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Abstract 

Many theories propose that top-down attentional signals control processing in 

sensory cortices by modulating neural activity. But who controls the controller? 

Here we investigate how a biologically plausible neural reinforcement learning 

scheme can create higher order representations and top-down attentional signals. 

The learning scheme trains neural networks using two factors that gate Hebbian 

plasticity: (1) an attentional feedback signal from the response-selection stage to 

earlier processing levels and (2) a globally available neuromodulator that encodes 

the reward prediction error. We demonstrate how the neural network learns to 

direct attention to one of two coloured stimuli that are arranged in a rank-order 

(Lennert & Martinez-Trujillo, 2011). Like monkeys trained on this task, the 

network develops units that are tuned to the rank-order of the colours and it 

generalizes this newly learned rule to previously unseen colour combinations. 

These results provide new insight into how individuals can learn to control 

attention as a function of reward contingency.  
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Introduction 

Our perception is highly selective. We mainly register information that pertains to our 

goals while ignoring the rest. Consider, for example, a tennis player waiting for the 

return of the ball. He focuses on the posture and motion of the opponent and on how to 

hold the racquet, but he neither perceives other people on the court nor the surrounding 

advertisements. Through training he has learned to focus attention on the visual 

information that matters for the next hit. How did he learn to specifically attend to the 

visual features that matter? 

 In many circumstances learning depends on rewards or punishments. Winning 

and losing points during practice games is an incentive for learning how to play tennis. 

Reinforcement learning (RL) theories provide a useful framework for understanding 

how feedback from the environment in the form of rewards and punishments shapes 

behavioural performance (Sutton & Barto, 1998). Researchers have made substantial 

progress in RL theories, and there are influential theories about how the brain 

implements RL (Bromberg-Martin, Matsumoto, & Hikosaka, 2010; Dayan & 

Balleine, 2002). Furthermore, other influential theories have addressed how attention 

influences neuronal activity in visual cortical areas (Bundesen, Habekost, & 

Kyllingsbæk, 2005; Desimone & Duncan, 1995; Reynolds & Chelazzi, 2004; 

Roelfsema, 2006). However, with a few exceptions (e.g. Whitehead & Ballard, 

1991), previous theories have not yet addressed the question of how the brain learns to 

direct attention to those features that matter. In the present study we will investigate a 

new, biologically plausible RL-scheme with the aim to train a neural network to control 

attention. Our approach is inspired by recent findings about the influence of rewards on 

attention in experimental psychology and also by neurophysiological findings on how 

attention influences the representation of visual information in the brain.  
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In recent years, researchers in experimental psychology obtained many new 

insights into how rewards influence the deployment of attention, as documented in this 

special issue of Visual Cognition. Visual stimuli that are associated to high reward are 

likely to attract more attention at a later point in time than stimuli associated with lower 

reward (Chelazzi, Perlato, Santandrea, & Libera, 2013) (B. A. Anderson, 

Laurent, & Yantis, 2011; Hickey, Chelazzi, & Theeuwes, 2010; Libera & 

Chelazzi, 2009; Raymond & O'Brien, 2009). In many tasks the reward-

contingencies determine what information is relevant and what information is not, 

which makes it evident that reinforcers should influence attention.  

Neurophysiological studies have demonstrated that areas of the parietal and 

frontal cortex selectively represent task-relevant information, and the pairing of stimuli 

with rewards and punishments should therefore favour the representation of these 

stimuli (Duncan, 2010; Gottlieb & Balan, 2010). Most theories of attention state that 

these neurons in frontal and parietal cortex provide a top-down signal that influences the 

representation of stimuli in the visual cortex (Corbetta & Shulman, 2002; Desimone 

& Duncan, 1995; Miller & Cohen, 2001). Indeed, the neuronal responses elicited by 

attended objects are enhanced in many, if not all, areas of visual cortex (Reynolds & 

Chelazzi, 2004; Treue & Maunsell, 1996), and attentional selection processes can be 

monitored even at the level of the primary visual cortex (area V1) (Roelfsema, 2006).  

Because the required top-down attentional control signals depend on the precise task 

demands, they should be strongly influenced by RL. However, the mechanisms that 

allow reward signals to shape these attentional top-down control signals are not well 

understood. 

Interestingly, neuronal activity evoked by stimuli associated with high rewards 

is also stronger in visual and association cortex than activity evoked by stimuli 
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associated with less reward (Louie, Grattan, & Glimcher, 2011; Pastor-Bernier & 

Cisek, 2011; Serences, 2008; Stănişor, van der Togt, Pennartz, & Roelfsema, 

2013). Although some have proposed that the effects of attentional selection and 

reward expectancy differ at the neuronal level (Louie et al., 2011; Platt & Glimcher, 

1999), a recent study demonstrated that V1 neurons modulated by reward expectancy 

are also modulated by attention and with a similar timing (Stănişor et al., 2013). The 

latter suggests that both response modulations are caused by a common top-down signal 

reaching the visual cortex driven by both reward expectation and selective attention 

(Maunsell, 2004). 

To gain more insight into how reinforcers can influence the deployment of 

attention, we will here train a neural network model to carry out a non-linear attentional 

control task that has been studied in monkeys by Lennert & Martinez-Trujillo (2011). 

We will train the network with a new learning rule called AuGMEnT (Rombouts, 

Bohte, & Roelfsema, 2012; in press), which incorporates two factors that are known 

to modulate synaptic plasticity (Roelfsema & van Ooyen, 2005; Roelfsema, van 

Ooyen, & Watanabe, 2010). The first factor is a reward-prediction error that codes 

whether the outcome of an action is better or worse than expected. It is thought that 

such a reward prediction error is broadcasted throughout the brain by the release of 

neuromodulators, such as dopamine or serotonin, so that it is available at many synapses 

and can influence their plasticity (Liu et al., 2014; Schultz, 2002). The second signal 

is an attentional top-down signal from the response selection stage to earlier processing 

levels. The learning rule enforces that this top-down signal highlights the subset of 

synapses that are responsible for the action that was chosen by the network and this 

signal thus determines which synapses are sensitive to the neuromodulators that 

determine the changes in synaptic strength. Overall, the learning rule incorporates four 



 6 

signals that are all available locally, at the synapse: (i) presynaptic activity; (ii) 

postsynaptic activity; (iii) the globally released neuromodulatory signal and (iv) activity 

of feedback connections from the response selection stage.  

