Fast Perception-Based Depth of Field Rendering

Jurriaan D. Mulder

Center for Mathematics and Computer Science

Kruislaan 413, 1098 SJ
Amsterdam, the Netherlands

mullie@cwi.nl

ABSTRACT

Current algorithms to create depth of field (DOF) effects
are either too costly to be applied in VR systems, or they
produce inaccurate results. In this paper, we present a new
algorithm to create DOF effects. The algorithm is based
on two techniques: one of high accuracy and one of high
speed but less accurate. The latter is used to create DOF
effects in the peripheral viewing area where accurate results
are not necessary. The first is applied to the viewing volume
focussed at by the viewer. Both techniques make extensive
use of rendering hardware, for texturing as well as image
processing. The algorithm presented in this paper is an
improvement over other (fast) DOF algorithms in that it
is faster and provides better quality DOF effects where it
matters most.

Categories and Subject Descriptors

1.3.3 [Computer Graphics]: Picture/Image Generation;
1.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism

Keywords
depth of field rendering, virtual reality

1. INTRODUCTION

Depth of field (DOF) is an integral part of human vision.
The power of the lens of the human eye changes to accom-
modate to different viewing distances. An object looked at
will be in focus but objects closer or further away will be
out of focus and thus appear blurred. The amount of blur
depends on the current power of the lens, the diameter of
the pupil, and the distance of the object. In todays VR sys-
tems, no DOF effects are present. All images are rendered
in focus and presented at the display surface. The lack of
DOF effects contributes to the unnatural appearance of the
virtual world and excludes the use of DOF as an additional
depth cue. Furthermore, adding depth of field to stereo im-
ages can aid in stereo fusion and can possibly relieve eye

Robert van Liere
Center for Mathematics and Computer Science
Kruislaan 413, 1098 SJ
Amsterdam, the Netherlands

robertl@cwi.nl

strain often experienced in VR systems.

Several algorithms have been developed to create DOF ef-
fects in computer generated images. However, these algo-
rithms are too time consuming to be used in VR applications
or they produce inaccurate results. In this paper, a new al-
gorithm is proposed that greatly reduces computation time.
The algorithm takes the perceptual capabilities of the hu-
man eye into account, providing accurate DOF effects in the
center of attention while applying less accurate effects in the
peripheral viewing areas. Although not yet fast enough to
be applied in todays VR systems, it is a significant improve-
ment over other known DOF algorithms in that it is faster
and provides more accurate results where it matters most.
Therefore, it brings the application of DOF effects in VR a
step closer.

In the next section, we will briefly describe the DOF model
we used to calculate the DOF effects. This model is also
used by others, see for instance [14]. In section 3 related
work on DOF algorithms is reviewed. Section 4 contains
the description of the new algorithm and discusses its merits.
In section 5 the results of the new algorithm are presented
and section 6 contains the conclusion and indicates areas for
future research.

2. DEPTH OF FIELD MODEL

The human eye can be modeled as a thin lens system. Fig-
ure 1 depicts such a system. Light rays emanating from a
point of light O (the object point) entering the eye are re-
fracted by the lens through the image point I. The relation
between the power of the lens P, and the distances of the
object point d, and the image point d; to the lens is given
by the thin lens equation:

1,1
T d, d;

=

Figure 1: Thin lens system

The amount of refraction depends on the power of the lens.

The lens of the human eye changes its power to focus the
object point of interest at the retina. Object points located
closer or further away will be out of focus and create a circle
of confusion (CoC). The diameter of the CoC on the retina
C, from an object point can be calculated by (see figure 2):

Cr =|Va— V5|(E —Va)

where
Va = £% d>P
— _Pds
Vi = i, P df > P
E = lens (pupil) diameter
in which
d = distance to unfocused object
dy = focus distance
1
P = S T4
dy U dn
d, = distance from lens to retina
retina eyelens

A

de
Figure 2: Calculation of the CoC

From this formula, we can calculate C;, the CoC as it has
to be rendered on the display screen:

where d; is the distance from the lens to the display screen.

