
Chromatin Decondensation:
a Case Study of Tracking Features in Confocal Data

Wim de Leeuw
�

Robert van Liere
�

�

Center for Mathematics and Computer Science, CWI, Amsterdam, Netherlands.

Abstract

In this case study we discuss an interactive feature tracking system
and its use for the analysis of chromatin decondensation. Features
are described as points in a multidimensional attribute space. Dis-
tances between points are used as a measure for feature correspon-
dence. Users can interactively experiment with the correspondence
measure in order to gain insight in chromatin movement. In addi-
tion, by defining time as an attribute, tracking problems related to
noisy confocal data can be circumvented.
CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Picture/Image Generation; I.3.6 [Computer Graphics]:
Methodology and Techniques
Keywords: feature tracking, multidimensional visualization,
biomedical imaging.

1 Introduction

In the quest for understanding biological processes that underlie
control of gene expression, there is a strong need for methods to
study the structural and functional organization of the cell nucleus.
Recent progress in the luminescent labeling of cell components and
the use of digital 3D microscopy allow biologists to generate time
dependent volume data describing in detail specific processes of the
living cell. Due to their complex nature, four dimensional struc-
tural analyses is difficult, if not impossible, using traditional analy-
sis techniques.

In a previous case study we used standard visualization tech-
niques, such as volume rendering and iso-surfaces, in a virtual en-
vironment for the exploration of the data [1]. From that study it be-
came apparent that higher level visualization techniques are needed
for better understanding of these processes.

Feature visualization is an attempt to present data to the user at
a high level. The problem of feature tracking is the detection of
features and the tracking features over time. There are two main
difficulties of tracking luminescent labeled cell components in data
taken from confocal microscopes. First, the definition of cell com-
ponents in these data sets is not straightforward. This effects the
detection of features. Second, the data is very noisy which inter-
feres with detection and tracking.

In this paper we discuss an interactive feature tracking system
which we use to analyze chromatin decondensation. The feature
tracking algorithm resembles the method introduced by Sethi et.
al. in which a feature is described as a point in a multidimensional
attribute space [2]. Distances between points are used as a corre-
spondence measure between features. Our method can interactively
scale attributes in order to assign relative weights to attributes. In
contrast to other tracking methods, our method considers time as
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an attribute of a feature. The main motivation of considering time
as an attribute is that all information of the feature is treated in an
uniform way. In this way, the problem of noisy data which exists
in frame to frame based feature tracking methods can be circum-
vented.

The paper is organized as follows. First, we discuss the biologi-
cal background of the case study. After reviewing related work, we
discuss our methods in some detail. Then, in section 5, we present
our case. Finally, in section 6, we discuss the pros and cons of our
approach.

2 Biological background

The regulation of gene expression at the level of DNA and regula-
tory proteins that bind to it is understood in quite some detail. How-
ever, the role of higher order chromatin folding in the interphase
nucleus is less well understood. Using state of the art fluorescent
DNA/chromatin labeling techniques in combination with confocal
microscopy [3], biologists are able to produce time dependent 3D
data sets of DNA/chromatin in the cell nucleus in living cells.

To this end, cells were used that express green fluorescent pro-
tein [4] tagged histone H2B1. Histones are key components of chro-
matin. They constitute a protein octamere, around which the DNA
is wrapped almost two full turns. This histone octamere plus the
DNA together constitutes the nucleosome, the basic building block
of chromatin in all eukaryotic cells. In the experiments discussed in
this paper the GFP-labeled H2B allowed that chromatin was visu-
alized in living cells and movement was followed in time and space
using 3D confocal microscopy. Time series of 3D images were
made of the process of decondensation of the chromatin after cell
division (mitosis). During mitosis chromatin is densely packed in
chromosomes. After mitosis, part of the chromatin decondensates
to form a new nucleus.

The aim of these experiments was to analyze the movement of
chromatin during formation of the cell nucleus of the newly formed
daughter cell. Densely packed areas of chromatin are used to anal-
yse the movement of the entire chromatin. The densely packed
areas are represented as high intensity levels in the data. Hence,
the goal of the feature tracking algorithm is to track positions of the
high intensity levels in the data.

The data set consisted of a series of 134 3D data sets. Each data
set is a stack of optical sections of 256 � 256 voxels. The number
of optical sections in the stacks varied over time due to the flattening
of the cell as the cell cycle progresses. The initial number of optical
sections was 30, decreasing to 18 sections at later time points. To
make processing easier extra optical sections were added, so that
all sets contained an equal number of sections. Due to physical
characteristics of a confocal microscope the optical resolution along
the z-axis is four times less than in the x-y plane. The 3D images
are corrected for this by scaling in the z-direction during rendering.
The total amount of storage required for the data is 260 MB.