In the task of Lennert and Martinez-Trujillo (2011) the monkeys first had to 

direct their gaze to a fixation mark in the centre of a display flanked by two moving 

random dot patterns (RDPs) made up of grey dots (Figure 1A). After a delay, both 

RDPs changed colour. These colour changes were an attentional cue for the monkeys, 

indicating which of the patterns was target and which one distracter (e.g., green was the 

target and red the distracter). The monkeys’ task was to respond to a brief change in the 

motion direction of the target pattern by releasing a button while ignoring a similar 

change in the distracter’s direction. The crucial design feature of the task is that that 

were six possible colours, which were organized according to their rank in an ordinal 

scale (red < orange < yellow < green < blue < purple; the original study used different 

colours which did not map onto the spectrum in this orderly manner). The monkeys had 

to attend to the pattern with the highest colour rank (the target) and ignore the pattern 

with the lowest rank (the distracter). They only received a juice reward for responses to 

the target direction change, whereas trials were aborted without reward if they 

responded to the distracter change. Note that this task is non-linear, because the colour 

cues determine whether a response is required to the left motion cue so that the right 

motion cue should be ignored, or whether the contingency is reversed. The monkeys 

learned the order relationships by trial and error, which is remarkable because they saw 

only two coloured patterns at the same time. They generalized the rule to infer the 

relative rank of new colour pairs that they had not seen during training (i.e., transitive 

knowledge).  
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Once the monkeys had learned the task, Lennert & Martinez-Trujillo (2011) 

recorded the activity of neurons in the dorsolateral prefrontal cortex. They observed that 

the firing rate of a substantial fraction of the cells coded the location of the target 

pattern. Some of these neurons increased their firing rate if the target pattern was on the 

left side of the display, whereas others increased their response if the target pattern was 

on the right. Moreover, the strength of the attentional control signal depended on the 

distance between the ranks of the target and distracter colours. The signal was strongest 

if the distance between the ranks was high and weaker for colours with adjacent ranks 

(distance effect). 

Although the study of reinforcement learning was not the aim of Lennert & 

Martinez-Trujillo (2011), as rewards were only used as incentive for the monkeys to do 

the task, this study does allow us to address the central theoretical issues that we wish to 

investigate: how do brain structures control attention and how do they optimize this 

control while animals learn a task by reinforcement learning? More specifically: (1) 

which mechanism can cause neurons in prefrontal cortex to encode the rank order of the 

colours? (2) how do these control signals ensure that the monkey only responds to 

changes in the direction of the target? and (3) how do the monkeys generalize the rule to 

new colours that they have not seen during training? 

To address these questions, we exploited a new versatile learning scheme called 

AuGMEnT (Attention-Gated MEmory Tagging) that can train neural networks to 

perform many of the tasks that have been used in monkey studies, including tasks that 

require decision-making, non-linear sensory-motor mappings, working memory and 

categorization (Rombouts et al., 2012; in press). The network aims to learn the value 

of the successive actions that need to be taken during a trial, such as holding or 

releasing a button. These action values correspond to the expectancy of obtaining a 



 8 

reward at the end of the trial, and the representation of these action values allows the 

model to make the optimal choice at every time step during a trial.  

A unique feature of the learning rule is that neuronal plasticity makes 

feedforward and feedback connections reciprocal, in accordance with anatomical and 

neurophysiological findings (Felleman & Van Essen, 1991; Mao et al., 2011). 

When the model learns to select actions based on the relevant features, the units coding 

these features start receiving attentional feedback from the response selection stage. We 

show that a model trained with AuGMEnT can indeed learn the attentional control task, 

and that the behaviour of the model is similar to that of monkeys. We further show that 

the model explains the formation of rank-difference tuning and how trial-and-error 

learning can shape attentional top-down signals. 

 

Methods 

Model 

We have described the AuGMEnT learning rule in previous work (Rombouts et al., 

2012; in press), but we have not used it so far to study how trial-and-error learning 

shapes top-down attentional selection signals. In these previous studies we outlined the 

theory behind the model and how it optimizes network performance. We also 

demonstrated how AuGMEnT allows networks to learn non-linear sensory-motor 

transformations and decision-making tasks. We will here summarize the key features of 

the model, which are necessary to understand learning of the attentional control task. 

An important property of AuGMEnT is that it can train a two-layer neural network to 

perform many tasks, by simply varying the input stimuli and the reward contingency. In 
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the present study, we used the same network topology as in our previous work (Figure 

1B) to understand how rewards influence attentional control. The model is a two layer 

neural network that learns to predict action values (also known as Q-values, (Sutton & 

Barto, 1998)) for the different actions that it can take (Figure 1B). Thus, when a 

stimulus is presented to the input layer, the model’s task is to propagate activity from 

the input layer to the association layer and then to the Q-value layer to compute the 

value of the different actions that the model can take. Phrased more formally, there is a 

Q-value unit for every possible action a and this unit aims to represent the (discounted) 

expected reward for the remainder of a trial if the network selects an action a in the 

current state s:  

 !! !,! = !!!! !!! !! = !,!! = !!], with !!! = ! !!!!!!!!!
!!! !, (1) 

where !![. ] is the expected value of the sum of discounted future rewards !!, given 

current action-selection policy ! and where ! ∈ [0,1] determines the discounting of 

future rewards r. Discounting means that rewards in the distant future are considered 

less valuable than rewards that can be earned at earlier time points.  

Learning is guided by a neuromodulatory signal that represents the SARSA 

temporal difference error !: 

 ! ! = !! ! + !!! ! − !! ! − 1 , (2) 

where ! !  is the scalar reward observed on time step !. SARSA is a method from the 

RL literature (Rummery & Niranjan, 1994; Sutton & Barto, 1998) that considers 

transitions from one state-action combination to the next while evaluating the reward 

(hence SARSA; State-Action Reward State-Action). This ! is positive if the outcome of 

an action was better than expected and negative if it was worse. For example, if the Q-

value of an action taken on time-step t equals 0.8, the network expects 0.8 units reward 

for the remainder of the trial. If the network at time t+1 selects the next action with a 
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value of 0.9, the action at time t turned out to be better than expected (!=0.1) and the 

network updates the synapses to increase the value of the action that was taken at time t. 

The sensory layer (‘stimuli’ in Figure 1B) of the network represents the current 

stimulus with three different unit types: Instantaneous (!! ! ) units, and On (+, !!! ! ) 

and Off (-,  !!! ! ) units, so that each sensory input !! !  is encoded by three different 

types of input units: 

 !! ! = !! ! , 

!!! ! = !! ! − !!! ! − 1 !, 

!!! ! = !! ! − 1 − !!! ! !, 

(3) 

 

where ∙ ! is a threshold operator that leaves positive inputs unchanged but returns 0 for 

negative inputs. Thus, instantaneous units code for the current sensory input, whereas 

On-units are active for only one time-step if a feature has just appeared and Off-units 

when it disappeared.  