3. RELATED WORK

Several algorithms to render DOF effects have been devel-
oped over the years. These algorithms can be classified as
either post-process filtering methods or multi-pass rendering
methods.

3.1 Post-Process Filtering

Potmesil et al. [12, 11] were one of the first to describe a
DOF rendering algorithm. First an image is created with
the use of the standard pin-hole camera. In this image the
z value for each pixel is also stored. Each sampled point is
then turned into a CoC with a size and intensity distribution
determined by its z value and the lens and aperture being
used. The intensity of each pixel in the output image is
calculated as a weighted average of the intensities in the
CoCs that overlap the pixel. Potmesil et al. use a Lommel
intensity distribution function to calculate the intensity a
neighboring receives. Chen proposes a simpler method to
obtain the intensity distribution [3]. By the use of light
particle theory, it is shown that due to raster resolutions
and the intensity spreading of neighboring pixels onto each

other, a simple uniform intensity distribution over the CoC
can be used.

The algorithms presented by Potmesil and Chen are im-
plemented in software and are far too slow to be applied
in near real time. Rokita [13, 14] suggests to use special
digital hardware filters to speed up the creation of DOF
effects. By multiple consecutive applications of (3x3) Gaus-
sian convolution filters, pixels are spread over their neigh-
boring pixels to create a blurred appearance. Dudkiewicz
uses a similar approach applying multiple passes of different
sized convolution filters (3x3, 5x5, 7x7) using the SGI Re-
alityEngine2 image processing hardware [6]. The drawback
of using convolution filters however, is that they do not al-
low for a uniform distribution of a pixel’s intensity over the
CoC. Furthermore, these filtering techniques give rise to in-
tensity leakage problems, where either blurred foreground
or background objects leak into objects that are in focus, or
focussed objects leak intensity into blurred background or
foreground objects.

For all post-filtering techniques it yields that since the im-
age is initially computed from a single point at the center
of projection, the intermediate image from which the final
DOF image is created does not contain sufficient informa-
tion to create a perfect DOF image. This affects the results
in two ways: First, a real lens’s focusing effect causes light
rays that would not pass through the pinhole to strike the
lens and to converge to form the image. This leads to un-
dervalued (hypo) pixel intensities at the border of blurred
background objects and focussed objects, see figure 3. Sec-
ond, objects can be partially occluded by other objects in
front of them, i.e. they are not ‘visible’ for the entire lens
surface. As a result, in post-filtering techniques overvalued
(hyper) pixel intensities can occur.

Figure 3: Hypo intensities. The left object is in
focus. The background has been blurred and suffers
from too low intensities

Matthews [9] suggests to solve both hypo and hyper inten-
sities by either up or down scaling under and over valued
intensities, or by adding or subtracting the pixels original
color to obtain a normalized pixel intensity. Shinya [16] at-
tacks these problems by creating a sub-pixel buffer (the ray
distribution buffer) and performing hidden surface removal
for each distributed ray. This technique however, adds sig-
nificant computational and memory costs depending on the
accuracy required.

Other work regarding fast creation of DOF effects include al-
gorithms developed by Scofield [15] and Fearing [7]. Scofield
presents an algorithm where the objects to be rendered are
sorted in groups according to their depth, rendered inde-
pendently into separate images, filtering these images, and
finally combining them into the single final image. Fearing
proposes an importance ordering method to avoid recalcu-
lation of DOF effects in frame sequences with only minor
changes. This method however, is not suited for VR ap-
plications where major head movements and focus changes
occur.

3.2 Multi-Pass Rendering

DOF effects can also be created by rendering the scene mul-
tiple times with a standard pin-hole camera where the center
of projection is slightly translated while preserving a com-
mon plane in focus [10]. The final image is generated by
accumulation of all the sub-images [8]. A similar technique
is used in distributed ray tracing [5, 4]. Here multiple rays
are traced through the scene that originate from different
locations around the ideal center of projection.

Although these techniques produce very good and accurate
results, they are computationally expensive since the scene
has to be rendered multiple times to create a single image.
They are therefore not suitable for application in VR set-
tings.

