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Abstract

In recent years many optical trackers have been proposed for usage in Virtual Environments. In this paper, we
compare three model based optical tracking algorithms for pose determination of input devices. In particular, we
study the behavior of these algorithms when applied to two-handed manipulation tasks. We experimentally show
how critical parameters influence the relative accuracy, latency and robustness of each algorithm. Although the
study has been performed in a specific near-field virtual environment, the results can be applied to other virtual
environments such as workbenches and CAVEs.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual reality; I.4.9 [Image Processing and Computer Vision]: Scene Analysis; H.5.2
[Information Interfaces and Representation]: Input devices and strategies;

1. Introduction

Optical tracking for head-tracking and interaction devices
in Virtual and Augmented Reality can provide a valuable
alternative over other tracking methods like magnetic, gy-
roscopic, and mechanical trackers. Advantages of optical
tracking are that it allows for wireless ‘sensors’, it is less
susceptible to noise, and it allows for many objects to be
tracked simultaneously.

The pose determination problem is well known in the
computer vision literature and many algorithms and algo-
rithm taxonomies have been proposed. A common approach
for determining the pose of interaction devices is to use
stereo cameras and model-based object recognition methods.
Devices are equipped with features in a pre-defined config-
uration (the model) and correspondence algorithms are used
to recognize the device features from the stereo paired im-
ages. The pose of the device can be determined after corre-
sponding features have been recognized.

Virtual and augmented reality researchers have defined
rules of thumb that are used to design optical tracker sys-
tems. For example, Welch and Foxlin have listed require-
ments for a magical device, [WF02]. Important requirements
are the accuracy, latency and robustness of trackers.

In this paper, we experimentally compare three optical
tracking algorithms for determining the pose of interaction
devices. Our goal is to study how, and to what effect, en-
vironmental conditions (such as lighting conditions or er-
roneous camera calibration) have on accuracy, performance
and robustness of each algorithm. Are all algorithms equally
robust under various environmental conditions? How do
varying environmental conditions effect the accuracy and
performance of the algorithms? The answers to these ques-
tions will allow virtual reality developers to make better
choices when designing and building their systems.

For our experiments we consider two hand movement
tasks that are related to object manipulation in a near field
desktop environment. However, the results are applicable to
other motions and to other environments.

2. Related Work

We restrict our overview to outside-in optical trackers and
systems that make use of active or passive markers that are
attached to the objects to be tracked. The major advantage
of using markers is that these can efficiently be found in the
camera images. In particular, when using infrared light in
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Figure 1: Framework for model based optical tracking in VR/AR. Optical tracking consists of image processing and pose
determination stages. Inputs include stereo camera images, camera descriptors, and device descriptors. Output is the pose of
each device.

combination with retro-reflective markers, image processing
simply comes down to blob detection in a gray-scale image.

Virtual reality researchers have developed optical trackers
using retro-reflective markers; eg. Dorfmüller [Dor99] and
Ribo et al. [RPF01]. A commercial product is available from
the German company Advanced Real-time Tracking, [ART].
These systems equip devices with multiple markers in a
known 3D pattern and use a stereo vision system to detect
and reconstruct the pose of the 3D pattern in a two step pro-
cess.

The pose determination problem is well known in the
computer vision literature and many algorithms and algo-
rithm taxonomies have been proposed, eg. [FP03]. Experi-
mental comparison studies have also been reported. Eggert
et.al. , [ELF95] provide a comparative analysis of four al-
gorithms which compute 3D rigid body transformations that
aligns two sets of points. Quantitative and qualitative results
are given of accuracy, robustness, stability and performance
of each algorithm. Rusinliewicz et.al. [RL01] compare vari-
ations of the iterative closest point algorithm when applied
to range images taken from multiple viewpoints. They eval-
uate what the effect of these variations is on the speed with
which the correct pose is reached.

Our comparison study differs from the previous studies in
two ways. First, Eggert et.al. study only those algorithms in
which the point correspondence is known. In virtual envi-
ronments, correspondence of points is usually not known.
Rusinliewicz reports on variations of the ICP algorithm,
whereas we take other algorithmic approaches into account.
Their study focuses on alternative methods to improve effi-
ciency, whereas we study the effects of noise on the behavior
of the algorithms.

