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ABSTRACT 
In this paper we compare the quality of three different 
principle component analysis (PCA) based methods to 
generate transfer functions for the 3D visualization of 
imaging spectroscopy data. We discuss three criteria for 
judging the quality of features in these visualizations. 
These criteria are used to interpret visualizations of 
features in the brain of the snail Lymnaea Stagnalis. We 
show that the PCA method that uses model additional 
information, clearly results in superior visualizations. 
 
KEYWORDS 
Image processing and analysis, pattern analysis and 
recognition, transfer function, imaging spectroscopy, 
principal component analysis and multidimensional. 

1. Introduction 

Direct volume rendering is a well-known method for the 
visualization of three-dimensional volumetric datasets. In 
most volumetric datasets, each voxel contains a scalar 
value that represents the density of a material on that 
location. For visualization, the transfer function maps a 
color and opacity value to a scalar value. A volume 
renderer can draw the voxel data using the map specified 
in the transfer function. The challenge in designing 
transfer functions is to identify which structural properties 
are important and which relevant features in the data 
should be highlighted. 
 
Imaging spectroscopy can be used to scan the structure of 
chemical elements on material surfaces. In contrast to a 
volume consisting of 3D points of scalar values, a spectral 
dataset consists of two spatial dimensions and mass to 
charge ratio in the third dimension. Each scalar value in 
the volume is interpreted as the intensity on a mass to 
charge ratio at a 2D position on the surface of a material. 
Material scientists often refer to a spectral volumetric 
dataset as a multi-spectral data-cube. 
 
Since chemical elements have a unique and known 
spectral profile, scientists can use spectroscopy to 
investigate which elements are present on the surface of a 
material if their spectral profile can be extracted from the 

data-cube. Unfortunately, extracting a spectral profile is a 
difficult task. First, the intensity at each point in the 
volume consists of contributions of the mass to charge 
ratios of neighboring chemical elements at that position 
on the surface; i.e. the measured intensity at a voxel is a 
linear combination of mass to charge peaks. A robust 
extraction method will be needed to factor the linear 
combination of mass to charge ratios into the mass to 
charge of each chemical element. Second, spectra 
characterize themselves by different levels of scale in 
which peaks in the spectral profile can vary in order of 
magnitude. For example, consider Figure 1a. The sum of 
all spectral profiles in the data-cube is plotted, with on the 
x-axis the mass to charge ratio and on the y-axis the 
measured intensity. Figure 1b shows the spatial 
distribution of spectral peaks. The value of a pixel 
represents the sum of intensities at each mass to charge 
ratio at each position on the surface of the material. A 
color map is used to map intensity to a color. Figure 1 is 
an example of how scientists use two side-by-side views 
to analyze the data in the data-cube. One view is the 
spectral view; it shows the spectral profile at all mass to 
charge ratios. The second view is a spatial view; it shows 
the summation of the spectral profile at each position on 
the surface of the scanned material. 
 
It is our goal to create a data analysis environment with 
one integrated 3D-view to gain insight into the spatial 
distribution of the spectra in the data-cube. In a previous 
paper [1] we have introduced a new application of the 
principal component analysis (PCA) to generate 
multidimensional transfer functions. PCA separates peaks 
in different uncorrelated spectral components and can 
simultaneously identify spatial patterns. The direct 
linkage between the resulting spectral and spatial 
components characterizes the approach. Figure 1c shows 
the first principal component linking spectral and spatial 
features in a multi-spectral data-cube. 
 
In this paper we compare the quality of three different 
PCA methods to generate transfer functions for the 3D 
visualization of data-cubes. How can the quality of the 3D 
visualizations be compared? We have identified three 
important criteria for this. First, spatially correlated 
spectral features in the visualization should be 



 (a)  (b) (c) 
Figure 1: (a) A plot of the summation of all spectra in the data-cube with (b) the spatial distribution of spectral profiles with 
(c) the resulting the transfer function generated from the first principal component used to highlight spectral and spatial 
features. 

distinguishable. As a rule of thumb, the higher the 
contrast between features the higher the quality of the 
visualization is. Second, these features should also be 
recognizable as bio-molecules in complex surfaces such 
as cells and tissue samples in the data-cube. For example, 
do these features represent a cell wall or a tissue, etc? If 
so, how well are the recognized spectral features 
correlated? Finally, are the spectral and spatial features 
distinct in different regions in the image? These criteria 
will be used in Section 4 to qualitatively compare the 
presented methods. 
 