The association (middle) layer of the network (middle in Figure 1B) is equipped 

with two different types of units: regular units and memory units. The activity of regular 

units depends on the current activity of units in the input layer, whereas memory units 

exhibit persistent activity so that they can represent working memories of stimuli 

presented earlier, as are found in for instance in prefrontal and parietal cortex 

(Funahashi, Bruce, & Goldman-Rakic, 1989; Gnadt & Andersen, 1988). We will 

first describe the activity of regular units before we describe the activity of the memory 

units.  

Instantaneous units !! in the input layer project to the regular association units 

via synaptic weights !!"!  (with !!!!  is a bias weight) (Figure 1B). Their activity !!! is 

determined by: 
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 !"#!! ! = !! !!"!!! ! !, 

!!! ! = ! !"#!! ! ≡ 1/(1+ exp!(! − !"#!! ! )  , 
(4) 

where ! .  is a non-linear activation function (squashing function) and we note that our 

results generalize to other forms of this activation function. The activation function of 

the memory units is similar. The on (+) and off (-) units in the sensory layer project to 

the memory units via synaptic weights !!"!  and !!"!  and their activation is determined 

as: 

 !"#!! ! = !"#!! ! − 1 + !! (!!"! !!!! ! + !!!"! !!!! ! ), 

!!! ! = ! !"#!! !  , 
(5) 

so that their activity also depends on features that have appeared or disappeared during 

earlier time steps in the trial. The instantaneous units in the input layer do not project to 

the memory units to prevent the integration of a constant input, which would give rise to 

ramping activity of the memory units.  

Finally, the regular and memory association units project to the output/motor 

layer via synaptic weights !!"!  (with !!!!  as a bias weight) and !!"! , respectively, to 

give rise to a set of Q-values !! for the different actions ! that the model can take so 

that: 

 !! ! = !
!

!!"! !!! ! + !
!
!!"! !!! ! . (6) 

 

Thus, when activity has been propagated to the output layer, this layer encodes a set of 

Q-values, one for every action. Then a stochastic winner take all (WTA) competition 

determines the action that the network will perform. With high probability (1− !) the 

greedy action (with highest Q) is selected, but with a small probability ! the winning 
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action is determined by sampling from the Boltzmann distribution to allow the 

exploration of other actions: 

 !!(!) = !"#(!!)
!!! !"#(!!!)

, (7) 

where !!(!) is the probability that action ! is selected. After selecting an action !, the 

activation in the Q-value layer becomes !! = !!", where !!" is an identity function 

returning 1 if ! = ! and 0 otherwise. In other words, only the winning output unit a has 

activity 1 and the activity of the other units in the output layer becomes zero. The output 

layer then informs the rest of the network about the selected action via feedback weights 

!!"!!  to memory units and !!"!! to regular association units (dashed lines in Fig. 1B), and 

the interaction of the feedback and feedforward activations is used to constrain synaptic 

plasticity to those synapses that were actually involved in selecting the action. The 

network creates synaptic traces and synaptic tags that determine synaptic plasticity. The 

traces signal that a synapse has been active, whereas tags signal that the synapse was 

involved in the selection of an action, so that the synapse is going to be held responsible 

for the outcome of this action. Synaptic traces on synapses from regular and memory 

units to the output layer are proportional to the strength of the afferent signal through 

these synapses: 

 sTrace!"! (!) = !!(!), 

sTrace!"! (!) = !!(!). 
(8) 

These traces are a prerequisite for plasticity because tags can only form on those 

synapses that contain a trace. Tags in the output layer form only on synapses onto the 

winning output unit that was selected for an action, and they then decay exponentially: 

 Tag!"! ! + 1 = !"Tag!"! (!)+ !"#$%!!"! (!)!!(!), 

Tag!"! (! + 1) = !"Tag!"! (!)+ !"#$%!!"! (!)!!(!), 
(9) 
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The parameter ! ∈ [0,1] determines the rate of decay of tags (in RL these tags are called 

eligibility traces (Sutton & Barto, 1998)). The strength of the tag determines the 

degree of plasticity of the synapse.  

The updates for the synapses !!"!  between the input and association layer have a 

similar form: 

 sTrace!"! (!) = !!(!), 

Tag!"! (! + 1) = !"Tag!"! (!)+ sTrace!"! ! !!!!(!), 

= !"Tag!"! (!)+ sTrace!"! (!)!!! !"!!!(!) !!"!!, 

(10) 

Note that the formation of tags here depends on !!!!(!), which is a shorthand for the 

attentional feedback signal that originates from the winning output unit a and arrives at 

unit ! through the feedback connections !!"!!, and !! is the derivative of the activation 

function with respect to its input, which has the convenient form !! !"!!! =

! !"!!! 1− !! !"!!! . Thus, only synapses !!"!  that receive feedback from the 

response selection stage are rendered plastic because they form tags. The updates for the 

synapses !!"!/! onto memory units are similar: 

 sTrace!"!/! ! = sTrace!"!/! ! − 1 + !!!/!(!), 

Tag!"!/!(! + 1) = !"Tag!"!/!(!)+ sTrace!"!/! ! !!!!(!), 

!= !"Tag!"!/!(!)+ sTrace!"!/!(!)!!! !"!!!(!) !!"!! , 

(11) 

where the critical difference is that synaptic traces to memory units accumulate, i.e. they 

reflect the total input provided by a synapse during the trial, whereas all other traces 

disappear after a single time step. After executing action ! with expected value !! and 

updating the traces and tags as specified above, the network makes a transition to a new 

state in the environment and it selects a new action !′ with associated Q-value !!! on 

the next time step. The network may also receive a reward ! during this transition. After 
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the transition, a neuromodulatory substance (e.g. dopamine) is globally released in the 

network, which encodes the SARSA prediction error !(!). The concentration of the 

neuromodulator depends on the difference between successive Q-values, taking the 

discounting as well as the reward r into account: 

 !(!) = !!(!)+ !!!!!(!)− !!!(! − 1). (12) 

This prediction error is positive if the outcome of the previous action is better than 

expected and negative if it is worse, and it is also positive if the network experiences a 

transition to a higher Q-value but does not receive an immediate reward. Synaptic 

plasticity in the network is then simply determined by the interaction of this 

neuromodulatory substance with the tagged synapses as: 

 Δw!"! = !"(!)!"!!"! (!); !Δw!"
! = !"(!)!"!!"!(!), 

Δv!"! = !"(!)!"!!"! (!); Δv!"!/! = !"(!)!"!!"!/!(t), 
(13) 

where  ! determines the learning rate. Feedback weights are updated in the same 

manner. As was mentioned in the introduction, the learning rule is neurobiologically 

plausible because the factors that determine plasticity are the pre- and postsynaptic 

activity, the “attentional” feedback signal from the response selection stage and the 

neuromodulator coding for !(!), signals that are all available locally, at the synapse.  