Second, the behavior of the motions we study are differ-
ent than in the mentioned studies. Our study takes multiple
objects into account (i.e. the global registration problem),

whereas Eggert and Rusinliewicz study the alignment of a
single object.

3. Method

3.1. General Framework

In this section we define a framework used for comparing
model based optical trackers in a VR/AR environment. Its
purpose is to identify critical parameters that influence track-
ing accuracy and performance, rather than to provide a gen-
eral framework for tracking.

Consider figure 1 as a 4 stage framework. The user per-
forms an input action with one or more input devices at time
t1. The pose of each input device is represented as a 4x4
transformation matrix; denoted as Mtrue

k for k = 1...Ndevice.
User actions are captured by the optical tracking system and
an approximation of the actual pose is determined; Mk. Next,
the VR system can use Mk to update the simulation and,
at time t3, will display the virtual world. The time inter-
val t3 − t1 is the end-to-end latency of the virtual environ-
ment. For comparing tracker algorithms, we define tracking
latency as the latency introduced by the tracker; i.e. t2 − t1.
Tracking accuracy is defined in terms of the difference be-
tween Mtrue

k and Mk. These definitions will be elaborated in
section 5.

The optical tracking system consists of two stages; an im-
age processing stage and device pose determination stage. In
this framework we use a stereo camera pair, that provide im-
ages at a frequency fs. Image processing is used to compute
a set of 2D features for each image. The input to the pose
determination stage are the 2D features, a description of in-
trinsic and extrinsic camera parameters, and a description of
each device.

The fundamental problem in model based optical track-
ing is to establish the correspondence of data features with
features in the device description. Once the correspondence
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of features has been established, then the pose of the device
can be computed. In this paper, we study three approaches
for which algorithms can establish correspondence:

1. correspondence using 2D data features: In this case, the
correspondence is performed in 2D. The basic steps in-
volve using projective invariant pattern recognition meth-
ods to establish correspondence with 2D device features,
use stereo geometry to transform the corresponding fea-
tures to 3D, and compute the pose.
In section 3.3.1 we describe an algorithm that uses pro-
jective invariant methods to establish correspondence.

2. correspondence using 3D data features: In this case, the
correspondence is performed in 3D. The basic steps in-
volve using epi-polar geometry to transform features to
3D, use a 3D pattern recognition method to establish cor-
respondence with 3D device features, and compute the
pose of the device with the 3D feature.
In section 3.3.2 we describe a distance matrix algorithm
that establishes correspondence in 3D.

3. correspondence using projecting device features: In this
case, a pose of the device is projected into 2D and a fit-
ting of the projected device features with data features is
performed. The basic steps involve using the camera de-
scriptors to project a chosen pose of the device, compute
a 2D distance between the projected device features and
the image data features. Perturb the chosen pose and it-
erate until the 2D distance approaches zero. The device
features correspond with the data image features when
the 2D distance is minimized.
In section 3.3.3 we describe an Iterative Closest Point al-
gorithm to illustrate this approach.

Optical tracking algorithms are very sensitive to the relia-
bility of their inputs. We use the framework to identify three
sources of errors that can influence the inputs to the algo-
rithms:

• lighting conditions: processing of camera images is very
sensitive to the lighting conditions. This can lead to in-
accurate positions of the 2D features and will result in a
high-frequency jitter in the device pose.

• camera calibration: inaccurate camera parameters will in-
fluence many aspects of the algorithms. For example, er-
roneous camera parameters influences stereo geometry
computations and epi-polar geometry computations, inac-
curate distortion parameters influence the geometry of the
2D features, etc.

• device description: inaccurate device descriptions will in-
fluence the computations involved to establish the corre-
spondence between device and data features.

3.2. Devices and Device Descriptions

For our experimental study, we have chosen simple wooden
cubes for input devices and point sets as the basis for device
descriptors. Devices are constructed by placing small retro-

reflective markers on each surface of the wooden cube. Infra-
red light from LEDs mounted on the camera is reflected by
the markers back into the lens such that blobs of white pixels
can be detected in the image. The center of gravity of each
blob is the 2D position of the blob. We denote blobs as bi
with i = 1...Nblobs, in which Nblobs is the number of blobs in
the image.