In the next section, we briefly discuss the techniques used 
by the three methods: PCA, PCA with VARIMAX 
rotation and PARAFAC. In section 3, we present a 
quantitative comparison of the methods. We do this by 
comparing the results of the methods with an a-priori 
known spectral data cube; i.e. a ground truth. Finally, in 
section 4, we discuss a qualitative comparison of the 
methods with a real world application. 

2. Method 

We briefly describe the three different PCA-based 
methods for generating transfer functions. Due to space 
constraints, we will not provide a detailed explanation of 
the mathematics and their implementation. We refer to the 
literature for a more thorough explanation of the 
characteristics of the methods. The methods we use are: 
 

1. PCA In a previous paper [1], we extract spatial 
and spectral components using the well-known 
PCA method [2 and 3]. In our approach, we 
unfold a pre-processed λ by x by y data-cube in 
such a way that a 2D λ by x×y matrix X is 
constructed. The standard PCA model is used to 
compute a sorted list of principle components in 
an orthonormal matrix P (see Equation 1) using 
eigenvector decomposition. 
 

TXPY ⋅=     (1) 
 

The first principle components in P describe 
those spatial regions in the data-cube with the 
greatest spectral variance. The original data-cube 
is projected using the principle components as 
bases results in a matrix Y with the spatial 
(Yimages) or spectral (Yspectra) score vectors. Both 
these matrixes are extracted and combined to 
construct the transfer function. 
One problem with this approach is the minimal 
contrast between different spectral peaks and 
spatial components. This results in less 
distinctive regions in the resulting volume-
rendered data-cubes. Another problem is that the 
extracted score vectors can be negative, while it 
is known that all spectra are always positive. 

 
2. PCA+VARIMAX There are many variations for 

two-way bilinear decomposition similar to PCA 
[4]. One approach is to rotate the resulting 
principal components to obtain a better fit on the 
data without affecting the decomposition using 
the rotational ambiguity of PCA. The 
VARIMAX rotation proposed by Kaiser [5] is 
one of the most popular criteria for rotation. It 
can be applied as a post-processing step on 
extracted principal components. VARIMAX 
searches for an orthogonal rotation of the 
original components in so that the variance of the 
squared principal components is maximized. For 
each kth principal component the objective 
function of Equation 2 is computed. 
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Where f is the number of principal components, λ 
is the number of spectral variables, xif is the 
loading of spectral variable i on component f. 
and hj

2 is the communality of the ith spectral 
variable in P as defined in Equation 3. 
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The overall variance V in Equation 4 is being 
maximized using Equation 2 until the increase of 
V drops below a certain threshold (e.g. 10-6 in 
our examples). 
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In theory, the VARIMAX method can improve 
the contrast between spectral peaks, since 
rotating the principle component bases will result 
in sharper gradients in adjacent spectral peaks. 

 
3. PARAFAC Another variation of PCA-like 

methods is the PARAFAC (PARAllel FACtors 
analysis) model of Harshman [6] which exact 
model was independently proposed by Carroll 
and Chang [7] as the CANDECOMP 
(CANonical DECOMPosition). Kiers [8] has 
shown that PARAFAC can be considered a 
constrained version of the two-way PCA. 
PARAFAC uses fewer degrees of freedom to fit 
the data on a simple model. We used the 
implementation of the algorithm described by 
Bro [9] to only put a non-negativity constraint on 
the decomposition in P and Y in Equation 1 t to 
improve interpretation of the scores. The 
convergence criterion for the algorithm was a 
relative change in fit of less than 10-6 in our 
examples. 
The advantage of the PARAFAC method as we 
use it is that the score vectors will always be 
positive. The resulting transfer function is 
therefore easier to interpret as only the most 
positive values in the score vectors instead of 
also the most negative ones have to be included 
in the opacity map. 

