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Abstract

The technique for visualizing topological information in fluid flows is well known.
However, when the technique is used in complex and information rich data sets, the
result will be a cluttered image which is difficult to interpret. This paper presents a
technique for the visualization of multi-level topology in flow data sets. It provides
the user with a mechanism to visualize the topology without excessive cluttering
while maintaining the global structure of the flow.
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1 Introduction

The importance of data visualization is clearly recognized in large scale sci-
entific computing. However, the demands imposed by modern computational
fluid dynamics (CFD) simulations severely test the limits of today’s visu-
alization techniques. This trend will continue as solutions to more complex
problems are desired.

An important property of a flow field is its topology [1]. Visualization of the
topology was introduced into flow visualization by Helman and Hesselink [2].
They presented a technique that extracts and visualizes topological informa-
tion from numerical flow simulations. Topology visualization combines simplic-
ity of schematic depictions with the quantitative accuracy of curves computed
directly from the data. The technique presented by Helman and Hesselink
works well when applied to simple flow fields, but when applied to complex
fields, such as turbulent flows, a problem arises. Turbulent flows are charac-
terized by many small disturbances, resulting in a very large set of critical
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points. The visualization of the complete topology will be a cluttered image
which is difficult to interpret. For example, consider figure 1. The data is a
2D slice of a 3D turbulent flow around a square cylinder. Spot noise is used
to present the global nature of the flow. A set of 322 critical points has been
found in the data. Colored icons are used to display the set of critical points:
a yellow spiral icon denotes a focus, a blue cross denotes a saddle point, and
cyan/magenta disks denote repelling/attracting nodes. To prevent additional
cluttering, streamlines linking critical points have been omitted. Note that
most critical points are clustered in regions around the square cylinder.

Fig. 1. Topological information of turbulent flow around a square cylinder. Colored
icons are used to represent critical points. Spot noise is used to present the global
nature of the flow.

In this paper we present a technique for the visualization of multi-level topol-
ogy in flow data sets. The multi-level topology technique provides a mechanism
to select the set of critical points which define the global flow structure. By
only displaying the selected set of critical points, a simplified depiction of the
topology can be given, while maintaining the global nature of the flow field.

The format of this paper is: In the next section we review previous work on
vector field topology. In section 3 discusses the multi-level topology technique.
Finally, in section 4.1 we show how the technique has been used in two appli-
cations: to explore a turbulent flow field and to explore wind fields.

2 Previous work

Vector field topology was introduced by Helman and Hesselink, [2]. It presents
essential information by partitioning the flow field in regions using critical



points which are linked by streamlines. Critical points are points in the flow
where the velocity magnitude is equal to zero. Each critical point is classified
based on the behavior of the flow field in the neighborhood of the point. For
this classification the velocity gradient tensor is used. The velocity gradient
tensor — or Jacobian — is defined as

Uy Uy

J=Vi= (1)

Vg Uy

in which subscripts denote partial derivatives. The classification is based on
the the two complex eigenvalues (R1 + ¢ I1, R2 + ¢ I2). Assuming that
the the critical point is hyperbolic, i.e. the real part of the eigenvalues is non
zero, five different cases are distinguished (see figure 2) :

(1) Saddle point, the imaginary parts are zero and the real parts have opposite
signs; i.e R1 *+ R2 < Oand I1, I2 = 0.

(2) Repelling node, imaginary parts are zero and the real parts are both
positive; i.e R1, R2 > 0 and I1, 12 = 0.

(3) Attracting node, imaginary parts are zero and the real parts are both
negative; i.e R1 , R2 < 0 and I1, I2 = 0.

(4) Repelling focus, imaginary parts are non zero and the real parts are pos-
itive; i.e R1 , R2 > 0 and I1, 12 #0.

(5) Attracting focus, imaginary parts are non zero and the real parts are
negative; i.e R1 , R2 < 0O and I1, I2 #0.

When the real part of the Eigen values is zero the type of the flow is determined
by higher order terms of the approximation of the flow in the neighborhood
of the critical point.
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Fig. 2. Five different types of critical points.

Streamlines traced in the direction of the eigenvectors of the velocity gradient
tensor will divide the flow field in distinct regions.

Implementation aspects of this technique can be found in [3].

