
Comparing LIC and Spot Noise

Wim de Leeuw Robert van Liere
�

Center for Mathematics and Computer Science, CWI

Abstract

Spot noise and line integral convolution (LIC) are two texture syn-
thesis techniques for vector field visualization. In this paper the
two techniques are compared. Continuous directional convolution
is used as a common basis for comparing the techniques. It is shown
that the techniques are based on the same mathematical concept.
Comparisons of the visual appearance of the output and perfor-
mance of the algorithms are made.
CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Picture/Image Generation; I.3.6 [Computer Graphics]:
Methodology and Techniques I.6.6 [Simulation and Modeling]:
Simulation Output Analysis.
Additional Keywords: flow visualization, texture synthesis

1 INTRODUCTION

Among the techniques used for the visualization of vector fields,
texture based methods are a recent development. By using texture,
a continuous visualization of a two-dimensional vector field can be
presented. Figure 8 shows a visualization of a slice from a direct
numerical simulation using texture. The images show the turbulent
flow around a block. These images clearly show the power of tex-
ture as a medium for visualization. The visual effect of direction is
achieved by line structures in the direction of the vector field. These
lines are the result of higher coherency between neighboring pixels
in the field direction. Spot noise and line integral convolution (LIC)
are two texture based techniques for vector field visualization that
make use of this principle.

Before texture was used for data visualization, many papers ap-
peared dealing with the generation of textures [7, 9, 8, 3]. The
purpose was artistic or for giving images a realistic appearance.
Perlin [9] used directed convolution of random images as a texture
synthesis technique to produce images of flames.

Spot noise, introduced by van Wijk [13], was the first texture
synthesis technique for the visualization of vector data. A spot
noise texture is synthesized by distributing a large number of small
intensity functions – called spots – over the domain of the data.
Data is visualized by transforming the spot as a function of the un-
derlying vector field. Furthermore the concept of texture animation
was introduced for static vector fields. Subsequent texture frames
are generated by considering the spots as particles and advecting
the spot positions in the vector field.

Line integral convolution, introduced by Cabral and Leedom [1],
uses a piece of a streamline as a filter kernel for the convolution of
a random texture. Animation can be realized by cyclic shifting of
the filter kernel in subsequent frames.

In later papers both LIC and spot noise have been improved
and extended. Improvements include increased texture synthesis
speeds, generalizations of grid types, usage of the techniques with
time dependent vector fields, and zooming in on details.

In this paper we compare both techniques and some extensions.
In Section 2, spot noise and LIC are briefly described. We describe

�
CWI, Department of Software Engineering, P.O. Box 94097, 1090 GB

Amsterdam, Netherlands. E-mail
�
wimc � robertl � @cwi.nl

the governing algorithms and some extensions. In Section 3 a com-
mon basis is given. By using continuous directional convolution as
a basis, it is shown that both techniques share a common underly-
ing principle. We also discuss texture synthesis for time dependent
vector fields using this common basis. The techniques will be com-
pared with respect to output texture and performance in Section 4.
The conclusions will be presented in Section 5.

2 LIC AND SPOT NOISE

2.1 Algorithm

A LIC texture is generated by convolution of an input texture with a
one-dimensional filter kernel. The shape of the kernel is determined
by the shape of the streamline through the pixel. A pixel in the final
texture is determined by the weighted sum of a number of pixels
along a line in the input texture:

���	��
	��
����������
�����

���! "�$#%�'&"�$#%�(�
(1)

where) is the set of pixels in the input texture used for convolution,� �! �$#%�
is the value of the input texture pixel at grid cell

#
and

&"�$#%�
is the convolution filter.

random
texture

vector field LIC output
texture

Figure 1: Schematic representation of the LIC-algorithm.

Figure 1 gives an overview of the main components of the al-
gorithm. The inputs of the algorithm are a random texture and the
vector field. Streamlines are calculated from the vector field and are
used for convolution of the input texture. This results in the output
texture.

