
HyperSlice

Visualization of scalar functions of many variables

Jarke J. van Wijk Robert van Liere

Netherlands Energy Research Foundation ECN Centrum voor Wiskunde en Informatica CWI

P.O. Box 1, 1755 ZG Petten P.O. Box 4079, 1009 AB Amsterdam

The Netherlands The Netherlands

Abstract

HyperSlice is a new method for the visualization of
scalar functions of many variables. With this method the
multi-dimensional function is presented in a simple and
easy to understand way in which all dimensions are treated
identically. The central concept is the representation of
a multi-dimensional function as a matrix of orthogonal
two-dimensional slices. These two-dimensional slices lend
themselves very well to interaction via direct manipulation,
due to a one to one relation between screen space and vari-
able space. Several interaction techniques, for navigation,
the location of maxima, and the use of user-defined paths,
are presented.

1 Introduction

1.1 Problem

Scalar functions of several variables are often used in
science and engineering. These functions can be denoted
as
���������	�
������������������������������������

, where x is a point in�
-dimensional space, and

��
is a variable of the � -th di-

mension. Scalar functions can be analytically defined, or
can be the result of a simulation or measurements.

Visualization is an important tool for their analysis. Two
types of use can be discerned. First, the function can be
precomputed at a set of discrete points. The visualization
then boils down to a visual inspection of a data set in which
calculation of new function values is limited to interpo-
lation of the values in the data set. Second, the function
can be computed during the visualization. Here the user
specifies what he is interested in, and a separate compu-
tation module generates the data. This approach is an ex-
ample of computational steering: the simulation runs con-
tinuously, while the user simultaneously views the results

and changes parameters. It is highly efficient for multi-
dimensional functions, because when the number of di-
mensions is large, the precomputation of data on a fine grid
is prohibitively expensive in terms of processing power and
memory requirements. However, it obviously requires that
the function can be evaluated fast enough for interactive
use.

The complexity of the representation of multi-dimen-
sional functions depends heavily on

�
. For

� � �
a

simple graph suffices, for
� �"!

two-dimensional color
images or three-dimensional mountain plots are routinely
used. The visualization of scalar functions of three vari-
ables is known as volume rendering, and is an important
and active area of research. Many techniques have been
proposed for their visualization [1].

The direct visualization of scalar functions of more than
three variables is more complex, because the human mind
is not able to imagine high-dimensional objects. With
some effort, four-dimensional functions can be imagined
as time-varying three-dimensional functions, but if

�$#&%
hardly anybody can produce mental images of such func-
tions.

One solution to the representation of functions with�'#(%
is therefore to fix the value of a number of vari-

ables so that the number of free variables is lower than four,
and then to use a standard visualization technique. In other
words, a slice of the data is selected and visualized.

1.2 Previous work

Several researchers have proposed methods for the vi-
sual representation of multi-dimensional functions and
interaction on these representations. Although much
progress has been made recently, most of the proposed so-
lutions still do not seem to be satisfactory. All solutions
compromise on the dimensionality, granularity and legibil-
ity of the representation. A crude classification for multi-



dimensional function representations is:
� One popular class of representation techniques in-

volves hierarchy : select a small number of dimen-
sions and display these within a space of higher di-
mension. Young, Kent and Kufeld [2] have devel-
oped the HyperSpace method for visualizing and
interacting with multivariate data sets. First, this
method uses interpolation to dynamically calculate
and display a smoothly changing sequence of in-
terpolations between two three-dimensional spaces.
In effect, this is moving a three-dimensional ob-
ject through a six-dimensional space. Second, this
method uses residualization to redefine two three
dimensional spaces as a linear combination of six
or more variables. Residualization allows the user
to move the three dimensional space into any

�
-

dimensional space, with
� #

6. Other authors have
suggested variants and enhancements to this hierar-
chical representation technique [3, 4].

� In the Exvis project [5] icons with settable attributes
are used to represent data. The original Exvis icon
is a five limbed stick figure with controllable limb-
angle, size, thickness and color. The authors show
how this representation can be used to represent over
twenty different data parameters. Presenting multi-
dimensional data as a very large collection of icons
produces a texture. Many other icons can be con-
ceived to represent similar mappings. Other authors
have also used icons and/or textures for representa-
tion [6, 7].

