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Abstract

An imaging mass spectrometer is an analytical instrument that can determine the spatial distribution of chemical

compounds on complex surfaces. The output of the device is a multi-spectral datacube; a three-dimensional (3D)

dataset in which the xy-dimension represents the surface position and the z-dimension represents the mass spectral

distribution. Analysts try to discover correlations in spectral profiles and spatial distributions inside a datacube.

New technological developments allow mass spectrometric imaging on a higher spatial and spectral resolution.

In this paper we present a parametric visualization technique which allows an analyst to examine spectral and

spatially correlated patterns on the highest possible resolution. Principal component analysis (PCA) is used to

decompose the datacube into several discriminating components. We represent these extracted features as abstract

geometric shapes and use three parameters to allow for data exploration. The first parameter thresholds the

spectral contribution at which an extracted component is visualized. The level of detail the shapes is controlled by

a second parameter and a third parameter determines at which density-level the extracted feature is represented.

This new visualization technique enables an analyst to select the most relevant spectral correlations and

investigate their specific spatial distribution. With this method, less noise is included in the visualization of

extracted features and by introducing various levels of detail the full spectral resolution can be utilized.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geom-

etry and Object Modeling I.4.7 [Image Processing and Computer Vision]: Feature Measurement I.4.10 [Image

Processing and Computer Vision]: Image Representation

1. Introduction

An imaging mass spectrometer can determine the spatial dis-

tributions of chemical compounds directly on biological sur-

faces. Measuring a mass spectrum at a multitude of different

locations with a spatial resolution around one micrometer

results in large, three-dimensional (3D) multi-spectral dat-

acubes. The xy-dimension of the datacube represents the lo-

cations at which the spectra were acquired. The z-dimension

represents the molecular weight or mass-spectral dimension.

The different surface compounds are separated by the mass-

to-charge ratio of the intact molecules or their fragments.

The combination of peaks associated with different molec-

ular weights present in one location is often called a mass

spectrum or spectral profile. The scientist uses these mass

spectral profiles to analyze the surface composition. The

problem they face is to determine/find spectral correlations

related to different compounds and establish the spatial dis-

tributions of these correlated peaks within the millions of

spectral variables [MSSK05]. Unfortunately, it is not always

evident which spectral peak or combination of peaks to look

at and to determine how they are distributed across the mea-

sured surface. Such a combination of correlated peaks and

their spatial distribution can be defined as a feature. It is our

intention to create exploratory visualization techniques with

as few as possible data-specific denoising or complex clus-

tering methods and still be able to visualize features within

the full spectral and spatial resolution of these enormous dat-

acubes. In the most simple case of exploration a spectral

window is selected by hand using the histogram in Figure

1a, from which all intensities on one location are summed to

create one image. Other methods almost always use a lim-
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(a) (b)

Figure 1: (a) the sum of all binned spectral profiles with left part zoomed 200 times and (b) the matching sum of image planes

ited set of spectral planes compared with the amount that

imaging mass spectrometry supplies. Figure 1a shows the

sum of all spectral profiles in a datacube, but this view had

to be simplified by combining several neighboring spectral

levels into one bin. This is commonly used and necessary

in imaging spectrometry (see [Pac04]) to be able to create

a spectral level for a peak instead of a peak distributed on

multiple spectral levels. A second reason is that applying an

analytical technique to an unbinned dataset is practically im-

possible due to time and memory restrictions. A third reason

is that it increases the signal-to-noise level, but in doing so it

removes some high resolution characteristics.

We present a new visualization technique that enables the

user to:

• visualize spectral and spatially correlated and anti-
correlated patterns

• use the highest possible resolution instead of a spectrally
binned one

• extract features as 3D shapes with better defined bound-
aries

• parametrically explore multiple features within the same
view

The feature visualization is controlled by three parameters.

The first parameterα is set as a threshold on the spectral con-

tribution of an extracted feature. In this way, only the spec-

trally correlated windows with the highest contributions to

that extracted feature are included in the visualization. This

enables a user to remove smaller peaks and noise that can

clutter the visualization. A second parameter β controls the

level of detail of a 3D feature. A feature can be represented

as a simplified smooth 3D shape or on a high resolution that

contains more details of the structure of a shape. The third

parameter γ is used to set at which level of density in the data

a geometric shape is created. A family of iso-surfaces can be

created to explore the areas in the feature with different den-

sities. Less noise is included when extracting iso-surfaces

instead of extracting two-dimensional (2D) contours from

intensity images. With these three parameters multiple cor-

related features can be displayed as 3D geometrical shapes

that include less noise compared to a traditional 2D view.