A spot noise texture is generated by blending together a large
number of small intensity functions at random positions on a plane.
The shape of the intensity functions is deformed in relation to the
vector field. Spot noise is described by the following equation:

*+�-,. ��� � /0� &+�-,.21 ,. � �(� (2)

in which
&+�3,. � is called the spot function. It is an intensity function

which has a non zero value only in the neighborhood of the origin./ �
is a random scaling factor with a zero mean and

,. � is a random
position. The deformation used in [13] was a rotation in the direc-
tion of the vector field and scaled by a factor of

�'465879,: 7 � in the
velocity direction and

43;<�'4�5�79,: 7 � perpendicular to the field.

Figure 2 shows a schematic representation of the algorithm. The
vector field together with a set of random positions and intensities
form the input of the algorithm. From these two inputs the positions
and shapes of the spots can be determined. This results, after spot
blending, in the output texture.

output
texture

spot
noise

particle
collection

vector field

Figure 2: Schematic representation of the spot noise algorithm.

2.2 Extensions

To be a useful tool for the analysis of vector fields, a number of
extensions to spot noise and LIC have been proposed. Here we
limit our discussion to six extensions:

Non-uniform grids. The data may be defined on a grid with an
irregular geometry or topology. Mapping the texture to an curved
surface will introduce deformations. If the data has a regular topol-
ogy the deformation problem can be addressed by transforming the
data to a flat geometry. This can be a uniform grid as was described
in [2] or a rectilinear grid [6]. Using a rectilinear grid in which
the size of the cells matches the cell sizes in the undeformed data
results in better mapped textures because the scaling of the texture
elements is more uniform.

Performance. Performance is crucial for interactive visualiza-
tion. Both techniques require substantial computations and perfor-
mance of the algorithm is therefore important. LIC can be paral-
lelized by partitioning the texture in a number of sub domains [15].
Each sub domain can then be processed in parallel. Furthermore,
the generation of LIC texture can be accelerated by using the co-
herence between successive pixels on a streamline. A substantial
performance gain can be achieved by generating long streamlines
and reusing them for a large number of pixels. Spot noise can be
parallelized because the processing of one spot can be done inde-
pendently from the other spots. Therefore, processing of all spots
can be distributed over a number of processors. A second method
to speed up spot noise is by utilizing graphics hardware [6]. Spot
rendering and blending can be mapped on functions for which hard-
ware support is available. Both ways to speed up generation have
been combined [5].

Animation and time dependent flow. Although the information
of a stationary flow is available in a single texture, animation can
provide important additional information. Animation is even more
important when the flow simulation is time dependent. For sta-
tionary flow, a technique was presented where the kernel is shifted
for subsequent frames. Animation of time dependent flow can be
achieved by UFLIC, described in [10]. Here the values in the tex-
ture are deposited along path lines to generate subsequent textures.
Using spot noise animation can be achieved by regarding the spots
as particles and use advection equations to calculate new spot posi-
tions for subsequent frames [13]. More about the use of texture in
time dependent flow can be found in Section 3.4.

Zooming. In high resolution simulations flow features can vary
three orders of magnitude in size. A single image can impossibly
provide all information. Small details in the data can only be per-
ceived if the user is able to magnify a part of the field. In LIC,
zooming can be achieved by using high resolution input textures

and relating the output texture resolution to the scale at which an
image is desired. In spot noise, zooming requires that the texture is
regenerated using a smaller part of the data using smaller spots.

3D. Visualization of 3D vector fields is possible with Volume-
LIC introduced by Interrante and Grosch [4]. They used the gen-
eralization of LIC to 3D in combination with volume rendering for
the visualization of 3D flows. Because the presentation of dense
volumes is very difficult, selection methods were used to filter the
input texture and therefor the area in which the flow is shown. Work
on 3D spot noise has not been reported.

Flow direction. Both spot noise and LIC are ambivalent with
respect to the direction of the flow. Wegenkittl et al. [14] present
a modification of LIC algorithm in which sparse input textures are
combined with an oriented filter. In this way the ambivalence in the
direction is addressed.

3 COMMON BASIS

In the previous section, we have shown that spot noise and Line In-
tegral Convolution textures are synthesized by considering a neigh-
borhood of a pixel. In this section we will show that both techniques
can be described in terms of convolution over a certain region. As
an introduction we will use a simplified model to explain the idea.
Then, a more formal treatment will be given by using continuous
directional convolution.