A device description is defined by the 3D positions of the
markers on the device; denoted as mi with i = 1...Ndevice, in
which Ndevice are the number of markers on a device. Marker
coordinates are given with respect to a common reference
frame of the device.

Patterns are defined as a group of markers. Devices can
be constructed from a pattern of 4 collinear markers, or from
one or more patterns of 5 coplanar markers.

Figure 2 shows an example of two-handed interaction in
the Personal Space Station, a near-field desktop virtual envi-
ronment, [MvL02]. A molecule, tethered on a wooden cube,
is held in one hand. The second hand uses a pen to position
a clipping plane around the solvent surface of the molecule.
The cube device consists of 6 patterns of 5 coplanar markers.
The pen device consists of 4 collinear markers.

Figure 2: Two-handed interaction in a near-field virtual en-
vironment. In this example a pen and cube equipped are used
to explore a molecule. A 7x7x7 cm wooden cube device with
30 circular markers arranged in 6 patterns of 5 coplanar
markers, and a pen device of 4 collinear markers. Markers
have a diameter of 1/2 cm.

In the sequel, we will assume that the device descriptions
are sufficiently accurate.
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3.3. Algorithms

3.3.1. Projective Invariant Patterns

In a recent paper, we describe an optical tracker algorithm
that uses invariant properties of 2D point patterns to deter-
mine the pose of interaction devices, [vLM03].

A well known projective invariant relation is the cross ra-
tio. A cross ratio of 4 collinear points (labeled as A, B, C, D)
is the real number defined by: λ =

|AC| / |BC|
|AD| / |BD|

where |AC|

is the length of the 2D line segment from A to C. A remark-
able property of the cross ratio is that it is invariant under
perspective projections; i.e. although the relative distances
between the projected points on the line changes, the cross
ratio remains constant.

The algorithm to find a 5 point device pattern in the 2D
data points consists of three steps. First, the cross ratio for
all 5 point combinations of the 2D data points is checked
with the cross ratio of the device; i.e. λ2D = λdevice. This
step results in zero or more candidate patterns that corre-
spond to the pattern in the device description. In the second
step, 3D geometry tests are used to select the best candi-
date. This is realized by pairwise checking each candidate
obtained in the image with all candidates obtained from an
other image. Stereo geometry is used to transform the points
of each candidate pair into 3D and the candidate pair which
best corresponds to the 3D geometric information in the de-
vice description is selected as the best pattern. The 3D fit
value of a candidate pattern with a data pattern is defined as
the difference of 3D distances between points:

F =
5

∑
i=1

‖pi,i+1 −di,i+1‖ (1)

In the third step, the 3D points of the best fit used to deter-
mine the pose of the device.

The complexity of this algorithm is order O(N5) since
(

N
5

)

point combinations in a N point space must be

tested.

Dealing with noise Since the cross ratio is sensitive to noise
in the 2D point positions, an off-line training session is used
to determine deviations in the cross ratio. Instead of storing
the cross ratio as λdevice, an interval [λmin

device,λ
max
device] of all

computed cross ratios during the training session is stored.
During tracking, a correspondence will occur when λ2D ∈
[λmin

device,λ
max
device].

3.3.2. 3D Distance Matrix

We have developed a pose determination algorithm that is
based on 3D distances between points. The algorithm is a
special case of the general Euclidean Distance Matrix com-
pletion problem [Lau01], and can be seen as a generalization
of the method proposed by Dorfmüller, [Dor99].

An N ×N euclidean distance matrix is a symmetric ma-
trix, D = [di j] that stores all 3D distances between N points;
i.e. di j = ||xi − x j|| for i, j = 1,2,3, ...N.