� Scatterplots matrices [8] have been used extensively
by the statistics community. Assuming an

�
-

dimensional data set, a scatterplot matrix is an ar-
rangement of

� � � � � ����! pairs of two dimensional
plots in which row and columns of the matrix share
common scales. Dependencies between variables
can be obtained by scanning a row (or column) and
visualizing how one variable is plotted against all
others. Various interaction techniques have been
proposed on the scatterplot matrix representation.
For example, brushing is a simple but effective tech-
niques that enables users to select groups of data
points which are then highlighted in other projec-
tions. Cleveland argues that scatterplots matrix rep-
resentations augmented with highly interactive tech-
niques provide more information than a simple se-
quence of scatterplot matrices themselves.

Both the hierarchical methods and the icon based methods
provide sophisticated representations of continuous data.
However, most of these representations are primary in-
tended for a single static display, or a sequence of displays

with limited interaction. The Worlds within Worlds con-
cept of Feiner and Beshers [3] is an important exception.

Scatterplot matrices provide simple representations of
discrete data. An advantage is that the different dimensions
are treated identically, no more or less arbitrary decision is
expected from the user how the data must be structured for
presentation purposes. Furthermore, interaction techniques
on this representation can be added relatively easily.

We argue that a simple representation augmented with
fast interaction tools, based on direct manipulation, can
provide additional insight in continuous scalar functions of
many variables.

1.3 Overview

Our basic conjecture is that in scientific visualization
representation and interaction are equally important and
that they are closely related. The visual representation
should be such that the user can understand the behavior
of the function, as well as easily interact on this represen-
tation.

The first choice to be made is on the dimensionality of
the basic representation. The use of sophisticated three-
dimensional techniques, possibly enhanced with animation
and color, seems natural, because as many as possible di-
mensions are shown simultaneously. This solution is opti-
mal if the function or data is three-dimensional. However,
if more dimensions have to be visualized, only a selection
can be shown, and hence navigation (e.g. modification of
the values of variables that are fixed for a single represen-
tation) becomes essential. Here we run into problems. Al-
though significant progress has been made, current tech-
niques for volume rendering are too slow for direct manip-
ulation. Also, such volume renderings are more difficult
to interpret than simpler representation forms, and often
tuning of the settings of thresholds, opacity mappings, etc.
is required. Furthermore, interaction in three-dimensional
space is not trivial.

We therefore use two-dimensional slices as the basic vi-
sual representation. The geometric coordinates denote two
variables, a gray or color value denotes the value of the
function. Here rendering is fast, visual interpretation is
easy, and interaction is direct, because of the one to one
relation between the screen space and variable space.

However, a single slice only shows a very limited subset
of the multi-dimensional space. We therefore developed
HyperSlice, a new method for the visualization of multi-
dimensional functions. With this method the function is
presented in a simple and easy to understand way, all di-
mensions are treated identically, and interaction via direct
manipulation of the representation is easy and effective.



Figure 1: The concept of HyperSlice for
� ���

The central concept, presented in section 2, is the repre-
sentation of a multi-dimensional function as a matrix of or-
thogonal two-dimensional slices. This representation lends
itself very well to a variety of interaction techniques. In
section 3 navigation, the location of extrema, and the use
of user defined paths is summarized. Next implementation
issues (section 4) are discussed and an application (section
5) is presented. Finally, in section 6 the results are dis-
cussed and suggestions for further research are done.

2 Representation

In this section we present the HyperSlice representation,
after an introduction of some basic notions and definitions.

We assume that the focus of the user is on a single�
-dimensional point of interest which we call the current

point, and denote as c
� ��� � ��� � ��� � � ��� � �

. The width of
the focus is a set of scalar values � � , with � � � ������� � � .
The range of values of interest for dimension � is the inter-
val � ����� � � � � � � ! �	� ��
 � � ��!� . A two-dimensional slice����� �

, with ������
, is a visual representation of

�
�����
, where���

and
���

vary and the other
���

are equal to
���

, or:
��� � � � ,����� � � ,� � � � � � ���� � and ������

.