3.1 Simplification

To illustrate the commonality between the LIC and spot noise tech-
niques, we start with two simplified variations of LIC and spot
noise. For LIC, a straight line segment is used in the direction of the
flow at the center of the calculated pixel. This is the DDA (Digital
Differential Analyzer) convolution as described in Cabral and Lee-
dom [1].)�� (see equation 1) is the set of pixels determined by the
line segment when it is rasterized. If a constant convolution kernel
is assumed, then a pixel value is calculated as:

���	��
 ��
�������� �
�������

��� �$#%�
(3)

For spot noise, scan converted lines of a fixed length are used. The
spots are placed at the center of each pixel in the direction of the
flow. Now equation 2 can be rewritten as:

���	��
 ��
������ � �
�������

��� � �(
	�$#%� (4)

where
�	� � �	
	�$#�� is the value of the spot at position

#
.

These equations produce equivalent output texture because
� �!

is equivalent to
� � � �	
 and)�� is the same as)�
 . The intensity of a

spot
��� � �	
	�$#%� and the pixel value in the input texture

� � �$#%�
are

both uniformly distributed random values. That the set of input
values) � and)
 are the same can be seen in Figure 3. On the
left, the kernel and the pixels in the input texture are shown. These
pixels (grey region) determine the output pixel (the small box) for
DDA-convolution. The right image shows the location of spots that
influence the pixel of interest (box). A spot influences the pixel of
interest if it covers this pixel. Seven spots (the center is shown by
black dots) define)
 . Dotted lines indicate a spot’s extent (to avoid
cluttering only two dotted lines are drawn).

3.2 Continuous directional convolution

It is not possible to generate images using streamlines of a con-
stant width and constant density. Due to convergence/divergence

Figure 3: Pixels making up the kernel shape of DDA-Convolution
and the location of spots influencing the texture value in simplified
spot noise.

the density of lines changes resulting in a higher/lower density.
Turks and Banks [12] propose a method which results in an ap-
proximation of constant density by calculating the local density of
an initial random set of streamlines. This set is iteratively improved
by adding or deleting stream lines based on the local density. They
also suggest variation of the width of stream lines to get a uniform
coverage. Random value based texture techniques also give an ap-
proximation of this idea. In texture based techniques the pixels in
the direction of the flow do not have equal intensity, but the impres-
sion of lines is achieved. This is the result of a higher correlation of
pixels in the direction of the flow, compared to perpendicular to the
flow. Due to the slow variations which occur, no discontinuities are
introduced.

For a more detailed study of this idea, we in introduce continuous
directional convolution. The input texture is a continuous function
of position:

� �! "�-,. � and the convolution equation can be written as:

� �	��
 �3,. � ������ �
� �! ��� � ,� ���	�%�3,. 1 ,� ��
+,� (5)

where
�%�3,. � is the two-dimensional kernel and

���3,. � is a two-
dimensional deformation function. The function

� �! �3,. � is a two-
dimensional white noise signal. Since the kernel is usually non-zero
only in a finite region, the integral need only to be evaluated in a re-
gion around

,. .
The shape of the filter depends on the desired effect. Possibili-

ties are a line with or without a certain width or a more complicated
two-dimensional shape (see Figure 4). In terms of frequencies, the

Figure 4: Possible filter shapes for continuous directional convo-
lution, one-dimensional filter, triangle swept along a streamline,
swept rectangle, ‘spot’, and low-pass filter.

purpose of the filter is to achieve an anisotropic filtering of the in-
put where the maximum frequency in the field direction is lower

as in the perpendicular direction. According to filtering theory, the
best result would be achieved using the an anisotropic low-pass fil-
ter (see Figure 4 lower right) with the main axis deformed using
a streamline. In practice, however, the convolution must be car-
ried out at a finite resolution. To suppress artifacts due to aliasing
introduced by the finite resolution of the texture the same type of
anti-aliasing used for the rendering of lines could be used.

It is also possible to encode information regarding the velocity
magnitude. This can be done by a parameterizing the filter kernel
with the velocity magnitude. In spot noise, the velocity magnitude
is encoded in the difference of the frequency in the direction of the
flow and the frequency perpendicular to the flow. The same princi-
ple could be incorporated in the continuous directional convolution
by parameterizing the width of the filter inversely proportional to
the velocity magnitude.

