user velocities depends on the
difficulty of the task, which is a compound effect of
logðL=W Þ, v, and ! as shown in (19). As the index of
difficulty of the task increases, the user velocities tend to
spread out over a larger range, which leads to frequent
acceleration and deceleration during the tracking phase. It
indicates that pursuing a moving object in the virtual
environment is composed of several small unsteady sub-
movements, rather than a smooth and uniform motion. This
answers our second research question as raised in Section 1.

6.3 Model Application
The object pursuit task proposed in this paper has many
applications. For example, Fig. 16 demonstrates a typical first
person shooting game in which a player first must aim the
firing weapon at a moving target before pulling a trigger.

As a UI designer, it may be important to determine the
difficulty of the game by controlling the velocity and path of
the target. The models proposed in this paper can serve as a
guideline to determine the range of the velocities, within
which the difficulty of the game can be well controlled. For
example, the model shows that a target with an excessively
high velocity would be substantially more difficult to
pursue than a target with a fairly low velocity. The model
also allows the game designer to predict the task comple-
tion time, as a function of initial weapon position, target
size, velocity, and path.
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Fig. 15. The relationship between the user velocity and target object
velocity.

Fig. 16. An example of object pursuit in a shooting game.

Fig. 14. The relationship between object velocity v and the total
movement time for the case L ¼ 0:24, W ¼ 0:04, ! ¼ 0, a ¼ )6:012,
b¼ 5:092, c¼ 16:179, d ¼ 0:256, and e¼ )12:788. The solid curve
represents (20) and the dotted curve shows the experimental data.



Applications can also be found in scientific visualization.
For example, when a user wants to select a particle in a time
dependent simulation.

7 CONCLUSION

In this paper, we introduced interaction models for object
pursuit in desktop virtual reality. For analysis, the pursuit
movement was divided into a tracking phase and a
correction phase. It was shown that the time for the tracking
phase is constant given that the object velocity and the
distance to be traveled are fixed. For the correction phase,
following a two-step modeling methodology, an interaction
model was proposed, describing the movement time as a
function of the distance to be traveled, the size and velocity
of the object and the path curvature. The model allows to
derive an optimal target velocity, which minimizes the total
movement time of an object-pursuit task. This could be
used to design more efficient user interfaces and interaction
techniques. From the model we also deduced that the object
velocity is the dominant factor influencing the performance
of the object-pursuit task.

From the analysis of the user velocity, we postulated that
the underlying user movement during the tracking phase is
not a smooth movement, but consists of several small
unsteady sub-movements. The user movement during the
correction phase can be thought of as a collection of
pointing movements that can be modeled by Fitts’ law.
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