4. DOF ALGORITHM

The algorithm described here is based on two techniques:
a high resolution and accurate technique for the center of
attention, and a low accuracy high speed approximation for
the remaining part of the scene. Both techniques are based
on a post-processing approach and make extensive use of
rendering hardware to obtain high speeds. First, the scene
is rendered using a standard pinhole camera. In this inter-
mediate image, each pixel representing an object that should
be out of focus has to be spread over its neighboring pix-
els to create a CoC proportional to the CoC that is to be
formed on the viewer’s retina.

Each of the techniques is now described in more detail, fol-
lowed by an explanation on how these techniques are com-
bined.

4.1 High Resolution

For this technique, the CoC diameters are discretized to
pixel sizes, i.e. CoC’s with diameters of 1, 3, 5, etc. pixels
are used. For each of the diameters the CoC border is deter-
mined. A CoC border is a list of those pixels that ly within
this CoC, but are not covered by a CoC of smaller diame-
ter. A pixel is considered to ly within a CoC if its center lies
within the CoC, see figure 4. This process is done both for
the CoC’s of pixels in front of the focus plane and behind
the focus plane.

An RGBA texture is created from the intermediate image of
the same size as the intermediate image. The RGB values
are the original RGB values of the pixels. In the A value
however, the pixel’s depth (z) value is stored.

Next, the frame buffer is cleared and a number of texture
mapped rectangular polygons are drawn. The size of the

D LN J

Figure 4: Discretized CoC sizes and their borders

polygons equal the size of the original scene, such that each
texel covers exactly one pixel after the polygons are ras-
terized. First, a polygon is rendered for each pixel in the
outermost front CoC border. The position of the polygons
is shifted according to the position in the CoC border. Only
those pixels in the textured polygon are rendered that should
have a CoC larger than or equal to the diameter of the cur-
rent CoC border. This is accomplished by the use of an al-
pha test on the alpha value of the texel, i.e. the depth value
of the original pixel. Furthermore, by the use of a texture
color table lookup function, the alpha values of the pixels to
be blended in are converted to the appropriate intensities.

This process is repeated for the next inner front CoC border,
etc., upto the single pixel in the center, after which the pix-
els in the back CoC border are done, this time starting with
the smallest CoC border upto the largest. For each border
only those texels are rendered whos CoC contains that pixel.
This selection is easily achieved by performing an alpha test
on the texels’ alpha value, i.e. the pixels depth value. Fur-
thermore, by performing a color table look up operation for
the alpha component, the correct texel intensity is blended
into the scene. The blending function used is alpha satu-
rate, and in combination with the front to back rendering
order this ensures that no hyper-intensity values can occur.
Hypo-intensity values are corrected by a final blend with the
original image to normalize pixels with too low intensities.

The main advantages of this technique are that it makes ex-
tensive use of fast texturing hardware, all CoCs are created
in parallel, and the intensity distributions over the CoCs
are uniform. The total number of textured polygons to be
rendered and blended in equals the number of pixels in the
largest CoC present in the image in front of the focus plane
plus the number of pixels covered by the largest CoC behind
the focus plane.

4.2 Fast Approximation

The fast DOF technique is based on Gaussian pyramids, a
technique also used in image coding [2, 1]. Gaussian pyra-
mids offer a very fast way to create low-passed filtered, re-
duced size representations of an original image. A pyramid
is constructed is as follows: From an original image Iy, a
reduced or low-pass filtered image I is constructed. Each
value in I; is computed as a weighted average of values in Iy
within a 5 by 5 window. Image I> is constructed out of I
in the same manner, etc. Figure 5 illustrates the procedure
for a one-dimensional case. For a more detailed discussion
on Gaussian pyramids and their use in image coding see [2]
and [1].

For the DOF algorithm, two Gaussian pyramids are con-
structed. The initial image of the first pyramid contains all
the pixels closer to the viewer than the focus plane with

ZAR
LR . L

Figure 5: Gaussian pyramid construction

their alpha value set to 1, all other pixels are cleared. For
the second pyramid, all pixels further away than the focus
plane are used. The convolution function used to construct
the next image in the pyramid is applied to the RGBA val-
ues of the pixels. The number of levels in each pyramid is
determined by the maximum blur needed in the final image.
Each image created in one of the pyramids is stored as a 2D
texture.