Spot noise and LIC are both approximations of continuous direc-
tional convolution. The following observations can be made with
respect to the approximation:� In LIC, a scan converted curve is used as the kernel. The ker-

nel has the shape of a connected set of pixels of a particular
size. This leads to irregular filtering in the direction perpen-
dicular to the field.� In spot noise, there are only a finite number of spots. In terms
of convolution, the input texture consists of a finite number of
randomly placed impulses with a random energy. Since con-
volution is a linear operator, the convolution integral (equa-
tion 5) over this input texture can be evaluated by summation
of the separate responses to each impulse (equation 2).

3.3 Conversion between the methods

Continuous directional convolution can be used to ‘translate’ con-
cepts used by both techniques. Concepts in spot noise can be trans-
lated to concepts in LIC and vise versa. For example, in spot noise,
the magnitude of the flow is visualized using spot scaling. Because
the spot shape performs the same role as the kernel shape in LIC,
one might expect that similar results might be obtained in LIC by
variation of the length of the kernel. Another example: in spot noise
it is easy to generate animations in a stationary flow by spot advec-
tion. In LIC this could be realized by advection of the input tex-
ture. Each pixel could be regarded as a particle which is advected
for some time step. Alternatively, the phase shifting of the kernel
technique proposed for LIC could be implemented in spot noise by
using a spot shape with a shifting phase in different frames. These
examples show that concepts used by the two techniques can be
mapped onto each other. The table below lists a number of similar
concepts for both techniques.

spot noise LIC
random spot intensity random input texture

spot function kernel shape
spot scaling kernel length variation

standard spots DDA convolution
bent spots streamline convolution

spot advection texture advection

We could generate spot noise textures using a variant of LIC and,
vise versa, LIC textures using a variant of spot noise. The line
integral convolution algorithm can be adapted to generate spot noise
textures by using a two-dimensional filter domain. The shape of
the domain is determined by all positions around the filtered points
which, if a spot would be placed there, would cover the filtered
point. The spot noise algorithm can be adapted to generate LIC
textures. Spots would have the shape of a streamline and would be
rendered at the center of each pixel in the texture.

3.4 Time dependent vector fields

A first application of the common basis is the study of texture an-
imation of time dependent vector fields. The challenge of texture
animation is to maintain two types of coherence in the textures.
To perceive flow, two issues must be addressed. First, spatial co-
herency (the lower frequency in the field direction as described in
the previous section) must be maintained. Second, temporal co-
herency must be maintained. Temporal coherence is defined as the
movement of patterns between texture frames. The impression of
movement results when patterns are displaced for a small distance
in subsequent frames.

In a stationary flow, temporal coherence is obtained by using the
same principle as is used for spatial coherence. Between succes-
sive frames texture values are advected along streamlines. Particle
positions on a streamline are calculated by:

,. � ,. � 5 � �
���

,: �-,. ��
 . (6)

where
,: �3,. � is the velocity at position

,. For time dependent flow,
temporal coherence is obtained only if particle paths are used to
advect the texture. A particle path is expressed as:

,. ��� � � ,. ��� � �"5 �

 �

,: �3,. ��������
�� (7)

tt−1 t+1

flow

particle
path

stream
line

Figure 5: Stream lines or path lines used for coherence in texture

For spatial coherence, streamlines should be used to determine
the filtering domain. On the other hand, to get the best possible
temporal coherence particle paths should used. This is illustrated
in Figure 5. The three columns show different time steps of a flow
field. The flow is spatially uniform and the direction varies linear
with time, as illustrated in the top row of th Figure. In rows two
and three, two kernels are followed over time. Dotted lines indicate
particle paths. Bold lines indicate the shape of the kernel. Note that
in this particular case streamlines are straight line segments which
is not true in general.

Temporal coherence is maintained if particle paths are used,
however, it compromises the spatial coherence of the texture. This
is because particle paths, and therefore kernels, may intersect, (as is
shown in the first column of the Figure) resulting in artifacts in the
texture. The crossing of kernels introduces high frequency compo-
nents in the direction of the flow. Using streamlines compromises
the temporal coherence of the texture, as the actual path of the flow
may differ from the path suggested by the texture.