When the network reaches the end of a trial the ! parameter used in the 

computation of the reward prediction error is set to 0 for the corresponding time-step 

and the dynamic parameters (i.e. tags, synaptic traces, unit activations) in the network 

are cleared. It can be shown that the above learning rules change the synapses in the 

network as to minimize the SARSA temporal difference prediction errors by stochastic 

gradient descent, and that AuGMEnT can be seen as a biologically plausible 

implementation of the SARSA(!) learning algorithm, extended with a working memory 

(Rombouts et al., 2012). The non-linear units of the association layer allow the 
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network to learn non-linear mappings from sensory stimuli onto Q-values, as is essential 

in the present attentional control task. Figure 1C provides a graphical summary of the 

learning mechanism described above. 

In order to investigate how AuGMEnT can train a network to control attention, 

we constructed the simplest possible network that captures the essentials of the 

attentional control task based on colour ranking. We equipped the network with a 

retinotopically organized sensory layer (Figure 1B, top) with binary neurons, i.e. 

neurons that were either active or silent, representing the seven possible colours on the 

left side and on the right side. We additionally included a binary neuron that represented 

the change in motion direction on each side, which the model had to report (for targets) 

or to ignore (for distracters) and a binary unit for the fixation mark in the middle.  As in 

our previous work (Rombouts et al., 2012; in press), the association layer was 

equipped with three regular units and four memory units. We previously demonstrated 

that AuGMEnT can also be used to train networks with many more units in the 

association layer. The action layer of the network had neurons that coded for two 

different actions: one to hold a response button and the other to release the button. For 

all results reported here we used the following parameters: ! = 0.35, ! = 0.40, ! = 0.9 

and ! = 0.025 and ! = 2.5. We note that the results below do not critically depend on 

the precise value of these parameters – we found AuGMEnT to be robust across a wide 

range of parameters and in a large variety of tasks (Rombouts et al., 2012). 

Model of the attentional control task 

The task (Figure 1A) was modelled as a sequence of discrete time steps. Every trial 

started with an empty screen, shown for one time step. Then we presented the fixation 

mark flanked by the grey patterns. The model had to “press” the response button within 
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ten time steps, otherwise the trial was terminated without reward. If the model “held” 

the button for two time-steps, the colours of the stimuli changed, with the target 

changing to a colour with a higher rank than the distractor. If the target stimulus 

changed direction (i.e. when the binary ‘change’ neuron on the corresponding side 

became active) the model had to “choose” the release action within eight time steps to 

receive a “reward” of 1.5 units. However, if the distracter stimulus changed direction, 

the model had to hold the button for two additional time steps, after which the target 

stimulus would briefly change, indicating that the model could release the button to 

obtain the reward. As in our earlier work (Rombouts et al., 2012), we used a shaping 

strategy to encourage the model to learn to hold the button by giving a small reward 

(hold-reward) of 0.2 units when the model held the button for two time-steps after the 

fixation mark turned on. We note that this shaping strategy is not essential for the 

learning of the task, but that it speeds up the learning process, as in animal learning 

(Krueger & Dayan, 2009). 

 

Model training 

We carried out two separate sets of simulations. In the first set of simulations we 

investigated the generalization performance of the network by training it on a subset of 

all colour combinations and then testing performance for colour combinations that had 

not been presented during training. This allowed us to investigate whether AuGMEnT 

can generalize to unseen combinations of colours, as monkeys did. In the second set of 

simulations we presented all colour combinations from the start of training. The 

monkeys in (Lennert & Martinez-Trujillo, 2011) were trained for 3-5 months on this 

full version of the task, and these simulations allowed us to investigate the neuronal 
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tuning that develops after significant experience in the colour task. 

Test of generalization 

The first training scheme was developed to study if the model could generalize the 

colour-ranking scheme to unseen combinations of colours. We used the same shaping 

scheme as used to test the generalization performance of the monkeys in the (Lennert & 

Martinez-Trujillo, 2011) study. The models were first trained on the colour-pairs 

‘green-blue’, ‘yellow-green’ and ‘yellow-blue’ (rule: yellow < green < blue). The 

ordering of the colours and the stimulus (target or distracter) where the first direction 

change occurred were randomized. We will use the term ‘respond trial’ for a trial where 

the target stimulus changed first, and ‘ignore trial’ for a trial where the distracter 

stimulus was the first to change. After the model learned the task (see below) we 

sequentially trained the model on unseen colours, first training on the combination ‘red-

yellow’. In combination with the initial set, the relative ranking of the red colour could 

be inferred from the ‘red-yellow’ pair, because red < yellow, and yellow < green < blue. 

If the model inferred this ordering, it should learn the other combinations with the red 

colour (‘red-green’ and ‘red-blue’) more easily. We repeated this training scheme for 

the ‘orange’ colour, first training on ‘orange-yellow’, and then testing learning speed for 

‘orange-green’, ‘orange-blue’ and ‘red-orange’ simultaneously. We considered that 

learning was complete when the model made 85% correct choices in the last 100 trials 

of each colour pair. All networks learned the task within a median of 1,800 trials. 

Training on all colour-pairs 

We also evaluated the model’s performance when it was immediately exposed to all 

colour pairs, without shaping except for the small hold-reward. The locations of colours 

and the distracter/target trials were generated uniformly at random. We considered 
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learning successful if the models made more than 85% correct choices in the last 100 

presentations of all possible colour pairs, collapsing over the two possible locations of 

the two colours and across respond and ignore trials. All models learned this task in less 

than 5,200 trials.  

 

Results 

We investigated the learning behaviour of AuGMEnT using two different training 

schemes as explained in the methods section above. In the original study, the monkeys 

were either trained on a version of the task that tested their generalization to new colour 

combinations or in the full task with all colour combinations. In accordance with these 

two training schemes, we used a first scheme to test if a neural network trained with 

AuGMEnT would generalize the rule to new colour-pairs, and a second scheme to study 

the behaviour of networks that have been trained with all colour combinations. 

 

Generalization to new colour combinations 

In the first version of the task we trained 100 networks (i.e. repetitions with different 

initializations of the network weights) to test generalization (Methods), aiming to record 

the decisions that the models made during each stage of the training procedure. In the 

first phase, we trained the networks to discover the general rule with three basic colour 

pairs, ‘green-blue’, ‘yellow-green’ and ‘yellow-blue’. The only feedback that the 

network received about its performance was the small hold-reward if it held the 

response button for two time-steps and the large reward if it responded to the motion 

change on the relevant side. In spite of this limited feedback about their performance, 

all networks learned these patterns within a median of 1,800 trials, which is fast when 
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compared with learning by the monkeys. 