For each pattern on the device, a distance matrix is con-
structed by measuring the 3D distance between each marker
pair of the pattern. For a pattern of 5 points, this results in a
5×5 distance matrix,

P = [pi j] =













0 p12 p13 p14 p15
p12 0 p23 p24 p25
p13 p23 0 p34 p35
p14 p24 p34 0 p45
p15 p25 p35 p45 0













(2)

During tracking, epi-polar geometry is used to compute
M 3D points from 2D data points in a pair of stereo images.
An M×M data distance matrix D = [di j] is computed from
the M 3D data points. The algorithm to find a pattern in the
3D data points consists of two steps. The first step finds all
the 5 sub-matrices in the data distance matrix D which fits in
the pattern distance matrix P. i.e. find rows k and columns l
such that pi j = dkl for i, j = 1...5. As a second step, a least
squares fitting method is used to find which sub-matrix of
D best fits pattern distance matrix P. The fit value F of a
sub-matrix with the point pattern is defined as:

F =
5

∑
i, j=1

‖pi j −dkl‖ (3)

The complexity of this algorithm is order O(M2 log(M)) ,
since each element in the data distance matrix must be tested.

Dealing with noise Without noise, it would be sufficient to
test if pi j = dkl . However, with noisy data, the test must be
extended to include all possible distances within an interval
around dkl . The length of this interval can be trained or a pre-
defined threshold value can be chosen. Hence, the test will
be pi j ∈ [dkl − T3d ,dkl + T3d ] in which T3d is the threshold
value.

3.3.3. Iterative Closest Point

The iterative closest point (ICP) algorithm was introduced in
1992 by Besl and McKay, [BM92]. It is a general purpose,
representation-independent method for registering 3D free
form shapes. The ICP algorithm is designed to match a data
shape to a model shape, under the assumption that the data
shape is formed by a (possibly noisy) sampling of the model.
Given a particular pose, a distance function is used to deter-
mine how well the data shape fits the model. An optimization
procedure is used to minimize the distance function.

A projection of the device model is used in order to com-
pare the blob point set with the device description. The pro-
jection depends on the translation/orientation of the device
pose and the camera’s intrinsic/extrinsic parameters. The
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projection of a device model point onto the camera image
is given by

pi = C M mi (4)

in which C is the camera transformation matrix, M is the
device transformation matrix and pi is the projected model
point of mi.

Normals in the device description are used for determin-
ing the visibility of a model point and are used to cull points
on surfaces that are not facing the camera.

The distance metric D is defined as the average distance
of every blob b j to the closest projected model point pi;

D =
1

Nblobs
∑

j
min{d(b j, pi)|i = 1...Nmodel} (5)

in which d(b j, pi) is the euclidean distance between blob bi
and projected model point pi.

Figure 3 illustrates three iterations of the ICP algorithm
for one camera and one cubic device. The first iteration (left)
shows the distance between the data image points (drawn in
red) and the projected device points as black lines. Subse-
quent iterations (middle and right) show – after translation
and orientation of the device – that the distances between
the data image points and the projected device points is min-
imized. Note that in this formulation of the distance func-
tion no correspondence information is taken into account;
i.e. more than one 2D point can correspond to the same de-
vice feature.

Figure 3: Three iterations of the ICP algorithm: a device
is positioned and oriented so that the distance between the
image points (in red) and the model (as circles) is minimized.

The ICP method can be formulated as an optimization
problem in which the distance function produces an erratic
multi-dimensional landscape with many local minima. A 6
DOF device results in a 6 dimensional space. Our imple-
mentation uses the simplex method as the optimization pro-
cedure to find a global minimum of the landscape, [NM65].

The ICP method can easily be extended for multiple de-
vices. Each device has its own device transformation matrix
(M in equation 4). The rest of the problem formulation re-
mains unchanged; only the number of points used by the
distance function increases. and the number of dimensions
in the multi-dimensional landscape increases.

Dealing with noise Without noise, the global minimum of
this landscape would be zero. However, with noisy data,
the minimum value of the distance function is not a-priori
known. A threshold value T2d is used as an upper bound to
verify if a minimum can be considered to be the global min-
imum. In our system we have chosen a threshold value of
T2d = 0.9 pixels. Geometrically, this may be interpreted as
that the average distance between blobs and projected model
points may not exceed T2d pixel.

The choice of T2d is related to the required accuracy of the
found pose. A small T2d will result in an accurate pose, but
it may require a substantial amount of time to find the global
minimum.

4. Test environment

Synthetic data sets were generated in a two step pro-
cess. In the first step, a two handed interactive session was
recorded and the pose of each device was stored on disk.
This sequence of poses is used as the reference data set.