Figure 6 compares textures generated using particle paths and
streamlines for the kernel shape. The data used for this images is
the rotating uniform vector field described in Figure 5. The Figure
shows that using particle paths results in high frequencies in all di-
rections and thus compromises spatial coherency in the field direc-

tion. Using streamlines high frequencies occur only perpendicular
to the field direction.

Figure 6: particle paths (left) and streamlines (right) used for tex-
ture synthesis in a rotating flow.

There is no perfect solution for the coherency problem. How-
ever, useful compromises were taken by UFLIC [10] in which the
texture at a certain moment might not represent the current vector
field perfectly. Spot noise uses streamlines for the spot shape com-
promising temporal coherence. These partial solutions are useful as
long as the user knows the limitations.

4 COMPARISON

A comparison of the of both algorithms is difficult to realize be-
cause the algorithms produce different outputs. It is not possible to
adjust the parameters for the methods such that they produce equal
textures. Furthermore, there is no metric to compare the informa-
tion content of texture.

Nevertheless, in this section we will present a metric for com-
paring textures. We use this metric as an measure to compare the
performance of the techniques.

4.1 Output texture comparison

Because both methods do not produce the same texture a metric
must be found to compare output textures. We define this metric by
introducing the notion of pixel coverage. Pixel coverage is defined
as the number of random values contributing to a pixel. Textures
are defined to be equivalent if the pixel coverage for each pixel is
the same.

In the previous section we found that a spot and a kernel are
comparable concepts. For a certain kernel a spot can be found such
that the area covered is equal to the area of the pixels under a kernel
in LIC (see Figure 7). The average area covered be a kernel is
the filter length ��� multiplied by the width of a single pixel. If we
normalize the width and length of the complete texture to

4
and

measure the length of the kernel in pixels, then the area of a kernel�
	
is calculated by

res

re
s rsl f

Figure 7: Equal coverage of a pixel: the number of input values
which influence a pixel is equal for LIC (left) and spot noise (right)

��	 � ���
�� ��� (8)

where
 � � is the resolution of the texture. A disc shaped spot
with a comparable surface has a radius
 � of

 � �
� �
	

� � �
����
 � � � (9)

Each pixel must be covered by � � spots therefore the number of
spots � to be used is

� � ����
 �� �
 � � � (10)

In Figure 8 the same vector field is visualized using both tech-
niques. The image on the left shows the field using LIC while spot
noise is used for the right image. The data is a slice from a direct
numerical simulation of a turbulent flow around a block and is de-
fined on a rectilinear grid. The resolution of the data is � 4����
	 ��� .
The flow is from the bottom to the top of the image. The visual-
ization shows the vortex shedding in the wake behind the block.
The resolution of both textures is

	<4�
���	�4�

. For the LIC texture a

kernel length of 20 pixels was used. Using Equations 9 and 10 we
obtained values giving an equal pixel coverage for the spot noise
image.

Figure 8: LIC (left) and spot noise (right) images of turbulent flow
around a block.

Because the large majority of grid cells in the data is smaller
than a texel the amount of detail which could be visible is limited
by the texture resolution. For further investigation we used a detail
behind the block. This is shown in In Figure 9. In the lower part of
the images the block is visible. The data resolution of the section
shown is

4������ 4����
. Using

	�4�
���	�4�

textures the smallest grid

cells in the data are about
�

texels in size. In the top left image the
filter length used for LIC is 20 pixels while in the bottom left image
a filter length of 40 used. The spot noise images have equal pixel
coverage using parameters calculated by Equations 9 and 10.

From this side by side comparison a number of differences can
be noted. In the LIC image rotation centers are visualized more
accurately. For example: the LIC images clearly show the two dis-
tinct rotation centers in the rotation area in the top left of the field.
The velocity in the rotation centers is relatively low and therefor
the spot noise textures become almost isotropic. In addition to dis-
playing velocity direction information, the spot noise image shows
the magnitude of the field; e.g. the upper right corner of the image

Figure 9: LIC (left) and spot noise (right) images with equal pixel
coverage using a filter length of 20 and a spot radius of 0.005. (top)
and using a filter length of 40 and a spot radius of 0.007. (bottom)

shows a region of higher velocity. Unfortunately, this extra infor-
mation decreases resolution of the directional information. The fre-
quency range needed to encode the velocity magnitude reduces the
frequency at which the directional information is displayed.