 
We used similar PCA-based methods to be able to create 
a transfer function (as in [1]) that makes use of the link 
between spectral and spatial score vectors in Equation 5. 
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Yimages is a λ by x×y size matrix and Yspectra a x×y by λ 
matrix. The transfer function that acts as a 3D opacity 
map is generated by adding each resulting spectral score 
vector in one dimension with the corresponding spatial 

score vector in the other dimension, for instance i1 and s1 
result in an opacity map O1 as shown in Equation 6. 
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The resulting 3D array has the same size as the original 
unfolded data-cube and acts as an opacity map, with the 
most positive and most negative values assigned to the 
highest values for opacity. The 3D points with the highest 
or lowest contribution to the whole data-cube will be the 
most opaque in the resulting opacity map. Similarly, the 
opacity maps (O2, O3) of the combined second, third, etc. 
score vectors can be generated. 

3. Quantitative comparison 

A synthetic multispectral data-cube was created to be able 
to make a quantitative comparison between the three 
decomposition methods. Three different spectra including 
some overlap in the peaks were used to have a variety in 
the spectral and spatial dimensions. After this some 
different levels of Gaussian noise (mean: 0.000 and with a 
variance: between 0.0001 and 0.0500) were added to the 
whole data-cube to make it more realistic. 
 
The resulting spectral score vectors of the three methods 
are compared with the original spectra, our ground truth. 
For a quantitative analysis we use a widely used measure 
of error, the Root Mean Squared Error (RMSE, ε) 
similarly used in other analyses of correlated spectral data 
[10]. The absolute values of the resulting spectral 
component are compared with the synthetic one according 
to Equation 7. The number of spectra in the cube is 
represented by n and results in a ε for each method. 
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Each method is able to distinguish between the three 
different spectral components, while the other 
components clearly contain the added noise. An overview 
of ε of each method is shown in Table 1. 
 

Method PCA PCA+ VARIMAX PARAFAC
component1 0.0744 0.0813 0.0235 
component2 0.0691 0.0581 0.0112 
component3 0.0753 0.0629 0.0249 
Total ε 0.2190 0.2023 0.0597 
Table 1: The root mean squared error of the different 
components of each method. 



This table clearly indicates that the PARAFAC 
decomposition results in the least amount of error. Also 
the VARIMAX rotation provides a better fit compared to 
the use of only a PCA without a rotational fit. To gain 
better insight of the influence of the added Gaussian 
noise, different levels of noise are introduced as shown in 
Table 2. 
 
 

Method
variance 

PCA PCA+ VARIMAX PARAFAC

0.0001 0.2259 0.1983 0.0352 
0.0010 0.2190 0.2023 0.0597 
0.0100 0.2210 0.2038 0.1352 
0.0500 0.2307 0.2219 0.1613 
Table 2: The total root mean squared errors of each 
method with different levels of Gaussian noise. 
 
 
Table 2 shows that even though noise levels are rising, the 
ε of the PARAFAC method still remains lower than the ε 
of the other two methods. 

4. Qualitative comparison 

Imaging mass spectrometry is a microscopic technique 
that is used to analyze the spatial organization of intact 
biomolecules in complex surfaces such as cells and tissue 
samples. It is particularly useful to directly visualize 
peptide and protein distributions in invertebrate or 
mammalian tissue. In the imaging MS data used here a 15 
kV Indium primary ion beam is rastered over the surface 
of a cryosection of the cerebral ganglia of the freshwater 
snail Lymnaea Stagnalis. A data array of 256x256 x,y-
coordinates, is generated with each position containing an 
entire mass spectrum. Each square pixel represents an 
area of approximately 500x500 nm Prior to the 
experiment the tissue surface has been covered with a thin 
layer of 2,5-dihydroxybenzoic (2,5-DHB) acid by 
electrospray deposition to enhance in the generation of 
intact biomolecular ions. The mass spectrometer used was 
a Time-of-Flight (ToF) mass spectrometer. High-
resolution molecular ion maps have previously shown to 
provide insight in the spatial organization of various 
biomolecules in these brain sections [11]. Manual 

 (a)  (b)  (c) 

 (d)  (e)  (f) 

 (g)  (h)  (i) 
Figure 2: Two spectral (a) and two spatial (d-g) components derived using PCA. Two spectral (b) and two spatial (e-h) 
components derived with PCA and VARIMAX rotation. Two spectral (c) and two spatial (f-i) components derived with 
PARAFAC. 