2. Feature extraction and visualization

Various visualization techniques have been proposed to in-

spect datacubes. The most basic technique with a summed

intensity image (Figure 1b), in which a side-by-side view

of spectral and spatial domains can be analyzed. However,

it is left to the user to identify which chemical compounds

are present in the datacube and whether or not their spa-

tial distributions are correlated. There are some complex

fuzzy logic segmentation algorithms ( [WSH99]) as well,

but these can only be applied on a limited number of spec-

tral windows. A few implementations also exist to visual-

ize 3D spectral imaging data in the spectral or in spatial do-

main. Visualizing both implies coping with a number of dif-

ficulties. First, the 2D spatial information with added one-

dimensional (1D) spectral information can not be treated

in the same way as ’real’ 3D volumes for instance as a re-

sult of a CT or MRI scan. To overcome this problem, most

techniques first apply feature extraction using factor analy-

sis, for instance Kenny et al. [KNM∗97] or Keenan [Kee05].

Feature extraction is closely related to compression or di-

mension reduction techniques and target the removal of re-

dundant data or data that mostly contains noise. Both ap-

proaches do not use the full available spectral resolution in

their final visualizations. The second problem is to find the

most appropriate technique for feature extraction or dimen-

sion reduction, which is specific for each spectral dataset. A

third problem is the ever increasing size and resolution of the

datasets. This problem makes both visualization and feature

extraction more difficult even with increasing computational
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Figure 2: (a) the spectral profile of a second principal component and (b) the matching second image component

power. Haigh et al. [HKR∗97] for instance use correlation

partitioning on five spectral channels after which they have

to turn to dimension reduction techniques. Other visualiza-

tion techniques use between 100− 300 spectral channels to
visualize spectral data with flat image overlays with color

weighting envelopes [JG05] or apply volume visualization

techniques [PvdH01]. Both techniques work with a spectral

dimension that falls within visible light and has continuous

intensity values in spectral dimension with the wavelength.

The spectral dimension resulting from mass spectrometry

can have ∼ 2 · 106 intensity values and can be considered
as a cloud of single 3D points. These two differences make

the afore mentioned approaches for feature visualization not

applicable on the datasets of mass spectrometry.

Multivariate statistical analysis tools are used in almost

all attempts to explore and visualize the enormous datasets

resulting from mass spectrometry. For instance, the tool

AXSIA ( [SOKK04]) statistically aggregates spectral pro-

files to identify features in the data, but the results are still

shown as separate spectral profiles and summed spatial dis-

tributions. It claims to decompose the datacube more intu-

itively by disallowing negative spectral contributions. While

most improvements to the data exploration tend to focus on

denoising ( [WKC03]) or specific 1D filtering techniques

( [KK04]), traditional approaches like Principal Component

Analysis (PCA) are fast and still one of the most success-

ful multivariate tools ( [KBF∗07, Pac04]) for spectral fea-

ture selection and unsupervised exploration. One approach

( [BvL05]) combines spectral and spatial results from PCA

into one visualization of complete datacubes. Although cor-

relations between spectral peaks and their spatial distribu-

tion can be studied in one view, one weakness is that there is

no possibility to parametrically control feature extraction. A

second shortcoming is that noise inside the spectral bins is

also included in the resulting volume rendering. Spectral in-

formation is lost when combining the high-resolution spec-

tral channels data into one bin, which is necessary before

PCA can be applied. A last weakness is that it is impossible

to select a spatial region of a specific spectral window inside

an extracted principal component for further examination.

In our approach we focus on visual parametric explo-

ration of the datacube. Although correlations between chem-

ical components can be found unsupervised with PCA, much

spectral information is lost when visualized in the traditional

two dimensions. We use the full spectral resolution in feature

visualization to reduce noise as much as possible without

having to focus on advanced and computationally expensive

algorithms. Not only positively correlated features are high-

lighted, but also their negative correlated counterparts in one

parametrically simplified view.