1HeLa cells expressing H2B-GFP[5] were kindly provided by H. Kimura
of the University of Oxford



3 Related work

Detecting and tracking features in time dependent data has been
studied by many researchers. Most algorithms consider feature
tracking as a two step process. First, features are detected and ex-
tracted from each time step in the data. Then, in the tracking phase,
the correspondence of features in successive time steps is used for
the determination of tracks.

Sethi et al. compute tracks of objects in image sequences [2].
An object is characterized as a vector of attributes in a multidimen-
sional attribute space. The distance in the attribute space is used
as a correspondence measure between two objects. Tracks are con-
structed by maximizing a smoothness function over the set of pos-
sible feature sequences. The smoothness function takes both speed
and angle into account. Phantom tokens are inserted if the number
of detected features does not match between frames in the sequence.

Samethey et al. introduced the notion of evolutionary events,
such as split, merge, birth and death events to describe the evolu-
tion of features [6]. Correspondence between features is determined
by thresholds for each of the attributes. Additional correspondence
criteria are formulated in case of evolutionary events. For exam-
ple, in the case of track splitting, the size attribute of the feature is
compared to the sum of the size attributes of the split features.

Reinders and Post use prediction methods for the evaluation of
feature correspondences [7]. Gradients of attribute values in already
found tracks are used as a prediction for the continuation of the
track.

Instead of attribute correspondence between frames, Weigle and
Banks take a different approach for finding features in time depen-
dent flow data [8]. Here features are extracted directly from the
four dimensional data. They calculated iso-values of expressions
describing the feature directly in the four dimensional data.

Our approach resembles other methods in which features are ex-
pressed as points in a attribute space. It resembles Sethi’s method
in that correspondence is expressed as the euclidean distance be-
tween points. However, our approach differs in that it treats time as
an attribute of the feature. Feature correspondence is based only on
distances between points.

4 Methods

In this section we review the methods used for the tracking and vi-
sualization of features in a time dependent confocal data set. First,
features are extracted from the each time step in the data set. A
feature consisting of � attributes is described as an � -dimensional
attribute vector, i.e.
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. In our method, we

reserve the last attribute
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to denote the time step of the feature.

4.1 Tracking

Each feature is represented as a point in a multidimensional at-
tribute space. Scaled attribute differences are used to define a dis-
tance function ��� ����
����! "�$# %�& �(' & � � � &*) � � &  + �
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is a user defined scaling factor for each attribute. The
distance function

�
is used as a measure for the correspondence of

features.
Two features are linked if their distance is smaller than a user

defined threshold; i.e
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in which
.

is the threshold
value. A track is the set of features which are linked.

Figure 1 illustrates the tracking algorithm in a two dimensional
attribute space. The horizontal axis represents the time attribute,

and the vertical axis represents an intensity attribute. In the left
image, 21 features (points) are shown. Dashed circles are drawn
around two features to indicate the distance threshold. In the right
image, lines that link points are shown to indicate three tracks.
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Figure 1: Illustration of the tracking algorithm. In the left image,
dashed circles indicate linking criteria. Resulting tracks are shown
on the right.

A number of remarks about the tracking algorithm can be made:0 The distances between points in attribute space are based on
attributes of various types. There is no fixed way to compare
differences in attributes of different types. For example, how
does a certain change in intensity compare to a change in the
position of a feature. Therefore, the attribute vector is scaled
using the user controllable scaling vector,
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In this way, the user can assign a relative weight to each at-
tribute in the attribute vector.0 Time is not regarded as a special attribute and is treated as
other attributes. Considering time as an attribute has the ad-
vantage that tracks can continue even if a feature is not found
in a certain time step. This is often the case in noisy data.0 The distance criterion used can be geometrically interpreted
as an hyper-ellipsoid in attribute space. All features within the
hyper-ellipsoid are linked to the feature, including those fea-
tures in the same time step. The user can, based on the value
of the scaling vector and knowledge of the underlying data,
judge if this is desirable or if

'
-values have to be adjusted.0 The computation and storage of mutual distances of features

is costly. For the storage of the mutual distance of 2 features,2 � storage is required. The computation and storage is op-
timized by introducing a one dimensional sliding window of
size

.
. Only those distances between features will be com-

puted if the difference between the attribute value is in the
sliding window; i.e. 3 �
��� ) ���4� 3 ,5.

.

4.2 Visualization and Interaction

Figure 2 shows a schematic view of the tracks found in figure 1
(see also Reinders et. al [7]). The horizontal axis represents time,
and the vertical axis represents feature. Tracks are shown as lines
connecting features. The vertical ordering of features is chosen to
minimize the number of edge crossings.

The track viewer can be linked to other date viewers. In our
system we use a 3D viewer to show the positions of the tracks in
the cell nucleus.