The horizontal axis of the slice is aligned with
� �

, and the
vertical axis with

���
. The function values are shown as a

rectangular grid of filled cells. We used grey values for the
cells, which are derived from the function value via a lin-
ear transfer function. The current point in the center of the
slice is marked with a square, and other annotation of the
axes can be displayed at request. A one-dimensional graph! �

is a graph of
�
� ���

where
� � � � � and all other

� �
are

equal to
� �

. In this case the horizontal axis is aligned again
with
���

, while the vertical axis is aligned with
�
�����

.
The next question is which slices are to be displayed.

We require that all dimensions are treated identically, so
we display the value of the function for all pairs of vari-
ables. This leads us to the HyperSlice representation. A
HyperSlice is a matrix of panels � �#" with

�%$ � �#"�$ �
.

Ranges � � are enumerated along the horizontal and verti-
cal axes. Panels on the diagonal contain graphs

! �
, panels

at off-diagonal positions contain slices
� �&� '

. As an exam-
ple, figure 1 shows the concept for

� �(�
. Displayed on

the left is the current point as a small sphere, whereas the
matrix on the right displays the corresponding HyperSlice.
Colors are used to annotate the three principle axes (red,
yellow, blue) and slices (cyan, orange, green). The gener-
alization of the HyperSlice representation to higher

�
is

straightforward.
Several relations exist between the panels:

� all off-diagonal slices
� �&� '

are the same as slices
� '	� �

,
rotated over 90 degrees;

� the function value
�
�&) �

displayed in the center of a
panel is the same for all panels;



x1 x2 x3 x4 x5

x1

x2

x3

x4

x5

Figure 2: Effect of dragging a slice

� the values along a horizontal line through the center
of the panel are the same for all panels in the same
column, and also the values along a vertical line are
the same for all panels in the same row (see fig. 1).

This HyperSlice representation allows the viewer to ob-
serve the sensitivity of

�
to changes in one and two di-

mensions. It is difficult, if not impossible, to reconstruct a
complete, multi-dimensional mental image from the sepa-
rate graphical representations. However, this representa-
tion does enable the user to view the multi-dimensional
space around a point in a simple and intuitive way. The
user can locate features such as extrema and hyperplanes.
Because all dimensions are presented simultaneously and
in various combinations, the chance that important rela-
tions are overlooked is small. Another interesting property
is that for

� � �
the HyperSlice reduces to the standard

representation: a single graph.
The main strength of the HyperSlice representation is

that it lends itself very well to interaction via direct manip-
ulation, which is the subject of the next section.

3 Interaction

3.1 Navigation

The HyperSlice representation shows
�

only around the
current point c. Probably the most important aspect of user
interaction is therefore the change of c. By changing c the
user steers through multi-dimensional space in search for

interesting features of the function, where the visual rep-
resentation supports his navigation. A direct and simple
solution is feasible with the HyperSlice concept. The user
can point at a panel, press a mouse-button, and drag the
visual representation. If the user drags a slice

� � � �
over a

displacement
� � � � � � �

, then the current point
)

is changed
as follows:

� ��� � � � � � ,� ��� � � � � � .

The visual effect is shown in figure 2. Here the slice
��� � �

is dragged. Slices in the same column move horizontally
over a displacement

� �
, whereas the slices in the same row

move vertically over a displacement
� �

. Furthermore, for
all slices

� � � '
other than

� ��� �
, one or two of the modified

dimensions of the current point are not represented by a
horizontal or vertical axis. One could say that these dimen-
sions are perpendicular to these slices. A change in such
a dimension does affect the slice shown: the slices move
perpendicular to the image plane.

If the graph
! �

is dragged, the single variable
� �

is
changed. The effect is similar to that as described for
slices. Thus, each panel serves not only as a visual rep-
resentation, but also as one- or two-dimensional sliders for
the current value of variables

���
.

In practice this mechanism is used in various ways:

� If in one of the panels an interesting spot is detected
(e.g. an optimum) the user can drag this spot to the
center of the panel;



x1 x2 x3 x4 x5

x1

x2

x3

x4

x5

+

+

++++

++

+ +

++

+ + + +

+ +

+

+

++++

+++ +

++ + +

++ +

+ + + +

+

o o o o

oooo

o o o o

oooo

o o o o

Figure 3: User defined path

� The multi-dimensional space can be scanned along
a single axis by dragging the graph in a diagonal
panel;

� It is very instructive to look at a slice
� �&� '

while drag-
ging the slice

� ��� �
, with � �#" � � � and

�
all different.