Next, the final image is constructed by first rendering tex-
ture mapped polygons front to back with the front pyramid
textures. Then the pixels of the focus plane are blended in,
and finally texture mapped polygons are blended in back
to front using the back pyramid textures. The polygons
with the pyramid textures are rendered at the appropriate
depth coordinates with depth testing enabled such that only
those pixels are filled with the blurred texel value that cor-
respond to the amount of blur related to the pixel’s depth
value. Linear interpolation over the texel values is enabled
to magnify the smaller sized pyramid textures. Finally, the
hypo-intensity pixels are corrected by blending in the origi-
nal image.

The main advantages of this technique is that it allows for
very fast creation of highly blurred effects. For comparison,
a third level pyramid image effectively spreads a pixel over
31x31 pixels. This is achieved with three passes of a 5x5
convolution filter over images that are reduced in size by
half in between each filter pass. When such a spread has to
be achieved by the technique of Dudkiewicz, 4 consecutive
passes of a 7x7 convolution filter have to be applied on the
entire image, which is far more expensive.

4.3 Combination

Each of the two algorithms have their advantages and disad-
vantages. The first algorithm provides accurate DOF effects,
but is somewhat time consuming particularly for larger CoC
diameters. Furthermore, the color resolution of the frame
buffer imposes a limit on the CoC diameters that can be
used; for large CoC diameters pixels have to be blended in
with very low intensities. As frame buffers are usually based
on integer values, such low intensities do not contribute to
the pixel values. The second algorithm provides a very fast
way to create DOF effects, especially for larger CoC diame-
ters, but it is of limited accuracy: intensity leakage occurs,
the intensity distribution is Gaussian in stead of uniform,
and large step sizes in the amount of blur occur. The two
techniques however, can be very well combined to obtain
a technique that provides accurate DOF effects where it is
most needed, yet provides adequate computational speed by
applying the fast approximation for those areas where such
high accuracy is not necessary.

The human visual system is of high resolution in the fovea
but into the periphery the resolution rapidly decreases. Fur-
thermore, the larger the CoC’s, the more blurred the scene
will be and the less important it becomes to accurately apply
DOF effects. Therefore, we combine the two algorithms into
one by defining a center of attention volume (CAV) inside
the actual viewing volume. This CAV is centered around
the object currently focussed at by the viewer. Inside the
CAV, we apply the high resolution algorithm, while outside
the CAV we apply the fast approximation, see figure 6.

viewing volume

Center of Attention
Volume

eye point

Figure 6: The Center of Attention Volume (CAV).
Inside the CAV the high resolution algorithm is ap-
plied, outside the CAV the fast approximation algo-
rithm is applied

5. RESULTS

Figure 7 shows a 512 x 512 image created with the combined
algorithm. The image is created on a SGI Onyx with a Re-
alityEngine2 with two raster managers. The scene consists
of 3 spheres, with a diameter of 0.14 m located respectively
at 0.4, 0.9 and 1.4 m from the viewpoint. Pupil diameter
was set to 8 mm and the display screen was 0.4 m away
from the viewpoint. The CAV was set to have 5.0 degrees of
field of view, and the view was focussed on the green sphere
0.83 m away from the viewpoint. Converting the pinhole
camera image of the scene to the final image with DOF cost
approximately 0.24 s.

Although this is not yet fast enough to be applied in to-
days VR setups, where at least 20 frames per second have
to be rendered and preferably even more, it is a significant
improvement over other methods while high accuracy is pro-
vided in the area where it matters most.

For comparison, applying the same DOF effects with the
fast algorithm as proposed by Dudkiewicz [6] costs approx-
imately 50 ms. In addition, the final image suffers from
intensity leakage.

6. CONCLUSION AND FUTURE WORK

In VR applications, depth of field not only makes the virtual
world look more realistic, but it can also provide an addi-
tional depth cue and help in the fusion of stereo images.