3 Multi-level flow topology

Phenomena in turbulent flow fields are characterized by flow patterns of widely
varying spatial scales. In terms of topological information, this means that



flow patterns with small spatial scales result in a large set of critical points.
However, the global structure of the flow field can be described by a subset of
all critical points. The governing idea of the multi-level flow topology method
is that the displayed number of critical points should be limited to only those
which characterize flow patterns of a certain level of scale. The critical points
that determine flow patterns at a smaller spatial scale should not be displayed.

In order to realize this idea, two distinct type of methods can be employed:
implicit and explicit methods (see figure 3). Implicit methods are those that
filter the input data set to obtain a derived data set to which the original
topology algorithm applied. Explicit methods are those which first compute
the set of critical points from the input data set and then use a filter to prune
this set.
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Fig. 3. Implicit (top) vs. explicit (bottom) methods of multi-level topology.

For explicit filtering methods we distinguish between two cases: local and non-
local methods. Local filters are those which operate on the critical points
only, and do not use additional information extracted from the flow field. In

contrast, non-local filters make use of additional information extracted from
the flow field.

The filter described in this paper is a local filter. An example of a non-local fil-
ter can be found in [4]. This filter is based on the area of the flow region in the
neighborhood of a critical point. Flow regions with small areas are contracted
into a single critical point. The topology can be simplified by iteratively con-
tracting regions until a specified area threshold is reached.

3.1 Implicit methods

In general, filters are used to enhance/suppress patterns in the data. For ex-
ample, a low pass filter can be used to suppress high-frequency patterns; i.e.
those flow patterns at small spatial scales. The idea is that by filtering the data
and then doing the critical point analysis, the critical points caused by small
disturbances in the flow will be filtered out. Nielson et al. obtained similar
results with a method where wavelets were used to approximate the data [5].

For the images in this section, a simple box filter has been used: each data-
point is replaced by an average over a small region in the original data. The



motivation is that the box filter is a simple low-pass filter which will average
out small scale patterns, while keeping large scale patterns intact.

Fig. 4. Three views of the implicit method using a box filter. Left: original data
set (322 critical points). Middle: 2x2 box filter (179 critical points). Right: 8x8 box
filter (40 critical points).

Figure 4 illustrates the implicit method using a box filter. The left image
shows the set of all 322 critical points of the original data set. The middle
image shows the set of 179 critical points of the data set after being filtered
with a 2x2 box filter. The right image shows the set of 40 critical points of the
data set after being filtered with a 8x8 box filter.

Although implicit methods are conceptually easy to understand and may
achieve the desired effect in certain cases, a number of drawbacks can be
mentioned. Due to filtering, there is no direct relation between critical points
in the original and derived set. The position and type of a critical point can
change after the filter is applied.

3.2 Ezxplicit methods

Explicit methods are filters which prune the set of all critical points defining
the topological structure. This filtering is achieved based on knowledge of
topological structure of the flow.

The pair distance filter (see figure 5) is a filter of this type. The idea used in
this filter is that a small disturbance of the flow will result in a pair of critical
points: a saddle and a non-saddle. For example, the topological structure of a
two dimensional vortex consists of a focus (repelling or attracting) combined
with a saddle point (see figure 5 left). The distance between the pair of critical
points is an indication of the size of the vortex. Removing the critical point
pair from the topology does not alter the remaining flow topology. It can be
shown that a pair of critical point consisting of a saddle and a critical point
with one of the other types mentioned in section 2 can be removed from the
flow.
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Fig. 5. Pair distance filter: Left, a focus and saddle point forming a vortex. Right, a
node and saddle point. The distance is a measure for spatial scale of the disturbance
of the flow.
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The pair distance filter can be implemented as follows: The set of all critical
points are located and classified. A distance matrix is constructed contain-
ing the distance between all possible pairs of saddles and non-saddles. The
pair with the smallest distance is located and removed from the set. This is
iteratively continued until all remaining pairs have a distance larger than a
threshold.

Figure 6 shows the pair distance filter in practice. The left image shows the
set of all 322 critical points of the original data set. The middle image shows
the critical points of the data set after being filtered with a distance threshold
of 0.0001 x H, in which H is the height of the set, resulting in a set of 114
critical points. The right image shows the critical points of the data set after
being filtered with a distance threshold of 0.001 * H, resulting in a set of 34
critical points.

