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ABSTRACT
In this case study we present a framework for quantifying
differences in skeleton algorithms when applied to coral-
like branching structures. The output of three skeleton al-
gorithms is applied to a set of well defined morphologi-
cal metrics, and the results are compared with an a-priori
known geometric structure. The results of this study help
coral biologists to determine under which circumstances a
skeleton algorithm performs adequately.
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1 Introduction

Branching growth processes are ubiquitous in nature. Ex-
amples are bacterial colonies, seaweeds, higher plants and
various marine sessile organisms as well as the growth of
tissues and organ systems, ranging from the venous system
to the pattern of alveoli within lungs. For several of these
processes simulation models have been developed. A ma-
jor challenge is the quantitative comparison between actual
and simulated branching objects. For this, there is a need
for methods that can quantify branching patterns.

Our work has been inspired by collaboration with
computational and coral biologists. The growth process
of a stony coral can be computed using advanced model-
ing and simulation techniques, [6]. Precise 3D skeleton
based representations of corals are of significant interest to
the biologists. Skeletons provide a compact representation
while preserving the coral’s topology, and retain sufficient
local information to reconstruct a close approximation of
the coral. This facilitates a number of important tasks in-
cluding the quantification of the local width of the coral,
the analysis of its topology, and it’s branching pattern.

Despite their popularity, the robust and stable numer-
ical computation of skeletons remains a challenging prob-
lem. Consider Figure 1, which shows a surface rendering
of a coral visualized as a semi-transparent iso-surface, and
three skeletons drawn as colored lines. The data set is
from a CT scan of a Madracis mirabilis coral. Although
the skeletons were computed using published algorithms,

it is clear that each skeleton is very different. For the coral
biologist this can be misguiding and may lead to biased
conclusions. For example, biologists use the skeleton to
perform morphological measurements (such as thickness
of branches, branching rates, branching angles). When the
skeleton does not approximate the medial axis of the coral,
these measurements become ill-defined.

The goal of this case study is to quantify differences
in skeleton algorithms when applied to coral-like branching
structures. The approach we have taken is to apply pub-
lished morphological metrics to three skeletons of a syn-
thetic coral-like object, [3, 4]. The algorithms that compute
the skeletons are well known and have been published. For
this comparison, we create a synthetic object from an a-
priori known geometric structure. We apply the morpho-
logical metrics to the output of the three skeleton algo-
rithms and compare these results with the a-priori known
geometric structure.

The contribution of this case study is that it provides a
framework to quantitatively compare skeletonization algo-
rithms. It should be noted that although the framework is
generic, the morphological metrics used for this case study
are not. The metrics we use are derived from coral biol-
ogy, and have specific meaning for analyzing the branch-
ing growth processes of coral. We must stress that when
this framework is used to compare performance in applica-
tion areas other than coral analysis (e.g. blood vessels, gray
matter in the brain, etc.), other morphological metrics will
be required.

2 Related work

Many books and papers describing skeleton algorithms
have been published. The approaches to computing skele-
tons can be broadly classified into four categories; topolog-
ical thinning, distance transform algorithms, wave propa-
gation based algorithms, and Voronoi diagram based algo-
rithms. Although each algorithm has its merits, it is be-
yond the scope of this paper to provide the details of each
approach:

• Topological thinning methods reveal the skeleton by
removing the outer layer of the object, and repeat-



Figure 1. Two views of the Madracis mirabilis coral. On the left, a surface rendering with three different skeleton graphs, one
shown as solid lines, the other two using different stipple patterns. On the right, a close-up look of the same coral and skeletons.

ing this until only the skeleton remains. They con-
sider the topology of surrounding voxels when decid-
ing whether a particular voxel should be removed, [5].
Topological thinning algorithms are simple, and they
preserve the topology of the object. They can, how-
ever, be rather sensitive to noise and object orienta-
tion.