(a) (b) 

(c) (d) 
Figure 3: The resulting multispectral data-cubes with a transfer function from (a) PCA, (b) PCA with VARIMAX rotation and 
(c-d) two different components from PARAFAC. 

interpretation of these types of datasets is a time 
consuming procedure where either for spectral peaks of 
interest image are created or the spectra of interesting 
spatial features in images are interrogated. In order to 
identify spatially correlated spectral data (often attributed 
to a specific compound) of statistical analysis tools are 
called for. Here, we qualitatively examine the results of 
the three different multivariate statistical analysis 
algorithms applied to a single MS image dataset of the 
brain of Lymnaea Stagnalis. 

4.1 PCA 

The reconstructed score vectors in Figure 2a display two 
separated components where the first component contains 
predominantly spectral features that are clearly correlated 
to the applied matrix 2,5-DHB as positive peaks. 
Intermixed with this compound negative spectral features 
of cholesterol (368/385) are also observed. As in regular 
spectra the matrix peaks usually constitute the base peak 
in the spectrum. This method seems to under represent the 
spectral intensities. The spatial features are distinctively 
related to the areas in between individual cells that seem 
to indicate a stronger matrix signal is found there. 
 
The second component found is again a mixture of 
cholesterol, but now positive peaks and a peak at 425 m/z 
that previously has been attributed to APGWamide. It 
also contains some higher mass lipid molecules around 
m/z 815. The spatial features are barely recognizable. The 
multispectral data-cube in Figure 3a also shows that many 
different spectral features display a certain amount of 
spatial correlation. This makes it difficult to identify the 
individual features from these two principal components. 

4.2 PCA with VARIMAX rotation 

The second method, PCA with VARIMAX rotation 
shows similar spectral features in its components but 
judging from Figure 3b an improved spatial correlation is 
found. This is also obvious from the improvement in 
quality of the image in Figure 2h. A better feature contrast 
is found, but the individual components are not fully 
separated. 

4.3 PARAFAC 

The PARAFAC approach offers a spectral view that is 
more similar to the spectral view the mass spectrometrists 
are used to. In addition, the relative intensities and signal-
to-noise ratio in the two components “spectra” are as 
would be expected from these types of measurements. 
More importantly a much better separation between the 
matrix-related peaks and the cellular peaks is obtained. 
This also results in better contrast in the feature images 
facilitating an easier localization of the compounds. The 
smaller peaks around 815 are not clearly visible on this 
scale, but are maybe incorporated in other component 
spectra. In Figure 4c and 4d it becomes clear that the 
compound separation and localization has significantly 
improved. 

5. Conclusion 

In this paper we have compared the quality of three 
different PCA-based methods to generate transfer 
functions for the 3D visualization of imaging 
spectroscopy data. For this we used the PCA, PCA with 
VARIMAX rotation and PARAFAC method. We 
compared the methods quantitatively and qualitatively. 



For the quantitative comparison, we used a RMSE metric 
to compare the methods with ground truth spectra under 
various noise conditions. For the qualitative comparison, 
we used three criteria to judge the quality of features in 
the resulting visualizations. These criteria were applied to 
interpret the visualizations of features in the brain of the 
snail Lymnaea Stagnalis. 
 
This study shows that the PARAFAC method is clearly 
superior to the other methods. PARAFAC results in 
features that are more clearly recognizable than the other 
two methods (see Figure 3). The reason for this is that 
PARAFAC uses some model information, while PCA 
does not. The VARIMAX rotation uses a post-processing 
fitting to maximize the variance of the components which 
results in more contrast rich images and spectra. 
 
We learn from the synthetic data case that although the 
root mean squared error becomes larger with higher noise 
levels, the PARAFAC method still produces the most 
distinctive results. We expect that these trends are similar 
in the real life application. The implication is that more 
noisy samples will still result in good visualizations. 
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