Fig. 6. Three views of the explicit method using the pair filter. Left: original data
set (322 critical points). Middle: 0.0001 * H distance (114 critical points). Right:
0.001 * H filter (34 critical points).

4 Applications

4.1 Direct Numerical Simulation of Turbulent Flow

We applied our method to a turbulent flow, generated from a direct numerical
simulation (DNS) by A. Veldman and R. Verstappen [6]. DNS is an accurate



technique for computing turbulent flow. Flow experts use the resulting visu-
alizations to test hypotheses about flow phenomena and — after a detailed
inspection of the animation — as a means to pose new hypotheses. Of particu-
lar interest is the detailed visualization of vortex formation and the transition
from laminar to turbulent flow.

In this particular problem, a DNS of a turbulent flow around a square cylinder
at Re = 22,000 (at zero angle of attack) has been performed. The resolution
of the rectilinear grid is 314x538x64; the grid was finest near the cylinder.

Figure 7 shows a view of the flow. This is the same 2D slice as in figure 1.
The pair distance filter is used with a distance threshold of 0.001 * H, in
which H is the height of the data set. Now, streamlines can be drawn without
excessive cluttering of the image while, simultaneously, maintaining the the
global structure of the flow. Note, for example, the large vortex (consisting of
a saddle and attracting node) behind the square cylinder.

Fig. 7. A view of global flow structure around a square cylinder. The pair distance
filter is used with a distance of 0.001 * H.

Figure 8 shows a zoomed in view of the previous image. The distance threshold
for the pair distance filter is adjusted to reflect structures at a smaller scale.

This application clearly benefits from the added value of the multi-level flow
topology technique, [7]. The data set contains an abundance of detailed infor-
mation. Using traditional topology visualization methods on these data sets,
excessive cluttering can not be avoided. With the multi-level approach, sim-
plified views of the topology can be obtained without cluttering.

The multi-level topology method has been parallelized, so that interactive
rates can be obtained. The interactive multi-level topology method can be
used combination with interactive spot noise [8] to realize real-time animation
of the time-dependent field and interactive zooming into details one time step.



Fig. 8. A zoomed in view of flow topology around a square cylinder. The pair
distance filter is used with a distance of 0.0002 x* H.

In the near future DNS can be applied to flows with a Reynolds number in
the order of 10°. The increased size and detailed information in the resulting
data sets will require multi-level flow visualization techniques.

4.2 Global climate modeling.

Multi-level flow topology has also been applied to problems related to the
study of atmospheric transport models. A particular topic of study is the
relation between a pollutant and the wind field. For example, atmospheric
pollution researchers are interested in tracking the evolution of smog and how
this relates to the wind field. Non-cluttered topology depictions of wind fields
are required in order to clearly display spatial scales of flow.

For this particular problem, we will only display the wind fields. The data set
has been made available by the Dutch national weather institute. The data
is defined on a curvilinear grid with a resolution of 144x72x16. The slice at
z =0 (i.e. sea level) contains 346 critical points.

Figure 9 shows two views of the wind field at z = 0. The pair distance filter
was used to prune the critical points, resulting in a selection of 273 critical
points (left) and 165 critical points (right). From the images one can clearly
see various regions of flow.

Care must be taken when applying the pair distance filter to two dimensional
curvilinear grids. The distance between two points is the shortest path in the
surface between the two points. However, because we are interested in small
distances only the 3D euclidean distance is a good estimation.



Fig. 9. Two views of a global wind field. The left image shows 273 of the original
346 critical points. Right shows 165 critical points.

5 Conclusion

In this paper, a technique for the visualization of multi-level topology in flow
data sets has been presented. It provides the user with a mechanism to visu-
alize the topology without excessive cluttering while maintaining the global
structure of the flow. Two methods have been introduced. Implicit methods
can be used to filter data in order to suppress flow patterns at small spa-
tial scales. Explicit methods can be used to prune a set of critical points,
making use of specific knowledge about characteristics of the flow topology.
The technique has been applied to data sets resulting from a direct numerical
simulation and to a global wind field.
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