Figure 2 shows the distributions of the number of mistakes that the models made 

in each learning stage for the different colour pairs, including trials where the model 

released the button prematurely, before the first change in the direction of the moving 

patterns. After the models had learned the ranking of green, blue and yellow they 

rapidly generalized to previously unseen colour pairs. Specifically, ‘red-yellow’ was 

clearly the most difficult to learn, because the colour red was introduced for the first 

time and its rank relative to yellow was unknown. Once the models had learned that red 

had a lower rank than yellow, the subsequent transfer to ‘red-green’ and ‘red-blue’ was 

easy, consistent with the hypothesis that the model could exploit the order relationship, 

as yellow was lower in rank than green and blue, so that red<yellow implies red<green 

and red<blue. We subsequently introduced the orange colour, pairing it with yellow. 

The model quickly learned that orange had a lower rank than yellow and it subsequently 

made only few errors with ‘orange-green’ and ‘orange-blue’. The error rate increased 

slightly for the last colour pair (‘orange-red’), but this also occurred when a monkey 

was trained on this task. This phenomenon can be explained because the relative rank of 

orange and red is undetermined when the model has learned that orange<yellow and 

red<yellow. The general learning pattern of the networks follows the monkeys’ 

behaviour (white circles in Figure 2). Indeed, the Spearman rank correlation between 

the median network performance and the monkey’s performance was 0.86 (P < 0.012). 

Thus, these simulations indicate that neural networks trained with AuGMEnT 

generalize a colour ranking scheme to unseen combinations of colours, and that the 

pattern of errors is similar to that shown by a monkey when trained on the same task.  
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Full task 

We next investigated the behaviour of AuGMEnT on the full task with all possible 

combinations of colour stimuli, which was also used to train the monkeys. For these 

simulations we trained an additional 100 networks. They all managed to learn the task 

to criterion within a median of 2,800 trials, which is fast compared to the monkeys who 

took about 3-5 months of training. Note that the learning of the full task was slower than 

in the generalization task (1,800 trials). This slightly slower learning process can be 

explained by the fact that the purple (highest rank) colour was not included in the 

generalization task. Furthermore, the generalization task included many examples with 

adjacent ranks, which is helpful if the task is to infer a rank order (Krueger & Dayan, 

2009). 

Model accuracy as function of colour distance 

When a task requires the comparison of stimuli that are “close” in rank, humans and 

animals tend to require a longer time to reach a decision and make more errors 

(Dehaene, Dehaene-Lambertz, & Cohen, 1998). Also the monkeys that were 

trained on the colour-rank task exhibited a clear effect of the difference in rank between 

the colour stimuli on the error rate (Figure 3A) (Lennert & Martinez-Trujillo, 2011). 

To investigate whether the networks trained with AuGMEnT exhibit a similar 

sensitivity, we recorded all errors made by the networks during training, for colours 

separated by distance of 1, 2, or 3 on the colour scale. Figure 3B shows that networks 

trained with AuGMEnT exhibited a similar distance effect (one-way analysis of 

variance-ANOVA, Kruskal-Wallis post-hoc test, ! = 45.76,! < 0.001). Thus, the 

neural networks captured many aspects of the behavioural performance of the monkeys. 

To examine how the networks learned to focus their attention on the side of the colour 



 21 

with highest rank, we next examined the activity of the units in networks trained to 

perform the full task.  

Activity of the units in a trained network 

To obtain a first intuition of how the trained networks solve this task, Figure 4 shows 

the activity of two memory units in the association layer and also the activity of the Q-

value units in the output layer of an example network, for all trial types with a green and 

orange stimulus. The unit on the top (light blue trace) had a stronger response when the 

target colour was on the left (compare the first and third column) whereas the unit in the 

middle row (grey trace) had a stronger response when the target colour was on the right. 

It can be seen that motion stimuli also had strong effects on the units’ activity level; for 

instance the blue “left” unit received excitatory input from a motion change on the left 

(M1 in the first column of Figure 4 and M2 in the second column). Similarly, the grey 

“right” unit was excited by the right motion stimulus. Examination of the activity of Q-

value units (lower row in Fig. 4) revealed that the Q-value of the “Hold” action is higher 

than the activity of the “Release” action, until the moment where the motion stimulus is 

presented on the side that needs to be monitored by the model. This activity pattern of 

the Q-value units follows from the fact that this example network had learned to hold 

the lever until the motion change occurred on the relevant side. When we examined the 

activity of many networks, we found that memory units had a very strong tuning to the 

difference in rank between the two colours. Specifically, their activity increased or 

decreased monotonically with the difference in rank between the two colours. In the 

next section, we provide a detailed analysis of rank-difference tuning in the trained 

networks. 
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Tuning to the difference in rank between colours  

We found that the sensitivity of the model to the difference in the rank of the colours 

was mainly expressed in the synaptic weights from the On- and Off-cells in the input 

layer onto the memory units in the association layer. To assess the rank-difference 

tuning of these memory units in more detail we analysed the synaptic weights from the 

input layer units that coded the colours on the left and right. Figure 5A shows the input 

connections of the two memory units of the network of Figure 4. There was a clear 

relation between synaptic weights and the rank and location of the two coloured stimuli. 

The unit on the left of Figure 5A (light blue traces in Figure 4) had positive weights to 

colours of increasing rank on the left and negative weights for colours of increasing 

rank on the right. The unit on the right (grey traces in Figure 4) had the opposite tuning 

and prefers stimuli with a higher rank on the right. The panels in Figure 5B show the 

amount of input to these two memory units for all colour combinations, as determined 

by the weights in Figure 5A. The unit on the left of the figure received strong input if 

the higher ranked stimulus was on the left, and its activity depended on the distance in 

rank between the two stimuli as soon as the colour cues were presented. The unit on the 

right of the figure had the opposite tuning to colour combinations. 

  In order to quantify the prevalence of this gradual opposite left-right tuning to 

the colour rank across units in the association layer of all trained networks, we 

computed linear regression coefficients (!!/!)!between colour ranks (!!/!) and synaptic 

weights ! from the left and right (l/r) retinotopic location: 

! !! = !!!!! + !! , 

! !! = !!!!! + !! , 

Figure 5C shows the regression coefficients for left and right stimuli (!!/!). It can be 

seen that many memory units exhibited a tuning similar to that of the two units 



 23 

illustrated in Figure 5A. Units with positive weights from stimuli with a high rank on 

one side almost invariably also had positive weights from stimuli with a low rank on the 

other side.  