The effect is that the slice
� � � '

is moved along the
dimensions � and

�
, which are both perpendicular to

this slice.

The widths � � of each range � � can also be changed.
In the current implementation all � � can be scaled simulta-
neously with the same factor with zoom-in and zoom-out
buttons at a control panel. Also, they can be adjusted per
dimension.

3.2 Optimization

In the previous section the emphasis was on user con-
trolled changes of the current point. However, the value of)

can also be adjusted automatically, according to some cri-
terion. Currently, one such option has been implemented:
a tool to simplify the location of maxima. When enabled, a
gradient path from c to the nearest maximum is computed.
Each step in this gradient path is in the direction of the
steepest ascent. Projections of this gradient path are shown
on all slices. The gradient path is recomputed each time
the current point c is changed. This allows the user to de-
tect for instance saddle areas: here the gradient path will
jump wildly from one local maximum to another. In addi-
tion to the display of the gradient path, the user can request
to animate c along the gradient path to the maximum.

3.3 Paths

It is easy to get lost during the exploration of hyper-
space. To prevent this, the user can define paths and mark
interesting points. A path � is a sequence of marks � � ,
where a mark is a point in

�
-dimensional space. The

projections of the marks are shown as crosses, the path is
shown as a sequence of projected line segments � � � ��� � .
Figure 3 shows a path with three points. The current point
is indicated with a circle.

A set of standard editing operations is available to the
user. A new path can be created, the current point can be
marked and added to the path. Further, each mark can be
selected by point and click. The user can set

)
to this se-

lected mark, delete the mark, move the mark, or insert a
new mark after this mark. The visualization tool can thus
be used as a multi-dimensional drawing tool.

In addition to the path specification, the user has a con-
trol panel available to animate

)
using this path. The user

can request to move
)

along the path, stepwise or con-
tinuously, in forward or backward direction. Again, if

)
changes, all panels are recomputed and redisplayed. The
gradient path can also be displayed along with the anima-
tion.

Path specification and animation has proved to be very
powerful in practice. The metaphor of a drawing tool is
easy to learn and understand. The possibility to mark in-
teresting points and to jump back and forth allows fast
comparisons. The use of the path to animate

)
enables the



Figure 4: HyperSlice applied to four-dimensional potential function

viewer to observe trends in directions oblique to the prin-
cipal axes. Another interpretation of the path is as a con-
straint on

)
to a user defined, one-dimensional subspace of

the multi-dimensional space.

4 Implementation

For the display of a slice each dimension � is discretized
into a number of samples �

�
, resulting in a evenly spaced

grid of coordinates.
The computational requirements of HyperSlice depend

on the number of dimensions
�

and the sampling rates �
�
.

If all �
�

are equal, the number of function evaluations for
the slices is equal to �

� � � � � � � � ! . Some values for the
number of evaluations are given in Table 1.

� � evaluations
5 10 1000
5 25 6250
10 10 4500
10 25 28125

Table 1: Number of evaluations
�
� ���

for several values of�
and �

A number of techniques can be used to improve perfor-
mance. Various progressive and adaptive refinement tech-
niques can be used. If the user does not interact with the
representation, the computing process can continue to cal-
culate the slices at higher sampling rates. During the drag-
ging of a slice, the resolution of other slices can be low-
ered. Further, the presentation lends itself well to parallel
processing, because each slice is independent. However,
if the computation of the function

�
� ���
is not too demand-

ing, a high level of interaction up to smooth animations can
easily be achieved on a serial processor.

HyperSlice is written in C++ using the Forms library of
user interface objects and SGI’s graphics library. It runs on
all SGI platforms.