Our experiments were conducted in the Personal Space
Station (PSS) [MvL02], is a near-field desktop environment
(see figure 2). The PSS uses a mirror-based display: the user
is seated in front of the mirror which reflects the stereoscopic
images of the virtual world as displayed by the monitor. The
visual space and interaction space are co-located: the user
can reach under the mirror into the virtual world without ob-
scuring the image or colliding with the monitor.

Two progressive scan CCD-cameras with wide-angle
lenses (focal length of 3.6 mm) cameras are mounted on the
chassis, providing an outside-to-inside view of the interac-
tion volume. The cameras can take 60 images per second.
The approximately 50x50x50 cm interaction volume is illu-
minated by rings of IR LEDs mounted around the camera
lenses. Retro-reflective markers are pasted onto the interac-
tion devices. IR light is reflected by the markers into the lens.
Zhang’s method for camera calibration and parameter esti-
mation is been used, [Zha00].

A two handed interactive session was recorded of a user
exploring a molecule (see figure 2). The recorded data set
consists of 2200 time steps. Figure 4 plots the trajectories
of the device frames during the interactive session. The left
plot shows the trajectories in 3D, the right plot shows the
projections of the trajectories on the XY, XZ, YZ planes of
the interaction volume.

4.1. Creation of Synthetic Data Sets

In section 3.1 we identified three sources of errors that ef-
fect the inputs to the algorithms. To simulate errors arising
from lighting conditions, we project the reference data set
using the reference camera descriptors and add zero mean
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Figure 4: Trajectories of two devices in 3D (left) and their
projections (right).

Gaussian noise with rms σ to each coordinate of the pro-
jected points. Three, experiementally derived, values for σ
were chosen: 0.05, 0.20, 0.50.

To simulate errors arising from camera calibration, we
perturb the intrinsic and extrinsic parameters of the refer-
ence camera descriptors. A new data set is generated for
each perturbation. For the intrinsic parameters we perturb
the focal length with 1%, 2.5% and 5% of the focal length
of the reference cameras. For extrinsic parameters we rotate
the cameras around their ’line of sight axis’ (the Z-axis) by
1 and 2.5 degrees. Also, we translate the cameras in the XY
plane by 1 and 2.5 cm.

This results in 3x3 x 2 x 2 = 36 data sets.

The experiments were performed on a single PentiumIV
PC @ 1.6 Ghz.

5. Experimental Comparison

5.1. Accuracy

In these experiments, the relative accuracy of each algorithm
was analyzed. This is by realized by comparing the differ-
ence between device poses of the reference data set with the
poses computed by the algorithm.

We define the translation accuracy as the norm of the dif-
ference between the translation vector of the computed pose
and the translation vector of the reference pose; i.e.

T err
i = ||T re f

i −T alg
i || (6)

where T re f
i is the translational error of the reference data set

at frame i. The orientation accuracy is defined as the norm
of the difference between the quaternion of computed pose
and the quaternion of the reference pose:

Qerr
i = ||Qre f

i −Qalg
i || (7)

where Qre f
i is the quaternion of the reference data set at

frame i. It can be argued that an orientation accuracy metric
based on angles would be more appropriate. We use quater-
nion differences since others have used this metric as well.

The root mean square (RMS) error of the translation and
orientation accuracy is defined as RMSt =

√

(∑N
1 T err

i )/N
and RMSω =

√

(∑N
1 Qerr

i )/N, with N the number of poses
in the sequence.

Figure 5 show the translation and orientation accuracy
plots of the distance matrix and ICP algorithms when zero
mean Gaussian noise was added to the reference data set.
Plots for σ = 0.05 (blue plot), 0.20 (green plot) and 0.50
(red plot) are shown. The plots show what is to be expected:
adding increasing levels of Gaussian noise to the 2D points
result in more noise in the device pose. Note however, that
there is more noise in the distance matrix plots than in the
ICP plots.
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Figure 5: Relative translation (top row) and orientation
(bottom row) pose accuracy for the distance matrix (left col)
and ICP (right col) trackers. Three noise levels are shown; σ
= 0.05 (blue plot), 0.20 (green plot), 0.50 (red plot). pixels.

Table 1 tabulates the RMSt and RMSω for three noise lev-
els.