 The memory units of the association layer fell into three groups: “left” (green in 

Figure 5C), “right” (red), and “non-tuned” (black) units. We labelled the units by 

performing k-Means clustering (assuming three clusters), and used this labelling to 

investigate how the networks solved the task. This analysis revealed that most networks 

had one unit preferring “left” stimuli (1.12 ± 0.35; mean number of units ± s.e.m) and 

another one preferring “right” stimuli (1.10 ± 0.33), while the remaining units fell into 

the grey category of Figure 5C without clear tuning (1.78 ±!0.48).  

In monkeys, task-relevant neurons encode information about the rank-difference 

of stimuli and thereby which of the two stimuli should be monitored for a motion 

change. One example neuron is shown in Figure 6A. This neuron increased its response 

if the target stimulus appeared on the preferred side of the neuron and in particular if the 

difference in colour rank between the preferred and non-preferred was large. A similar 

effect was observed at the population level when cells were aligned according to their 

preferred side, which differed across neurons (Figure 6B, bottom). When we examined 

the activity of the top (light blue) ‘left’ coding unit in response to colour pairs with 

different rank-distances we found that the unit’s activation after the onset of the colour 

stimuli also varied monotonically with the difference in rank. Its activity was enhanced 

when the to-be-attended stimulus was on the left and suppressed when it was on the 

right, and this differential response increased with the difference in rank (Figure 6B, 

top). A similar pattern also held at the population level (Figure 6B, bottom), where we 

used the labels obtained by k-Means clustering (Figure 5C) to assign units to the left 

and right-coding groups. Thus, units in the networks that are trained with the 
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AuGMEnT learning rule acquire a selectivity that resembles the tuning of neurons in the 

dorsolateral prefrontal cortex of monkeys.  

In the next section we will investigate one important remaining question about 

the solution that was learned by these neural networks. How do networks deal with the 

motion stimuli, and in particular, how do they filter out stimuli on the distracter side, 

while monitoring stimuli on the target side as they instruct the model to release the 

button?  

 

Response to the motion stimulus on the relevant and irrelevant side 

To illustrate the attentional filtering mechanism, we will first focus our analysis on the 

example ‘left’ coding unit that has been illustrated in Figures 4, 5A and 6B (indexed by 

a light blue circle). We recorded the unit’s activation in response to the first motion 

stimulus for three colour pairs of increasing distance. We compared two types of trials; 

‘respond’ trials where the target stimulus was on the left side and the motion changed 

occurred on the same side, and ‘ignore’ trials where the target stimulus was on the right 

but the first motion change occurred on the left. These two trials types are of interest, 

because the motion stimulus occurs on the left, but in one case it is a target and in the 

other case it is a distractor, so we can specifically study the effect of attentional 

filtering. Figure 7 shows the influence of the left motion stimulus on the activity of the 

association unit when attended (left panel) versus when it needs to be ignored (right 

panel). When the left stimulus needs to be attended, the inputs from the colour input 

units brought the activity close to the steep part of the unit’s non-linear activation 

function so that the additional motion input causes a substantial increase in activity. 

This increased activity enhanced the Q-value of the release action because there was an 
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excitatory connection from this memory unit onto the Q-value unit coding the release-

action.  

In contrast, when the left stimulus had to be ignored, the unit received less input 

from the colour input units so that its activity was farther from the steep part of the 

activation function. Now the motion input caused a smaller increase in activity so that it 

is effectively ignored because it did not lead to a large increase of the Q-value of the 

release action. Most networks that we investigated employed this mechanism but we 

also found the inverse solution, where the activity of the memory unit was high and the 

motion stimulus on the relevant side inhibited the memory unit, which in turn 

disinhibited the ‘release’ action through an inhibitory connection. It is intriguing that 

this attentional filtering problem can be solved by an appropriate weighting of colour 

inputs to memory units, without an influence of feedback connections on the firing rate 

in sensory modules (which was absent in our model; see the next section). In our model, 

the feedback connections are only necessary for guiding plasticity. Our results 

obviously do not exclude that top-down effects on firing rates in sensory cortices are 

essential in other tasks (such as visual search). Our analysis thereby provides insight in 

how attentional filtering can be implemented by a simple feedforward neuronal 

network, and how it can be learned with a biologically plausible reinforcement learning 

scheme. 

Learning of feedback connections 

Finally, we investigated how the amount of top-down attention for the pattern on the left 

and right side evolve during learning. Although in the current model the feedback 

connections from the response selection stage to the association units are only used to 

gate plasticity and do not influence the activity of units at earlier processing levels, our 

main aim was to investigate how these feedback connections can be learned. In order to 
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assess how feedback connections change during the course of learning, we measured the 

summed feedbacks arriving at memory units for the different trial types throughout 

learning for the 100 trained networks. We compared the amount of feedback from the 

response selection stage (i.e. through the connections marked by dashed lines in Figure 

1B) to ‘left’ and ‘right’ memory units (Figure 5C) in trials where attention had to be 

directed to the left and to the right and integrated the total amount of feedback that 

arrived during the trials (Figure 8). Specifically, for each trial of duration ! that 

networks experienced, we computed the quantity !!!!(!)!!!!!   (see equation (10)) 

for each memory unit. 

The effect of learning is clear – during initial learning, when weights are 

random, units tend to receive an equal and increasing amount of feedback regardless of 

the trial type. After about 10% of the training time, the strength of the feedback to the 

units coding for the distractor side started to decrease, whereas the amount of feedback 

to the target side increased slightly until the end of training. Thus, during the learning 

process, units that code information about the target receive more feedback from the 

response selection stage than units that code information about the distracter. 

Discussion 

In recent years important studies have started to document how rewards teach attention 

in human and non-human primates. When subjects receive a high reward for a particular 

stimulus, then this stimulus is likely to attract more attention at a later point in time (B. 

A. Anderson et al., 2011; Chelazzi et al., 2013; Hickey et al., 2010; Libera & 

Chelazzi, 2009; Raymond & O'Brien, 2009). As a general finding, stimuli that have 

been associated with a high reward evoke stronger neuronal responses than stimuli that 

have been associated with lower rewards in many brain structures including the motor 

cortex (Pastor-Bernier & Cisek, 2011), the parietal cortex (Peck, Jangraw, Suzuki, 
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Efem, & Gottlieb, 2009; Platt & Glimcher, 1999), and visual cortex (Serences, 

2008; Stănişor et al., 2013). In primary visual cortex, the neurons that are influenced 

by visual attention are also the ones that are influenced by reward expectancy (Stănişor 

et al., 2013), which suggests that there is a unified selection mechanism that is driven 

by reward expectancy as well as by shifts of attention (Maunsell, 2004). Such an effect 

of the reward contingency on the distribution of attention is expected because the 

contingency determines which information is task-relevant and which information can 

be ignored. In other words, there are strong theoretical grounds to believe that reward 

indeed controls attention. However, the precise mechanisms that explain how a reward 

in one trial can influence the deployment of attention in a later trial have not been well 

understood. 