3. Method

The features are extracted in a four-step process. First, prin-

cipal component analysis is used to discriminate specific

components present in the datacube according to their spec-

tral correlation. Then, the most important spectral windows

are parametrically selected to exclude smaller spectral con-

tributions that contain more noise. In the third step, the se-

lected windows are convolved into continuous scalar fields

to be able to extract appropriate iso-surfaces from those re-

gions where the data is the most dense. In the last step, corre-

lations between extracted features are visualized in on their

2D locations with the additional high resolution spectral di-

mension. The adjustment of three parameters allows the user

to interactively analyze and highlight the spatial and spectral

distributions of the chemical elements and molecules on the

surface of the material.
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3.1. Principal Component Analysis

Different methods for decomposition or factor analysis can

be used for this feature visualization. PCA ( [Jol02]) has still

satisfying results with respect to the speed, discrimination

between extracted components and ability to identify corre-

lations as well as anti-correlations between spectral and spa-

tial dimensions. Keenan and Kotula [KK04] showed that in

the case of mass spectrometry common preprocessing steps

normalization or auto-scaling can lead to less than satisfac-

tory results. For that reason we decided not to normalize or

auto-scale in this technique.

First PCA is applied on the datacubes to extract the most

important correlated spectral profiles. PCA is used to decom-

pose and compress the thousands of spectral profiles into a

few main components that capture the main characteristics

of the data. The components contain those spectral peaks

that are correlated. When sorted according to their eigenval-

ues, the first few components describe the most variance in

the spectral data and therefore have the most contrast in the

peak intensity. PCA is used by unfolding a non-preprocessed

m by x by y datacube in such a way that a 2D m by x× y
matrix X is constructed. The standard PCA model is used

to compute a sorted list of principle components in an or-

thonormal matrix P (see Equation 1) using eigenvector de-

composition.

Y = P ·XT (1)

The first principle components in P describe those spatial

loadings that can take account for the most spectral informa-

tion in the datacube. Each component is then used as a new

base to project the original datacube. This results in a ma-

trix Y with spectral score vectors, which can be interpreted

as spectral components. Each peak in the resulting spectral

component represents the contribution of a specific ion. An

example of an extracted component is shown in Figure 2a.

All positive peaks are colored blue and all negative peaks

in red. The positive and negative part of this component are

anti-correlated. The transposed datacube can be multiplied

with the spectral component matrix (see Equation 2) to ob-

tain the spatial distributions of these spectral correlations.

I = XT ·Y (2)

Each row in the resulting matrix I contains an unfolded im-

age component containing the spatial contributions of each

profile in Y .

All of the positive and negative values in a profile in Y

contribute to a component, even when they are close to zero.

The most important contributions in a component have the

highest -positive or negative- contribution to the component.

A threshold parameter α is defined to reduce the number of

spectral bins that are used in the feature visualization. Equa-

tion 3 and 4 show that only those peaks that are above the

Figure 3: selection of spectral peaks outside the greyed area

with α = 0.3 from the spectral profile of the second principal
component from Figure 2a

threshold of α will remain in the part of the profile with the

positive contributions (Y+
α ) or the part with the negative con-

tributions (Y−α ).

Y
+
α (y) =

{

y, i f y≥ α

0, otherwise
(3)

Y
−

α (y) =

{

−y, i f y≤−α

0, otherwise
(4)

A good initial choice for α is often the highest possible

value, so that only those peaks with highest positive or neg-

ative contribution remain for further processing. In this way,

small or less important contributions that could contain more

noise remain hidden at first. When α is lowered, more cor-

related spectral bins are added to the visualization that con-

tribute less to a principal component but could contain some

correlated spatial or spectral characteristics. For example an

α = 0.3 in the spectral profile of Figure 2a selects those three
peaks with the largest contribution in this second principal

component as shown in Figure 3. In this case we have two

negative contributions and one positive contribution. A user

can lower α and add more contributing correlated spectral

windows to the resulting visualization.

3.2. Convolution

The datacube was binned before applying PCA and with α

only the highest contributions in a principal component were

selected. These selected spectral profiles will be used to ex-

tract the feature data from the original unbinned datacube.

The resulting 3D clouds with the high-resolution ion-counts

do not reveal a clear structure. Most (∼ 99%) intensities have
either value one (∼ 9%) or zero (∼ 90%). To be able to vi-
sualize more structural details from the cloud, a 3D convo-

lution filter transforms the datacube into a scalar field with
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continuous values. This low-pass frequency filter blurs the

volume in such a way that those regions with a high concen-

tration of data values can be represented by an iso-surface.

When smaller kernel sizes are chosen, more fine-scaled

anomalies will appear in a scale-space (see [Wit83,Koe84])

representation of the extracted features.