2D noise Dist Matrix Proj Inv ICP

0.05 3e-5 / 5e-3 3e-5 / 5e-3 2e-5 / 3e-4
0.20 4e-4 / 8e-3 1e-4 / 7e-3 8e-5 / 7e-3
0.50 5e-4 / 2e-2 3e-4 / 2e-2 1e-4 / 9e-3

Table 1: RMS positional/orientation error for noise levels
σ = 0.05, 0.20, 0.50

It can be seen from figure 5 and table 1 that the accuracy
of devices poses computed with the distance matrix and pro-
jective invariant trackers are more sensitive to 2D noise than
the ICP trackers. This observation can be attributed to the
nature of the algorithms; the distance matrix and projective
invariant algorithms reconstruct a pose from corresponding
point patterns in data. Noisy data will give noisy poses. On
the other hand, ICP iteratively projects a pose and uses a dis-
tance fitting function until a predefined threshold distance is
reached. The projection of the pose is fit into 2D data points.
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If the device description is accurate then this will result in a
more accurate pose.

5.2. Latency

In these experiments, the tracker latency of each algorithm
was analyzed. In section 3.1, we defined latency as t3 − t1,
the time needed by the tracker to do the image processing
and pose determination.

Table 2 tabulates the average frame rate of each method,
subject to varying noise levels and for the reference data
set. The distance matrix and projection invariant methods
are clearly faster than the ICP method. Also, it can be seen
that performance of the distance matrix and projection in-
variant method is not sensitive to noise. The ICP method
suffers from noise, since more optimizations are needed to
find the global minimum.

2D noise 3D DistMat ProjInv ICP

0.00 100 50 16
0.05 100 50 10
0.20 100 50 12
0.50 100 50 3

Table 2: Frame rate for reference data set and different noise
levels.

Figure 6 plots the accumulative latency for each algorithm
in the case of no additional noise. The slopes of the distance
matrix and projective invariant plots are practically constant
The slope of ICP plot is often constant, but has a few large
discontinuities. The reason for this is that the initial pose
needed by the ICP method was not determined correctly,
resulting in many optimizations before the minimum is ap-
proximated.
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Figure 6: Accumulative time for 3D matrix (red), projective
invariant (green), and ICP (blue) trackers. No noise.

5.3. Robustness

In these experiments, the robustness of the methods are an-
alyzed. We define a tracker to be robust if the pose of all
devices can be determined. If a device cannot be found –
due to occlusion, or because the pattern cannot be found in
the data – then the method is not considered robust. For each
data set we count the number of times that a device is not
found.

Table 3 tabulates the robustness of each method, subject to
various noise levels and camera perturbations. For the case
of additional noise on the 2D points, it can be seen that the
ICP method is more robust than the distance matrix and pro-
jection invariant methods.

The ICP method is not robust when the focal length is mis-
calibrated by more than 1% of the reference focal length.
The distance matrix and projection invariant methods are
not robust when focal length is mis-calibrated by more than
2.5%.

All methods are robust to small extrinsic camera param-
eters errors. However, when camera orientations are mis-
calibrated by more than 1 degree then all methods fail.
Similarly, all methods fail when camera positions are mis-
calibrated.

Dist Matrix Proj Inv ICP

reference 2 / 0 2 / 0 3 / 1

2D noise 0.05 2 / 0 2 / 0 3 / 0
0.20 2 / 0 7 / 1 2 / 0
0.50 43 / 9 77 / 24 3 / 25

intrinsic 1% 2 / 0 2 / 0 3 / 1
focal leng 5% 44 / 0 75 / 55 300 / 300

extrinsic 1 ◦ 2 / 0 2 / 0 2 / 13
rotation 2.5 ◦ 272 / 300 2 / 0 300 / 300

extrinsic 1 cm 2 / 0 2 / 0 3 / 12
translation 2 cm 2 / 0 2 / 0 3 / 288

Table 3: Robustness for varying noise levels and intrin-
sic/extrinsic camera parameters.