Here we have shown how a neural network trained with a biologically plausible 

reinforcement learning rule can learn an attentional control task when the only feedback 

from the environment is the occasional reward for correct performance. The 

performance of the networks trained with AuGMEnT exhibited a number of similarities 

with the performance of monkeys, and the activities of network units provide new 

insights into the changes in neuronal tuning that emerge during learning. First, the 

models exhibited a pattern of generalization to unseen colour combinations that was 

remarkably similar to the generalization performance of the monkeys. Second, model 

units acquired a strong tuning to the difference in rank-order between the two colour 

stimuli, just as was found in the prefrontal cortex of monkeys that had been trained on 

the task. Third, these newly formed representations explain why pairs of stimuli with 

closer ranks are associated with more errors than pairs of stimuli with larger differences 

in rank, because the activity of units in the association layer is more similar for stimuli 

with closer ranks. Fourth, the simulation provided insight in how a neural network can 
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decrease its sensitivity to stimuli that are task-irrelevant thereby filtering out distracting 

information. Finally, the present results illustrate how reward ‘teaches’ attention. The 

modified representations increased the amount of attentional feedback that was sent to 

units coding for the relevant motion stimulus, as instructed by the colour cues.  

 The AuGMEnT learning rule uses two factors to gate neuronal plasticity, and 

their joint action at the synapse can provide a learning rule that is as powerful as the 

biologically implausible error-backpropagation rule (Roelfsema & van Ooyen, 

2005). The first factor is a reward prediction error, which can be computed based on the 

difference in activity of the Q-value units that are selected in consecutive time-steps and 

has been included in many previous models on reinforcement learning (e.g. Ashby, 

Ennis, & Spiering, 2007; Dayan & Yu, 2002; Sutton & Barto, 1998). This globally 

released signal informs all the synapses of the network whether the outcome of the 

previous action was better or worse than expected. Previous neurophysiological studies 

have demonstrated that many dopamine neurons in the substantial nigra and ventral 

tegmental area carry such reward-prediction errors (Schultz, 2002). These dopamine 

neurons have relatively widespread connections so that many synapses in the brain 

could pick up this reward prediction signal, although other neuromodulatory systems 

such as acetylcholine (Kilgard & Merzenich, 1998) or serotonin (Liu et al., 2014) 

could play equivalent roles.  

The second factor that gates learning is the attentional feedback from the 

response selection stage (Roelfsema & van Ooyen, 2005; Rombouts et al., 2012; 

in press). This feedback signal originates from the units that code for the action that 

was selected and it assigns credit to units at earlier processing levels that were 

responsible for this choice. The reciprocity of feedforward and feedback connections 

ensures that the units at the lower levels that provide the strongest input to the selected 
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action are also the ones to receive a strong feedback signal. They are the ones to change 

their synaptic strengths (they will have the tag) as instructed by the reward prediction 

error (the globally released neuromodulator). A role of attentional feedback in the 

gating of learning is supported by studies demonstrating that subjects learn more readily 

about attended than non-attended features and objects (Ahissar & Hochstein, 1993) 

(Jiang & Chun, 2001; Trabasso & Bower, 1968). Furthermore, studies in eye 

movement research have firmly established that attention is invariably directed to those 

items that that are selected for a motor response (Deubel & Schneider, 1996); 

(Kowler, Anderson, Dosher, & Blaser, 1995), in accordance with the proposed 

feedback scheme.  

At first sight, our reasoning that the feedback connections gate learning and that 

they themselves are learned at the same time may seem circular. How can connections 

gate their own plasticity? The key observation is that the feedback pathways tag those 

synapses of the feedforward pathways that were responsible for the selected action. 

These tags are a prerequisite for synaptic change based on the globally released 

neuromodulator. If the action resulted in an outcome that was better than expected, the 

tagged synapses increase in strength to promote the future selection of the same action. 

If the outcome of the action was disappointing, then these synapses decrease in strength.  

The resulting improvements in the feedforward pathways need to be accompanied by 

equivalent changes in the feedback pathways, as the reciprocity ensures that the credit 

in later trials will also assigned accurately, in spite of the modified feedforward 

connections. In the present work, the only influence of the attentional feedback signal is 

the deposit of synaptic tags for credit assignment and we did not model the well-

established influence of feedback connections on the firing rates in lower level brain 

regions (Reynolds & Chelazzi, 2004; Roelfsema, 2006). Future models that include 
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top-down effects on firing rates may further expand the capabilities of neural networks 

that are trained with AuGMEnT-like learning rules.  

The present study provides new insights in how rewards can teach attention. It is 

remarkable that a simple network that starts with a random connectivity can learn a 

relatively complex task where the rank of two colour cues determines which of two 

stimuli needs to be monitored for a change in motion direction, by trial and error. Trial 

and error learning with the AuGMEnT learning rule is versatile, because the same 

network and learning rule can teach networks to perform different tasks, including ones 

that require storage of information in working memory, non-linear mappings of sensory 

stimuli onto motor responses and tasks that require the integration of stochastic sensory 

evidence for a decision (Rombouts et al., 2012; in press).  

 We illustrated how the reward-prediction errors of RL theory can also provide 

powerful learning rules for the shaping of attentional feedback connections. These new 

results thereby provide insight in how a perceptual system may learn to focus attention 

on those features that are important to solve a cognitive task. We hypothesize that 

similar mechanisms are at work when we learn in less constrained environments as is 

the case, for example, when learning to play tennis. We anticipate that future work will 

address the possible generalizations of AuGMEnT-like learning rules to situations that 

are even more challenging or that they will point out their limitations. 
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Figure legends 

 

Figure 1. Task and Model. (A) When the monkeys attained fixation, two grey moving 

stimuli appeared. After a delay the stimuli were coloured and these colours determined 

which of the two stimuli had to be monitored for a motion change. After a motion 

change in the relevant stimulus, the monkey had to release a button whereas motion 

changes at the irrelevant side had to be ignored.  (B) The neural network was composed 

of an input layer with sustained, on and off units, an association layer with regular and 

memory units and a motor layer with units coding for action values (Q-values). Motor 

units have feedback connections (dashed) to the association layer.  (C) Sensory stimuli 

give rise to activations in the top layer of the network. Synaptic traces (blue lines) are 

formed on synapses that have feedforward activations (left). Then a stochastic WTA 

process in the motor layer selects one of the actions for execution (middle). The selected 

action unit informs the rest of the network that is was selected via feedback connections 

(dashed lines in the middle panel). The interaction of feedback signals from the selected 

action and feedforward signals arising from the sensory stimuli give rise to the 

formation of synaptic tags (orange hexagons). These tags label the synapses in the 

network that were responsible for the selected action (middle). Finally, after the actually 

executing the action selected at time !, observing a reward and selecting a new action 

for execution, the difference between the predicted value at time ! and the value of the 

actually observed transition gives rise to a prediction error !, which is encoded by a 

globally released neuromodulator (green cloud). Synaptic weights in the network are 



 32 

updated by a simple multiplicative interaction of the tag strength and the prediction 

error signal (right). 