4.2 Performance comparison

The performance can be compared in several ways. First we will do
some order estimation of the performance of the algorithms. Sec-
ond, we will look at extensions to the algorithms for increased per-
formance. Finally, we will present some measurements.

In unaccelerated LIC the time needed to generate a texture in-
creases linear with the number of pixels in the output texture and
linear with the length of the kernel. For spot noise the time needed
increases linear with the number of the spots and linear with the
area of the spots. If the comparable textures are generated, such
as described in the previous section, it is easy to see that the order
of generation time of the algorithms is equal. However, the basic
operations which have to be carried out are different. For spot noise
scan conversion operations are needed and for LIC convolution and
stream line integration operations are needed.

The previous analysis is valid for the original algorithms. Sev-
eral ways have been proposed to speed up the algorithms. In the al-
gorithm for LIC proposed by Stalling and Hege [11] the algorithm
consists of two steps. In the first step stream lines are calculated
and in the second step the convolution is carried out by successive
processing of pixels along streamlines where results are reused. In
this way, the complexity of the algorithm becomes independent of
the filter length. For spot noise, graphics hardware can be utilized
to speed up scan conversion an blending of the spots [6]. Although
this does not change the order of complexity, substantial gains can
be achieved in the generation time. Parallelization is another way
to speed up the algorithms. LIC can be parallelized by dividing
the texture in tiles [15]. Parallelization of spot noise is possible by
distributing the spots over the processors. The combination of hard-
ware acceleration and parallelization for spot noise is possible if the
available processor power is matched by the speed of the graphics
hardware [5].

As a test case to compare the speed the algorithms we used the
detail of the DNS described in the previous section (see Figure 9).
The tests were run on a SGI Indigo

�
workstation equipped with a

250 MHz R4400 processor and a High Impact graphics board. For
LIC the original implementation as described in [1] was used. For
spot noise an implementation taking advantage of graphics hard-
ware was used. The results for this unfair comparison were 93.5
seconds for LIC and 6.7 seconds for spot noise. For the LIC image
a filter length of 20 was used, the spot noise image was generated
with a spot radius of 0.005. For the images with a filter length of 40
and a spot radius of 0.007 the times were 182.3 and 6.6 respectively.

We get a better comparison if use the results of accelerated LIC
with the times presented for spot noise. The timing results pre-
sented in [11] indicate that 4.6 seconds are needed for the gener-
ation a similar LIC texture on slightly slower hardware using the
acceleration techniques described in the paper. This would suggest
that LIC is slightly faster than spot noise.

In this comparison we used textures with equal pixel coverage.
However, a number of parameters in spot noise allow trading qual-
ity for speed. Figure 10 shows spot noise images in which less
spots were used. Compared to the spot noise textures in Figure 9,
20 percent of the number of spots were used in the left image, and
5 percent in the right image. The times needed to generate these
images were 1.3 and 0.35 seconds.

Figure 10: Trading quality for speed in spot noise. Texture using
50000 spots (left) and 12500 spots (right)

5 CONCLUSION

In this paper LIC and spot noise were compared. Both techniques
use texture synthesis for vector field visualization. Directional in-
formation in textures is encoded by coherence between neighboring
pixels. Due to differences between the techniques and the concepts
used to discribe them, a direct comparison would be very difficult.
By using continuous directional convolution as a model, the simi-
larity in the underlying mathematical basis becomes clear, and sim-
ilar concepts in the techniques can be found.

The diffences in information presented by both techniques are
due to the fact that LIC does not encode velocity magintude. There-
fore, the spatial resolution for presenting directional information is
higher than for a comparable spot noise texture. If the acceleration
scemes proposed for the techniques are taken into account the dif-
ferences in performance of LIC is slightly better than of spot noise.
Spot noise is more flexible with respect to trading texture quality
for generation speed.