• Distance transform based methods compute the dis-
tance to the image background for each object voxel
and use this information to determine which voxels
are part of the skeleton, [8]. Although skeleton voxels
found by these methods are always exactly in the cen-
ter of the object, the detection of these voxels is non-
trivial, and they are usually not connected, requiring
additional methods to obtain a connected skeleton.

• Wavefront propagation methods propagate a wave-
front from the root of the object to the outer reaches,
and use the path of this front to create a skeleton, [13].
They can be made highly insensitive to noise, and they
can produce smooth continuous skeletons, but they
will not always produce a skeleton which is centered
inside the object. They can also require manual selec-
tion of skeleton endpoints.

• Voronoi diagrams are created by choosing a set of
voxels and partitioning the image into regions closer
to one of these voxels than to any of the other vox-
els. When these voxels are chosen on the boundary
of the object, the skeleton can be constructed from the
boundaries dividing the regions, [7]. While Voronoi
diagram based methods can produce good skeletons,
the step from diagram to skeleton is mostly based on
heuristics, and can be computationally complex.

Comparisons between skeletonization algorithms are
most often visual. Sometimes a single skeleton of a real-
world object is assessed by an expert [12]. Often two

or more different skeletons, typically computed from very
simple objects, are put side-by-side, and compared visually,
[9]. As these comparisons are mostly made by researchers
presenting their new algorithm, the goal of the compari-
son is often only to demonstrate one algorithm’s superior-
ity over another. Such comparisons are not satisfactory for
a number of reasons. First, if the goal is to demonstrate the
superiority of a new algorithm, there is a lack of objectivity.
If algorithms are only compared with each other, it cannot
be determined whether the best of the skeletons is actually
close to what the skeleton of the object truly is. Performing
an algorithm on a simple object might not be representative
for the performance of the algorithm in general; it does not
clarify whether an algorithm would be suitable for an other
type of object than the one which was used. Finally, if the
resulting skeletons do not differ much, it is not possible to
decide which is the better one; some quantification needs
to be made in order to draw a conclusion.

From the four categories of skeleton algorithms, we
have chosen to compare two topological thinning algo-
rithms and one wavefront propagation algorithm. The rea-
son for this is that the thinning algorithms are relatively
simple and easy to use. The Palágyi algorithm was cho-
sen because it is an example of thinning based on tem-
plate matching, a very popular technique for thinning algo-
rithms. The Xie algorithm was chosen because it is an ex-
ample of a thinning algorithm which does not use template
matching, and because it uses a noise reduction technique
as a pre-processing step. Also, given the visual results in
Xie’s paper, is seemed to perform better than the Palágyi
algorithm for coral-like structures. The wave propagation
method was chose because wave propagation is a contin-
uous method and not based on voxels. Deschamps” algo-
rithm was chosen since it seemed to provide good visual
results on medical data sets.



Figure 2. The skeleton comparison framework.

3 Method

The framework can be seen as a pipeline, consisting of
several steps (see Figure 2). The first step is to use a
”Ground Truth” skeleton to create a series of binary 3D im-
ages, each with a different amount of noise. Next, skeletons
are extracted from each image, using three different skele-
tonization algorithms. Each skeleton is then converted to
a graph representation, if necessary. Finally, the calculated
skeletons, as well as the ”Ground Truth” skeleton, are mea-
sured using several metrics.

3.1 Skeletonization algorithms

Of the three algorithms used, two are based on iterative
thinning, while the third uses wavefront propagation.

Thinning is a method of obtaining the skeleton of an
object by removing each successive outer layer of an ob-
ject’s voxels, until the object is just one voxel thick. Each
iteration of a thinning algorithm consists of one or more
sub-iterations. Each sub-iteration considers one or more
voxels in the image, and decides whether they can be set
to the background value. A parallel sub-iteration considers
each voxel separately, and then removes all suitable voxels
at once; a sequential sub-iteration removes voxels one at a
time, thus the removal of each voxel is influenced by voxels
removed previously in the same sub-iteration.