Figure 7: Depth of field effects applied to a 3D scene

Applying DOF however, is a costly process. In this paper
we have presented a new algorithm that greatly speeds up
the application of DOF effects to a scene rendered with a
pin-hole camera. The algorithm combines an accurate, high
resolution technique for the area on which the viewer is fo-
cussed with a faster but less accurate approach for the rest of
the scene. It is an improvement over other known algorithms
in that it is faster yet provides accurate results where they
are most needed. Although not fast enough yet, it brings
the application of DOF in VR settings a step closer.

A major drawback of current virtual reality display hard-
ware is that the convergence-accommodation relationship in
human viewing is violated. This is a major cause for eye
strain often experienced by humans when using VR equip-
ment. It would be an interesting research to investigate
whether the application of DOF would have a positive ef-
fect in this regard. One step further along this line would
be to construct a head-mounted display with a variable fo-
cus plane. When equipped with an eye tracking system or
a device to measure the power of the lens of the eye, the
focus plane of the HMD could be adjusted according to
the focus distance of the eye to restore the convergence-
accommodation cue and thus relieving eye strain. If DOF
effects are added to such a system, natural vision could be
simulated very accurately.

7. REFERENCES

[1] P.J. Burt. Fast filter transforms for image processing.
Computer Graphics, Image Processing, 6:20-51, 1981.

[2] P.J. Burt and E.H. Adelson. The laplacian pyramid as
a compact image code. IEEE Transactions on
Communications, 31(4):5632-540, 1983.

[3] Y.C. Chen. Lens effect on synthetic image generation
based on light particle theory. The Visual Computer,

[10]

[11]

[12]

[13]

[14]

[15]

[16]

3(3):125-136, October 1987.

R.L. Cook. Stochastic sampling in computer graphics.
ACM Transactions on Graphics, 5(1):51-72, 1986.

R.L. Cook, T. Porter, and L. Carpenter. Distributed
ray tracing. In H. Christiansen, editor, Computer
Graphics (SIGGRAPH '8 Proceedings), volume 18,
pages 137-145, 1984.

K. Dudkiewicz. Real-time depth-of-field algorithm. In
Y. Parker and S. Wilbur, editors, Image Processing
for Broadcast and Video Production Proceedings of the
European Workshop on Combined Real and Synthetic
Imagfe Processing for Broadcast and Video
Production, pages 257—-268. Springer Verlag, 1994.

P. Fearing. Importance ordering for real-time depth of
field. In Proceedings of the Third International
Conference on Computer Science, pages 372—380,
1996.

P. Haeberli and K. Akeley. The accumulation buffer:
Hardware support for high-quality rendering. In
Forest Baskett, editor, Computer Graphics
(SIGGRAPH ’90 Proceedings), pages 309-318, 1990.

S.D. Matthews. Analyzing and improving
depth-of-field simulation in digital image synthesis.
Masters Thesis, University of California, Santa Cruz,
December 1998.

J. Neider, T. Davis, and M. Woo. OpenGL
Programming Guide: The Official Guide to Learning
OpenGL. Addison-Wesley, Reading, Mass., first
edition, 1993.

M. Potmesil and I. Chakravarty. A lens and aperture
camera model for synthetic image generation. In

H. Fuchs, editor, Computer Graphics (SIGGRAPH ’81
Proceedings), pages 297-305, 1981.

M. Potmesil and I. Chakravarty. Synthetic image
generation with a lens and aperture camera model.
ACM Transactions on Graphics, 1(2):85-108, April
1982.

P. Rokita. Fast generation of depth of field effects in
computer graphics. Computers & Graphics,
17(5):593-595, 1993.

P. Rokita. Generating depth-of-field effects in virtual
reality applications. IEEE Computer Graphics and
Applications, 16(2):18-21, March 1996.

C. Scofield. 2% Depth of Field Simulation for
Computer Animation, volume III of Graphics Gems
Series, pages 36-38. AP Professional, 1992.

M. Shinya. Post-filtering for depth of field simulation
with ray distribution buffer. In Proceedings Graphics
Interface ’94, pages 59-66, 1994.