Continuous Directional Convolution is used to show that for tex-
ture animation of time dependent flow, it is not possible to fully
satisfy the requirements of spatial coherence in the texture and tem-
poral coherence in frames. We believe that continuous directional
convolution can serve as a basis for future study and improvements
of texture synthesis techniques for flow visualization.

Acknowledgments

Thanks to Arthur Veldman and Roel Verstappen University of
Groningen for using their data. We are grateful to the reviewers who
gave valuable ideas for improvements of the paper. This work is
partially funded by the Dutch foundation High Performance Com-
puting and Networking (High Performance Visualization project).

References

[1] B. Cabral and L. Leedom. Imaging Vector Fields Using Line
Integral Convolution. In SIGGRAPH 93 Conference Proceed-
ings, Annual Conference Series, pages 263–272. ACM SIG-
GRAPH, August 1993.

[2] L.K. Forssell and S.D. Cohen. Using Line Integral Convo-
lution for Flow Visualization: Curvilinear Grids, Variable-
speed Animation, and Unsteady Flows. IEEE Transactions on
Visualization and Computer Graphics, 1(2):133–141, 1995.

[3] P. Haeberli. Painting by Numbers: Abstract Image Represen-
tations. In Computer Graphics (SIGGRAPH 90 Conference
Proceedings), volume 24, pages 207–214, July 1990.

[4] Victoria Interrante and Chester Grosch. Strategies for Effec-
tively Visualizing 3D Flow with Volume LIC. In R. Yagel and
H. Hagen, editors, Proceedings of Visualization ’97, pages
421–424, Los Alamitos (CA), 1997. IEEE Computer Society
Press.

[5] W.C. de Leeuw and R. van Liere. Divide and Con-
quer Spot Noise. In Proceedings Super Computing ’97
(http://scxy.tc.cornell.edu/sc97/program/TECH/DELEEUW/
INDEX.HTM), 1997.

[6] W.C. de Leeuw and J.J. van Wijk. Enhanced Spot Noise for
Vector Field Visualization. In G.M. Nielson and D. Silver,
editors, Proceedings Visualization ’95, pages 233–239, Los
Alamitos (CA), 1995. IEEE Computer Society Press.

[7] J-P Lewis. Texture Synthesis for Digital Painting. In Com-
puter Graphics (SIGGRAPH 84 Conference Proceedings),
volume 18, pages 245–251, July 1984.

[8] D. R. Peachey. Solid Texturing of Complex Surfaces. Com-
puter Graphics (SIGGRAPH 85 Conference Proceedings),
19(3):279–286, July 1985.

[9] K. Perlin. An Image Synthesizer. In Computer Graphics
(SIGGRAPH 85 Conference Proceedings), volume 19, pages
287–296, July 1985.

[10] H.-W. Shen and D.L. Kao. UFLIC: A Line Integral Convolu-
tion Algorithm for Visualizing Unsteady Flows. In R. Yagel
and H. Hagen, editors, Proceedings Visualization ’97, pages
317–322, Los Alamitos (CA), 1997. IEEE Computer Society
Press.

[11] D. Stalling and H.C. Hege. Fast and Resolution Independent
Line Integral Convolution. In SIGGRAPH 95 Conference Pro-
ceedings, Annual Conference Series, pages 249–256, August
1995.

[12] G. Turk and D. Banks. Image-Guided Streamline Placement.
In SIGGRAPH 96 Conference Proceedings, pages 453–460,
July 1996.

[13] J.J. van Wijk. Spot Noise – Texture Synthesis for Data Visu-
alization. In Computer Graphics (SIGGRAPH 91 Conference
Proceedings), volume 25, pages 263–272, July 1991.

[14] R. Wegenkittl and Eduard Gröller. Fast Oriented Line Integral
Convolution for Vector Field Visualization. In R. Yagel and
H. Hagen, editors, Proceedings of Visualization ’97, pages
309–316, Los Alamitos (CA), 1997. IEEE Computer Society
Press.

[15] M. Zöckler, D. Stalling, and H. Hege. Parallel Line Integral
Convolution. In A. Chalmers and F.W. Jansen, editors, Pro-
ceedings First Eurographics Workshop on Parallel Graphics
and Visualization, pages 249–256. held in Bristol, UK, 26-27
September, 1996.