The neighborhood of a voxel is an important notion in
thinning algorithms. If the voxels of an image are consid-
ered to be adjacent cubes, centered at the voxel locations,
then the 6-neighborhood of a voxel consists of all surround-
ing cubes with which the voxel shares a face; similarly, the
18-neighborhood consists of all face and edge neighbors,
and the 26-neighborhood consists of all face, edge, and ver-
tex neighbors. Two voxels are n-adjacent if they are in each
others’ n-neighborhood.

In wavefront propagation, a wavefront is propagated
inside the object. A skeleton is then obtained by tracking
the path of the wavefront back to the starting point.

3.1.1 Palágyi

Palágyi and Kuba [10] describe a border sequential thin-
ning algorithm. It repeatedly compares border voxels and
their neighborhood with a set of templates, and removes

them if there is a match. When no more matches can be
made, the algorithm stops.

Each iteration of this algorithm consists of six paral-
lel sub-iterations. Each sub-iteration only considers object
voxels, which have a neighboring background voxel in one
particular direction. The templates are appropriately ro-
tated or mirrored for each direction. Each voxel matching
one of the templates is removed. The order of the directions
is chosen so that the object is thinned evenly on all sides.

3.1.2 Xie

In the algorithm of Xie, Thompson and Perucchio [14],
each iteration consists of six directional parallel sub-
iterations, followed by a repeating sequential sub-iteration.
As in Palágyi’s algorithm, the directions are chosen to en-
sure the object is thinned evenly.

The parallel sub-iterations remove candidate border
voxels by classifying neighboring voxels, and counting the
number of connected components formed by the voxels of
each class. If the numbers of components satisfy certain
requirements, the voxel can be removed.

The sequential sub-iteration attempts to remove vox-
els which were considered but not removed in the parallel
sub-iterations. It uses a slightly different set of conditions,
and checks the voxels in a specific order, to avoid removing
too many voxels.

This algorithm also includes a pre-processing stage
for reducing noise in the input image. Single-voxel protru-
sions are removed, and single-voxel indentations are filled.

3.1.3 Deschamps

The algorithm of Deschamps [2] uses a modified Fast
Marching Method [13] to propagate a wavefront from a
starting point throughout the object. The Fast Marching
Method calculates the front arrival time for all voxels. This
wavefront is then traced back to the origin using the Gra-
dient Descent method, which results in a set of lines repre-
senting the skeleton.

The speed of the wavefront at each voxel is deter-
mined by a speed function. We used the square of the dis-
tance transform [1] of the data set for this purpose; this
ensures that the skeleton is centered within the object.

One of Deschamps’ modifications to the Fast March-
ing Method is the so-called ’freezing’ of the front in lo-
cations that are relatively close to the starting point of the
propagation. This results in improved detection of elon-
gated shapes by stopping propagation in directions where
the front travels slowly.

The points from which the front should be traced back
to the origin are determined with the aid of another mod-
ification to the Fast Marching Method. In addition to the
arrival time, the length of a path, which the front followed
to each voxel, is calculated. The object is then divided into
connected regions where the length of this path is within



Figure 3. The four measurements performed on coral branch structures. From left to right: minimum and maximum branch
thickness (a-spheres and b-spheres), angles between branches, branching rate and branch spacing.

intervals of a given size. For each region it is determined
which other region preceded it, and which region follows
it; the regions which do not have any region following it
are then considered end regions. From each end region, the
point with the highest path length is selected as the starting
point for a trace back to the origin.

The backtracking does not follow the voxels; instead
the object voxels are considered to be grid points where the
wavefront arrival time and it’s gradient are known. At each
step, the gradient vector of the arrival time at the current
location is interpolated, and the current location is moved
a pre-determined distance in the opposite direction. This is
repeated until the starting point is reached.

Because the tracing would produce a set of uncon-
nected lines, each trace is halted and connected to another
trace if the distance to this other trace is smaller than a spec-
ified threshold value.