5 Application

To test the method we applied it to a simple synthetic
application: a potential function that results from a set of
multi-dimensional point objects. Each object has a posi-
tion �
�

and a weight � � . The potential function
� � � ���

of a
single object is defined by:

� � ����� � � � � ��� 
�� � � �
��� � � �



The total potential
�
� ���

is their sum:

�
� ��� ���
�
� � � ��� �

This function can be used for any number of dimensions,
which makes it highly suitable for test purposes. Figure 4
shows an image as it appears on the screen for four dimen-
sions. For all data related information (graphs and slices) a
Gouraud shaded, grey-scale coloring scheme is used. The
current value is depicted as a small red box in the center
of a panels. A gradient path (green) and a user defined
path (yellow) are shown, as well as some simple annota-
tion of the axes. Three point objects were defined in this
data set. Their positions were located with the gradient
path and marked. The user defined path thus connects the
three objects.

Table 2 summarizes the performance achieved with this
synthetic application. The first column provides various
sampling rates, while the second and third column provide
the number of frames per second on a SGI Indigo R4K with
Elan graphics and a SGI 4D/310 with VGX graphics. The
first workstation has a fast processor and relatively slow
graphics, the second a slow processor and fast graphics.
At both workstations animation rates can be achieved, pro-
vided that the sampling rate is not chosen too high. The
table shows that CPU processor performance dominates
rendering performance, even for this relatively simple ap-
plication.

� R4K+Elan R3K+VGX
10 9.1 8.5
18 5.7 4.0
26 4.8 2.2
42 1.8 0.9
58 1.1 0.5

Table 2: Frame per second for different sample rates and
architectures.

In the future we will apply HyperSlice to less synthetic
problems. The most challenging is the problem of parame-
ter estimation in chemical reactions [9]. These parameters
are e.g. unknown reaction constants in the kinetic equa-
tions. Estimates of these parameter values are input to a
model of the reaction. The results of the model are judged,
and compared with experimental data. These type of prob-
lems are called “inverse problems” and we expect Hyper-
Slice to be a useful tool for steering the numerical solver
towards areas of interest of the multi-dimensional parame-
ter space.

6 Summary

A new method is presented for the visualization of
scalar functions of many variables. The function is rep-
resented as a HyperSlice: a matrix of orthogonal two-
dimensional slices. This representation is simple and easy
to understand, and symmetric for all variables. The use of
two-dimensional slices allows for fast rendering, and, most
important, easy interaction via direct manipulation, due to
the one to one relation between screen space and variable
space.

To support the user in the search for interesting features,
several interaction techniques, for navigation, the location
of maxima, and the use of user-defined paths were pre-
sented. Many other techniques are conceivable. The han-
dling of user-defined constraints and of rotation is under
development.

Other areas for further research are the improvement of
the performance, extension of the visual representation, the
coupling of dedicated visualization and input tools, and the
inclusion of sampled data.

Acknowledgement

The authors would like to thank Frits Post (Delft Uni-
versity of Technology) for his constructive criticism during
the writing of this paper.

References

[1] P. Hanrahan, J. Kajiya, W. Kreuger, P. Schroeder, and J. Wil-
helms. State of the art in volume visualization. In SIG-
GRAPH ’91 Tutorial Course Notes, volume 8. July 1991.

[2] F.W. Young, D.P. Kent, and W.F. Kuhfeld. Dynamic
Graphics for Exploring Multvariate Data, pages 391–424.
Wadsworth Inc., 1988.

[3] S. Feiner and C. Beshers. World within worlds. In Pro-
ceedings Visualization ’92, pages 283–290. IEEE Computer
Society Press, Los Alamitos, CA, 1992.

[4] T. Mihalisin, J. Schwegler, and J. Timlin. Hierarchical mul-
tivariate visualization. In Proceedings Interface ’92, 1992.

[5] S. Smith, G. Grinstein, and R.D. Bergeron. Interactive data
exploration with a supercomputer. In Proceedings Visualiza-
tion ’91, pages 248–254. IEEE Computer Society Press, Los
Alamitos, CA, 1991.

[6] H. Chernoff. The use of faces to represent points in k-
dimensional space graphically. Jour. Amer. Stat. Assoc.,
pages 361–368, 1973.



[7] J. Beddow. Shape coding of multidimensional data on a
microcomputer display. In Proceedings Visualization ’90,
pages 238–246. IEEE Computer Society Press, Los Alami-
tos, CA, 1990.

[8] W.S. Cleveland. The Elements of Graphing Data.
Wadsworth Inc., 1985.

[9] R. van Liere. Computational steering: a case study. CWI
Quarterly, 5(3):207–218, 1992.