The track viewer is useful for the analysis of track structure.
Splits and joins of tracks can easily be seen in the track viewer.
Also, aspects of the lifetime of a track can be discerned in the track
viewer, while these cannot be seen in the 3D viewer. For example, a
track of a stationary feature is represented as a long line in the track



view while it is shown as a single point in the 3D viewer. Also, a
fast moving feature with a short lifetime is a short line in the track
viewer while it is a long line the 3D view.

t

Figure 2: Track viewer showing the tracks in figure 1.

There are various possibilities for user interaction:0 The scaling vector
' � � ' �	
�������
 ' � �

and distance threshold.
can be adjusted interactively. Interactively changing the

scaling vector results in re-shaping the hyper-ellipsoid. This
allows the user to experiment with determining optimal fea-
ture correspondences for the given data.0 Interactive brushing allows the user to manually inspect the
relation between tracks in the track viewer and three dimen-
sional viewer.0 Interactive selection of features and tracks allows the user to
simplify views and highlight tracks.

5 Results

In section 2, we discussed how the time dependent data set was
acquired from the confocal microscope. To study internal nu-
clear motion, the movement of the most dense regions in the chro-
matin is analyzed. Features were used to represent these dense
regions. Features are defined by local maximal intensities in the
data. Each feature consisted of a 5 dimensional attribute vector,, � 
���
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are the feature’s 3D position,�

denotes its intensity value and
�

is the time step. In total, 10,256
features were found.

Figure 3 and 4 give an overview of the data. The track view
(Figure 3) shows all computed tracks for a particular scaling vector
and distance threshold. The three dimensional viewer (Figure 4)
shows the positions of the tracks in physical space. Only tracks
with a length larger than 20 points are shown. Colors are used to
label the tracks in both views.

Interpretation of the track view gives the following results:0 For the first 60 time steps the number of features and tracks
gradually grows, and then fluctuates somewhat. The biologi-
cal justification for this is that densely packed chromatin has
a relatively homogeneous density, while large variations of
chromatin density occur in decondensated chromatin.0 Sharp edges in the tracks are visible in the track view. These
edges are due to the birth or death of many tracks in a
time step. This occurs when the confocal microscope is re-
calibrated when scanning the cell.0 Despite the increasing number of tracks in time, track splitting
is rare. A possible biological justification for this is that spe-
cific regions in the chromatin stay dense, while the chromatin
in the neighborhood decondensates.

Figure 3: Track viewer showing the tracks found in the confocal
microscope data.

Figure 5 shows the track view with a different threshold distance.
In this case, tracks have many more branches. Although this view
illustrates the interactive capabilities of the method, the found fea-
ture correspondences were not optimal given what the user knows
about the process of chromatin decondensation.

Figure 6 is a zoomed in view of the track view. Some tracks con-
tinue although no corresponding features at given time steps can be
found. For example, for the third track from the bottom no corre-
sponding features are found at two time steps. The reason for not
finding features is probably due to noise in the data. The reason for
continuing the track is that the similarity of the attributes is such
that, despite the time difference, the points are is still in the hyper-
ellipsoid.

6 Discussion

In our method the decision whether features belong to a track is
based only on the distance between points; i.e. if points are in the
vicinity of each other in attribute space. We believe that the main
advantage of this approach is its simplicity. Feature attributes –
including time – are treated uniformly and the method does not
rely on phantom tokens (e.g. Sethi) or evolutionary events (e.g.
Samtaney) in order to define tracks.

One of the main problems with the confocal data set is noise.
Features are difficult to detect robustly in the data sets, resulting in
inaccurate data for the tracking algorithm. For example, a feature
may disappear for one or more time steps and then reappear. Since
time is treated as an attribute of the feature, the user can adjust the'

value for the time attribute and in this way lower the threshold for
time differences.

Interaction is important because no information of the chromatin
movement (i.e. tracks in the data) is available. Only experimenta-
tion with the scaling vector can give insight to these movements.
The track viewer and the three dimensional view has proven a valu-
able exploration aid for manually changing attribute weights. Users
can inspect specific tracks in the track viewer and try to scale at-
tributes in such a way that could, for example, increase the length a
track. Based on the knowledge of the underlying problem, the user
can interpret the views and judge if one scale vector is better than a
different vector.



Figure 4: Three dimensional view showing the positions of features
and tracks in the confocal microscope data.

7 Conclusions

Using this system, our users were able to analyse the movement
of chromatin during decondensation. We have discussed the im-
plementation of an interactive feature tracking system. Features
are described as points in a multidimensional attribute space. Dis-
tances between points are used as a correspondence measure. Users
can interactively scale attributes in order to assign relative weights
to attributes. By defining time as an attribute, tracking problems
related to noisy confocal data can be circumvented.

In the future we will apply the system to other data sets. Initial
studies have shown that the tracking and visualization methods can
also be used to track the evolution of critical points in turbulent
flow. In addition, we will study techniques that will automatically
compute an optimal set of weights in order to find certain properties
of the data.
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