A second parameter β controls the size of the kernel and

therefore the level of detail of the smoothed 3D feature. A

standard Gaussian isotropic convolution kernel hβ is chosen

for the smoothing as in Equation 5 in such a way that β is

the variance of the Gaussian. ‖x‖ is defined as the length
of vector multidimensional x where n is dimensionality of

vector x.

hβ(x)= (2πβ)−n/2 · e
−

‖x‖2

2β
(5)

For the practical applicability of the filter on the 3D dat-

acubes in an interactive visualization, the discrete Fourier

transform can be used to implement this convolution as in

Geusebroek et al. [GSvdW02]. According to the convolu-

tion theorem, a convolution in spatial domain is equivalent to

multiplication in frequency domain. The 3D convolution fil-

ter can now be defined in the frequency domain with the dis-

crete Fourier transform in Equation 6, where n= (nx,ny,nm)
and k= (kx,ky,km) are defined as the three-dimensional vec-
tors of indices of the selected datacube N = (N1,N2,N3) to
simplify the equation.

F(k) =
N−1

∑
n=0

f (n) · e−2πikn/N (6)

After the Fourier transformations of datacube f (n) and filter
hβ(x), they are multiplied as in Equation 7 after which the
inverse discrete Fourier transform in Equation 8 results in a

convolved datacube.

G(k) = F(k)⋆Hβ(k) (7)

g(n) =
1

∏3l=1Nl

N−1

∑
k=0

G(k) · e2πink/N (8)

It is now possible to extract iso-surfaces from the high den-

sity regions representing a high concentration of a specific

element on a certain location without losing the spectral in-

formation on the highest resolution. Figure 4 shows how β

influences two extracted features from the enlarged the top

right part of Figure 1b.

3.3. Correlated geometric shapes

Each extracted iso-surface represents the spectral and spatial

distribution of elements or molecules in the datacube. These

iso-surfaces can be visualized as different geometric shapes,

but PCA enables us to add even more information to these

shapes. Information about correlation between peaks and re-

gions from the PCA could be used in the visualization of 3D

shapes. A fractional weight function is derived for each spec-

tral window emphasizes on the contribution of that element

relative to the contribution of other elements in one princi-

pal component. The fractional weight function for a positive

correlated shape is derived using Y+
α from Equation 3. Us-

ing Equation 2 the spatial contribution of the positive part

thresholded by α can be calculated as shown in Equation 9.

This can be done in a similar fashion for the negative spatial

contribution I−α .

I
+
α = XT ·Y+

α (9)

Now the fractional spatial weight wm+ for each positive cor-

related peak λ can be calculated with Equation 10.

w
m+ =

ΣI+α −ΣI−α
im+
α

(10)

This weight should be used on the convolved raw data from

one bin m in order to highlight its specific contribution to all

the selected elements in one component. Similar weights can

be derived for each negative correlated peak. There are areas

in a feature with a high density of intensity values and areas

with lower densities. The third parameter γ can now be set to

show iso-surfaces on different values of the selected features

in the datacube in a 3D space. Each shape can have a differ-

ent γ which enables visualization of the features according

to different 3D density distributions as shown in Figure 5.

4. Results

The data used in this example was measured using a time-

of-flight secondary ion mass spectrometer (ToF-SIMS). The

sample is a thin cross-section of a chicken embryo. The

cross-section is 8×8mm in size and contains a spectral mass
window from ∼ 1− 2000m/z. The spatial dimensions of a
dataset can be 512× 512 or higher and the spectral dimen-
sion can have∼ 2 ·106 intensity values. The Matlab environ-
ment is used for the implementation of this example.

All spectral intensities are summed in Figure 1b which

makes it impossible to distinguish between different values

in a spectral profile and their corresponding specific spatial

contribution. Interesting features like the heart, blood ves-

sels, bone structures or the distribution of cholesterol remain

hidden or poorly visible in these representations. It is hard

to make the distinction between the cross-section itself and

the material in which it is embedded. In our approach, α is

used to reduce the amount of spectral noise in the selection

of spectral windows. The second parameter β enables a user

to view the resulting features on different levels of detail.