3.2 Skeleton graph

Voxel skeletons must be converted to skeleton graphs, be-
fore any measurements can be performed. The voxels of
the data set are assumed to form a three-dimensional grid,
with the far bottom left corner at location (0, 0, 0). The dis-
tance between two 6-adjacent voxels in the grid is defined
as 1. A graph can be constructed from the voxels by con-
necting the grid locations of adjacent skeleton voxels with
lines. These form the edges of the graph, while the grid lo-
cations are the vertices. The distance between vertices, and
thus between voxels, is the Euclidean distance between the
corresponding grid locations.

To prevent certain irregularities and loops in the
graph, each voxel is connected to the graph only once,
and voxels are added with a preference for skeleton vox-
els closer to ones which are already part of the graph [11].
The initial voxel is chosen manually.

3.3 Measurements on stony corals

Several measurements were performed on the skeletons.
These measurements are commonly used by coral biolo-

gists.

• The maximum thickness of a branch is defined as the
thickness at a junction of the skeleton. It is the radius
of a sphere, centered at a the junction, touching the
background in the original voxel image. This radius is
thus equal to the Euclidean distance transform at the
junction point. These spheres will be referred to as
a-spheres.

The minimum thickness of a branch is the radius of a
sphere on the part of the skeleton following the junc-
tion, with a radius such that it touches both the im-
age background and the sphere at the junction. These
spheres will be referred to as b-spheres. The first im-
age in Figure 3 shows the equivalent minimum and
maximum discs in a 2D image.

• The angle between two branches is defined as the an-
gle between two lines, starting at the center of a maxi-
mum sphere, and each ending at the center of a differ-
ent minimum sphere. The second image in Figure 3
shows these angles in a 2D image.

• The branching rate is defined as the distance between
two successive branching points in the skeleton. It is
a measure of how often new branches are formed; a
high value indicates relatively slow formation of new
branches during the growth process. The third image
in Figure 3 shows the branching rate.

• The branch spacing is defined as the distance between
the endpoint of a branch, and the closest point on the
skeleton which does not belong to the current branch.
The endpoint of a branch is not the last skeleton point
belonging to the branch. Instead it is a point found by
searching for a maximum distance transform sphere
along the skeleton, starting at the end. A sphere is
considered a maximum sphere if it is not completely
contained inside another sphere on the skeleton. The
last image in Figure 3 shows the branch spacing.

• In addition to the measurements used by biologists,
the ratio of the length of the skeleton between every



two successive branching points, and the Euclidean
distance between these two points, was calculated.
For a segment of the skeleton consisting of the points
p0, . . . , pn, with branching points p0 and pn, the for-
mula is:

n−1∑

i=0

‖pi+1 − pi‖

‖pn − p0‖

The original skeleton consists of straight lines, with
ratio 1.0, therefore this ratio indicates how straight the
calculated skeleton is.

3.4 Test data

The data used for testing is a set of 3D binary images of a
fractal-like tree, to which increasing amounts of noise have
been added. A synthetic object was chosen in order to have
a reference skeleton, or ”Ground Truth”, to which the com-
puted skeletons could be compared.

3.4.1 Data creation

To create the data sets, first a polygonal line model of a tree
was generated. The model starts with a vertical line. From
the top of this line, two new lines continue, one at 55◦ to
the left, the other at 55◦ to the right from the initial line,
in the XY plane. The length of the new lines is 0.8 times
the length of the initial line. This process of adding new,
shorter lines is repeated seven more times, with each two
new lines constructed in a different plane, rotated 65◦ to
the right around the, relative to the previous plane.

Next, around these lines a set of round polygonal
tubes was constructed, with a linearly decreasing diame-
ter, such that the diameter at the base of the tree was 10
times the diameter at the end; the diameter at the base was
set to 0.2 times the length of the first segment. Spheres
were added at the root and the endpoints of the tree, with
the same diameter as the tubes, to create round endpoints.

The polygonal model was then voxelized as a binary
volume, with the inside filled with value 1.