6. Discussion

In the previous sections we have compared three model
based optical tracking algorithms. We summarize the results
by discussing the three main comparison criteria:

• Accuracy
The experimental data shows the relative accuracy of the
ICP is better than the projective invariant and 3D distance
matrix methods.
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The reason for this can be explained as follows. The pro-
jective invariant and 3D distance matrix methods use the
image data to perform model correspondence and then
perform pose computation using the computed 3D data
points. Noisy features will result in noisy 3D data points
and a noisy pose. On the other hand, the ICP is an itera-
tive method that computes the best fit of the model onto
the feature data. If the device description is accurate and
the threshold criteria is small, the optimization will find a
minimum and a more accurate pose will be found.

• Latency
The data shows that the projective invariant and 3D dis-
tance matrix methods have a lower latency than the ICP
method. The complexity of the first two methods is related
to the number of 2D features; i.e. the projective invariant
is O(N5) whereas the 3D distance matrix is O(N2 log(N))
in which N is the number of 2D features. On the other
hand, the ICP is an optimization method; i.e. for two de-
vices, ICP will search a 12 dimensional space for a global
minimum. It may take a very long time to find a global
minimum in such a high-dimensional space, However, the
probability that the optimization will rapidly converge in-
creases when an initial pose is chosen near to the global
minimum. The slope of the plots in figure 6 show that ICP
is competitive with the other methods when an initial pose
can be chosen near the global minimum.

• Robustness
The robustness of the model-based trackers when process-
ing noise corrupted data is characterized by two factors:
the probability of detecting a model feature in the data,
and the number of false detections. These two measures
are intimately correlated; increasing the probability of de-
tection (by increasing threshold intervals) will inherently
increase the number of false detections. False detections
should be avoided at all costs, since they will result in
an inaccurate pose. The robustness of each tracker is thus
closely related to the threshold values.
For the same reason as discussed in the accuracy item,
the ICP tracker is less sensitive to noisy 2D data than the
distance matrix and projective invariant tracker.
Incorrect camera calibration greatly influences the robust-
ness of all methods. The ICP method is sensitive to cam-
era mis-calibration, since it relies on an accurate projec-
tion of a chosen pose. Even slightly mis-calibrated cam-
eras have grave effects on its robustness.
Camera mis-calibration will result in inaccurate epi-polar
geometry computations. The distance matrix method uses
epi-polar geometry to transform 2D points into 3D. Inac-
curate epi-polar geometry computations will result in cor-
rupted 3D points. This is particularly apparent for small
perturbation in camera rotations.

Occlusion is an inherent problem in optical tracking. The
probability of occlusion increases when the number of de-
vices increases; e.g. in the case of two-handed tasks. A valid
approach to address occlusion is adding more cameras. All

algorithms discussed in section 3.3 can be extended to in-
corporate multiple cameras. The projective invariant and 3D
distance matrix algorithms could determine the pose of a de-
vice if the model features are recognized in two of the views.
The distance function in the ICP tracker can be extended to
incorporate all features simultaneously.

A disadvantage of using point patterns in the projective
invariant and 3D distance tracker is that the pattern recogni-
tion requires a complete pattern. If one point in the pattern
is occluded, then the pattern cannot be detected. In addition,
the distance matrix tracker requires that the pattern must be
visible in both images, since epi-polar geometry is used to
transform points into 3D. The ICP tracker does not suffer
from these disadvantages.

It should also be recognized that the synthetic data sets
have been generated from one reference set. It may well be
that the results will differ if the reference data set has differ-
ent characteristics. A similar argument can be made about
the lighting conditions. The synthetic data sets were gener-
ated by adding zero mean Gaussian noise to the reference
data set. An alternative would be to add a bias factor to rep-
resent more realistic lighting problems.

7. Conclusions

In this paper, we have compared three model based optical
tracking algorithms for pose determination. We have studied
the behavior of these algorithms when applied to two-handed
manipulation tasks. We have experimentally show how crit-
ical parameters influence the relative accuracy, latency and
robustness of each algorithms.

Each algorithm has its advantages and disadvantages and
it will depend on the specific virtual environment which is to
be preferred. The accuracy of the ICP method is less sensi-
tive to environmental noise, but too slow when an initial pose
does not exist. The distance matrix and projective invariant
methods are very fast, but are sensitive to noise. We recom-
mend a hybrid approach which combines the advantages of
both methods: use the distance matrix method to determine
an initial pose and use this as input for the ICP method.
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