The highest level of detail shows the original cloud of points

from one particular spectral window, but the iso-surface of
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(a) (b)

Figure 4: the iso-surfaces of two anti-correlated features within the second principal component with (a) β = 16 and (b) β = 32

(a) (b)

Figure 5: the iso-surfaces of two anti-correlated features within the second principal component with (a) the red shape on

γ = 0.4, a green shape on γ = 0.2 and (b) the red shape on γ = 0.6, a green shape on γ = 0.4

the unconvolved data does not reveal clear coherent informa-

tion in the cloud. The information of the spectral structure

becomes more apparent when smaller values are chosen for

β. Figure 4 shows the iso-surfaces of two anti-correlated fea-

tures within in the second principal component. Both show

the same part of the cross-section of the backbone with the

red shape representing sodium and the green shape repre-

senting indium. Clearly, more structural details can be seen

in the right view compared to the one on the left. For instance

small red regions appear beside the backbone that could be

identified as blood vessels on a higher level of detail. The

neural tube represented by the hole on the left-bottom part

of the cross-section of the backbone is visible in the image

on the right but is closed on the left. Different values for β

can be used to find a balance in the complexity of the struc-

ture of the iso-surfaces and the desired level of detail. The

size of the extracted shapes can be controlled with the third

parameter γ. In Figure 5 is shown that different values for

γ can be used to find an appropriate density on which the

component is being displayed. Those regions that have the

highest data density are selected with higher values for γ.

A final visualization of the cross-section can be made with
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Figure 6: the extracted correlated shapes in the second

principal component component with α = 0.3, β = 16 and
γ = 0.35 for the blue and red shape, γ = 0.15 for the green
shape

all three parameters in Figure 6. In this example we used

only the second principal component as it creates a clear dis-

tinction between bone tissue and the material in which the

cross-section is embedded. Again, the red and blue shapes

are elements that are correlated and the green represents the

anti-correlated material outside the embryo. The holes in the

green shape contain the fragments of other elements that are

deselected and the irregularities on the green surface are due

to noise artifacts in the sample itself. An expert is able to

interpret the distribution of elements this visualization. For

instance the blue element (potassium) shows a similar distri-

bution as the red element which represents sodium. Both are

present in the bone-tissue and blood so the large red shape

on top of the figure can be identified as the cross-section of

the backbone and the large red shape on the bottom can be

identified as the heart. Different principal components can be

used to create multiple views of the distribution of correlated

features within the same datacube. For instance if other com-

ponents contain elements or molecules present in the heart

and not in the bone (or vice versa) they can be classified and

separated as different types of tissue.

5. Discussion and future work

The proposed method of parametric visualization of high-

resolution correlated features has a number of advantages

compared with the classical method of manual exploration.

First, the extracted correlated and anti-correlated patterns are

made distinctive through different colors in this new visual-

ization. The threshold α is used to reduce the spectral noise

present in one feature. Second, the full spectral resolution of

the dataset is utilized instead of a spectrally binned one, what

lacks in other tools for visualization. Third, our method will

display the extracted features with better defined boundaries

extracted in three dimensions instead of a traditional 2D

view of the summed image. Therefore more spectral noise

is left out in our shape extraction. The shapes contain only

those 3D regions with the highest density in contrast with the

low-density regions with a lower signal to noise ratio. These

geometric shapes can be used to conveniently select one or

more spectral windows or even just a spatial region of inter-

est. Finally our visualization is parametrically controlled in

such a way that an analyst is in control of the feature extrac-

tion and can set a desired level of detail.

Some problems remain present in this approach. We chose

PCA for the feature extraction because it has already proven

itself in this field of application. Other methods for decom-

position can be used as well, but due to the enormous sizes

of the datacubes and distribution of peaks among multiple

spectral levels it is not yet possible to apply the algorithm

on a full resolution dataset. Part of the problem is that the

results in our visualization still depend on the effectiveness

of the PCA. However, even with this limitation, our method

is still able to create a better representation of the distribu-

tion of mass spectral components than examining the results

of PCA on a traditional way. The problem of not being able

to give an intuitive interpretation to the negative scores that

result from PCA ( [SOKK04]) is solved by our method. The

presence of negative scores even contributes to our visual-

ization because they enable the display of anti-correlated

features. It is also easy to experiment with different 3D filter-

ing techniques, for instance anisotropic convolution that may

provide less smoothed boundaries in the extracted shapes.

Eventually we would like to add functionality to this para-

metric visualization method that is able to select the most

appropriate values for the three parameters we introduced.

These values have to be independent from the methods for

decomposition, use of different convolution kernels or most

important, different datasets.
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