3.4.2 Noise

Additional data sets were produced by adding increasing
amounts of noise to the initial data, around the boundary
between object and background. To add the noise, first
a volume of the same size as the data set was filled with
random floating point values between 0.0 and 100.0. To
generate a particular noise level l, first all points from this
volume with a value less than l were selected. All corre-
sponding points in the binary image, which were found to
be 6-adjacent to at least one voxel with value 1, but them-
selves had value 0, were then set to 1, producing an inter-
mediate image.

Figure 4. The polygonal model of the test object. Shade of
gray indicates the diameter of the object.

Next, from the random data all points with a value
greater than 100.0 − l were selected. Each corresponding
1-valued voxel from the intermediate image, which was 6-
adjacent to at least one 0-valued voxel, was then set to 0 in
a final image. For our analysis we have chosen noise levels
0, 1, 2, 4 and 8.

This method produces noise which is only present on
the surface of an object, as could be the case with a seg-
mented image of an object, obtained from a CT-scanner or
similar device.

4 Results

The synthetic object was voxelized to create a 3D binary
image with a resolution of 360 × 300 × 240 voxels. The
algorithms of Palágyi, Xie, and Deschamps were then used
to obtain skeletons of the images.

While the algorithms of Palágyi and Xie are turn-key
solutions, the wavefront propagation algorithm requires
many parameters. It was used with the following settings:
points were frozen when the distance to the starting point
was less than 0.5 times the maximum distance; the distance
interval for endpoint detection was 6.0; the minimum re-
gion size was 5 voxels; the Gradient Descent step size was
0.5; and the minimum distance between traces was 3.5.

4.1 Quantitative results

The graphs in Figure 5 show the average values of each
measurement, for each algorithm at each noise setting. In
addition, the results of the same measurements for the orig-
inal skeleton, which was used to construct the test object,
are shown in each graph. These measurements were made
by subdividing the lines of the original skeleton until each
of these smaller lines had a length of less that 0.5, and using
these lines as a skeleton graph for measurements.

The graph of the average radius of the a-spheres
shows that the Xie results are the best for this particular
measurement, but the difference with wave propagation is
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Figure 5. Graphs of each measurement for the reference skeleton, the Palágyi skeleton, the Xie skeleton and the Deschamps
skeleton. The x-axis denote noise settings 0, 1, 2, 4, 8. The y-axis denote average distances or angles.

minimal. Palágyi shows erratic results, and only performs
well for the highest noise level.

For the average radius of the b-spheres, Xie performs
slightly worse than the other algorithms at lower noise lev-
els, but at highest noise level Palágyi produces a quite dif-
ferent average, while wave propagation performs the same
as Xie.

The angles between branches are fairly constant
across noise levels for Xie and wave propagation. The an-
gles with Xie are a little too high, while they are a bit more
too low with wave propagation. Palágyi gives higher an-
gles than Xie at lower noise levels, but gradually decreases
to almost the same angle as wave propagation at the highest
noise level.

For the branching rates, both Xie and wave propaga-
tion give results very close to the reference skeleton. The
results with Palágyi are a little worse without noise, but de-
teriorate rapidly when noise is added.

The branch spacing is consistently too high with wave
propagation, and much too low with Xie. Palágyi with little
noise produces the best results, but is still too low. With
more noise, the average value becomes much too low.

The length/distance ratio between branching points
is reasonable consistent between noise levels. The thinning
algorithms have a much higher ratio than the wave prop-
agation algorithm. This is mostly due to the voxel-based
nature of these algorithms, which increases the length of
a diagonal path between more distant voxels due to alias-
ing, as opposed to the smooth lines produced by the wave
propagation algorithm.

Table 1 shows the number of a-spheres found by each
algorithm for each noise level. Recall that an a-sphere indi-
cates a junction point in the skeleton. The table shows that
the Palágyi skeleton is very sensitive to noise, while the Xie

algorithm is less sensitive. The number of a-spheres found
by Deschamps algorithm remains the same as that of the
reference skeleton.

0 1 2 4 8
Reference 255 255 255 255 255
Xie 255 255 255 257 259
Palágyi 267 275 287 341 517
Wave propagation 255 255 255 255 255

Table 1. Number of a-spheres for each noise level.

4.2 Visual results

Figure 6 gives a visual comparisons of the test results. The
top row shows a surface rendering of the test object for
noise levels 0, 2, and 8. The bottom row shows the cor-
responding skeletons in yellow (Palágyi), cyan (Xie), and
magenta (Deschamps). As stated in the introduction, with
only visual inspection it is very difficult to determine which
algorithm performs best.

Figure 7 shows the Palágyi skeleton with a-spheres,
at three noise levels. These images show where the Palágyi
algorithm introduces additional junctions. From the image
it can be observed that junctions are generated at the lower
branching levels of the tree (where the branch thickness is
large), and not at the higher branching levels (where the
branch thickness is small).



Figure 6. Surface renderings of the test object for three noise levels (top), and the corresponding Palágyi skeletons (bottom).

Figure 7. The Palágyi skeleton with a-spheres, at noise level 0 (left), 2 (middle), and 8 (right).

5 Discussion

In the previous sections we have compared three skeleton
algorithms by applying morphological metrics to the output
of the algorithms with the results of a-priori known geomet-
ric structure. Two observations can be made when studying
the results:

• No algorithm preforms clearly best for all metrics.
Even for one type of metric, results can vary depend-
ing on the amount of noise present in the data set.

From this we can conclude that it cannot be deter-
mined in advance which algorithm will give the best
performance. The choice will depend on which metric
is most important for the biologist.

• Wave propagation is less sensitive to noise than
the thinning algorithms, although the pre-processing
stage of the Xie algorithm appears to eliminate most
noise-related artifacts. On the other hand, wave prop-
agation requires that all parameters be set to appropri-
ate values. The user must fine-tune the algorithm for
each new object; the thinning algorithms, having no
parameters, require no user interaction.

From this we can say that the wave propagation
method is the safest to use if the data set of the coral
has much noise.

It must be noted that various assumptions were made
for this study:

• The skeletons are assumed to contain no loops. While
the test object has been created without loops, many
real branching objects can and do contain loops.
While the thinning algorithms can properly handle
loops, the wave propagation algorithm ignores loops
altogether.

• The resolution of the synthetic test object is fairly arbi-
trary chosen. The skeleton algorithms which preform
well for certain resolutions, do not necessarily pro-
duce the same results for data sets with significantly
higher or lower resolutions.

• The values used in the results were computed by tak-
ing the average of all measurements over the com-
plete skeleton. An alternative, but also valid approach,
would be to compute the average of all measurements
at each branch level. This may lead to other results, as



the algorithms may perform differently on thick and
thin branches.

• In the study, we have applied noise to the surface
of the synthetic test object. An alternative to adding
noise would be to perturb the geometry of the test ob-
ject, and to generate test objects from the perturbed
geometry. Although this approach leads to differ-
ent skeletons for each noise level, it may be a better
approach to simulate the irregularities of stony coral
branching processes.

The morphological metrics we use are derived from
coral biology and have specific meaning for analyzing coral
growth processes. However, it could be argued that many
of the metrics are quite generic for studying branching ob-
jects. For example, branching angles, branching rates and
branch spacings are quite generic. These metrics may be
of interest for users that study branching objects in other
application domains.

6 Conclusion

The contribution of this case study is that it provides a
framework to quantitatively compare skeleton algorithms.
Morphological metrics, that have specific meaning for an-
alyzing coral branching growth processes, have been used
as basis for these comparisons. The algorithms of Palágyi,
Xie and Deschamps have been used in this study. An a-
priori known geometric structure has been used a ground
truth, for which we relate the output of the three algorithms.

We conclude that it cannot be determined in advance
which algorithm will give the best performance. The
choice will depend on which metric is most important for
the biologist.

In the future we will use the skeletons for other mea-
surements; e.g. Horton statistics, Tokunaga statistics, frac-
tal dimensions.
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