 

Figure 2. Generalization of the model to new colour combinations. The box plots 

illustrate the number of errors made, on average, by 100 networks trained on the 

generalization version of the colour task. First, the models were trained on three colour 

pairs; green-blue, yellow-green and yellow-blue. Then, models were exposed to red as a 

novel colour, which initially only occurred in combination with the known colour 

yellow. After reaching criterion performance (methods), transfer learning was tested by 

training the model on the remaining colour pairs, red-green and red-blue. It can be seen 

that few additional errors were made for these new colour pairs. This scheme was 

repeated for the orange colour. The error pattern for a monkey trained using the same 

scheme is overlaid (white circles). The boxes illustrate the lower quartile, median 

(thick) and upper quartile, whereas the whiskers extend to most extreme data point 

within 1.5 multiples of the inner quartile range). Note the discontinuity of the y-axis.  

 

Figure 3. Effect of difference in colour rank on the error rate. (A) Hit rate of monkeys 

Ra and Se after 3-5 months of training as a function of distance between colour ranks. 

Error bars denote s.e.m. (B) Average hit rates of models (N=100) throughout learning 

the full colour rank task as a function of distance between colour ranks. Error bars show 

s.e.m. The networks were trained until they reached an accuracy of 85% (see methods), 

which explains why the total performance is around 80% when averaged over the whole 

training period. Note that the scale of panels A and B differs.  
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Figure 4. Example activity traces of a network trained on the full colour-ranking task. 

Top panels show the behaviour of two memory units with task-relevant tuning. The top 

unit (light blue circle) responded most strongly to if the highest-ranking colour was on 

the left (green had a higher rank than orange), and the middle unit (grey cross) prefers 

the highest rank on the right. The insets at the top show the time point when the fixation 

marker (F, black line) and the grey stimuli appeared on the screen, and when the colours 

turned on (C, bottom: left stimulus colour, middle: right stimulus colour). The black 

vertical line indicates the onset of a motion stimulus (M). In “respond” trials the first 

motion change occurred on the target side, and on “ignore” trials the first change 

occurred on the distracter side (M1) and then on the target side (M2). The bottom panels 

show action values that the model predicted for the “Hold” (blue) and “Release” (red) 

actions.  

 

Figure 5. Tuning of memory units to the difference in rank between the two colours. 

(A) Weights from “on” sensory units to example memory units (same as those shown in 

figure 5), ordered by rank. The solid line marks the synaptic weights from input units 

coding colours of different ranks in the left visual field, and the dashed line marks the 

weights coming from the right visual field. (B) Sum of activations due to the presence 

of all possible combinations of colour stimuli. (C) Scatter-plot of linear-regression 

parameters (see main text). These results are based on synapses between the On-cells in 

the input layer and the memory units in the association layer. Off-cells and regular units 

usually did not have strong weights. The two example neurons from panel A (and 

Figure 4) have been marked with a light blue circle and a grey cross. Neurons that 

prefer stimuli on the right have been coloured red, and neurons that prefer stimuli on the 

left are shown in green. Neurons that do not have strong opposite tuning for colours on 
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the left and right are marked in black. Colour labels were obtained by k-Means 

clustering (see Results).  

 

Figure 6. Rank difference coding. (A) Rank difference coding of a single cell in the 

prefrontal cortex of a monkey (top) and a population of prefrontal neurons (bottom, 

both adapted from (Lennert & Martinez-Trujillo, 2011)). Solid lines: target pattern on 

the preferred side, dashed lines: target on non-preferred side. (B) Rank difference 

coding in a single model unit (top) and over the whole population of trained model 

units. Solid lines: target at preferred location, dashed lines: distracter at preferred 

location. Shadings show s.e.m.  

 

Figure 7. Attentional filtering by an example ‘left’ unit. (A) Colour combination with 

the highest rank on the left brings the unit close to the steep part of the non-linear 

activation function (black sigmoidal curve). The appearance of the motion stimulus can 

therefore cause a large increase in the unit’s activity. The three arrows show the 

increase in activity for colour combinations with a distance in rank of 1, 2 and 3. This 

increase in activity is propagated to the output layer to cause an increase of the Q-value 

of the button release action. (B) Colour combinations cueing that the right motion 

stimulus is relevant cause suppression so that the unit is relatively insensitive to a 

change in motion direction on the left side. Thus, a motion change on the irrelevant side 

cannot cause a strong increase in the Q-value of the release action and will be ignored 

by the model.  

 

Figure 8. Learning shapes attentional feedback from the response selection stage.  

Mean summed attentional feedback arriving at memory units encoding information 
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about the target side (green) versus the distracter side (red) throughout learning. 

Shading shows s.e.m. We averaged feedback across all trial types. Because they did not 

occur equally often (due to the random generation of trial types), we estimated the 

relative position of trials of every type in the learning sequence with linear interpolation 

before averaging them.  

 

References 

Ahissar, M., & Hochstein, S. (1993). Attentional control of early perceptual 
learning. Proceedings of the National Academy of Sciences of the United 
States of America, 90(12), 5718–5722. 

Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional 
capture. Proceedings of the National Academy of Sciences of the United 
States of America, 108(25), 10367–10371. doi:10.1073/pnas.1104047108 

Ashby, F. G., Ennis, J. M., & Spiering, B. J. (2007). A neurobiological theory of 
automaticity in perceptual categorization. Psychological Review, 114(3), 
632–656. doi:10.1037/0033-295X.114.3.632 

Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in 
Motivational Control: Rewarding, Aversive, and Alerting. Neuron, 68(5), 
815–834. doi:10.1016/j.neuron.2010.11.022 

Bundesen, C., Habekost, T., & Kyllingsbæk, S. (2005). A Neural Theory of 
Visual Attention: Bridging Cognition and Neurophysiology. Psychological 
Review, 112(2), 291–328. doi:10.1037/0033-295X.112.2.291 

Chelazzi, L., Perlato, A., Santandrea, E., & Libera, Della, C. (2013). Rewards 
teach visual selective attention. Vision Research, 85, 58–72. 
doi:10.1016/j.visres.2012.12.005 

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-
driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215. 
doi:10.1038/nrn755 

Dayan, P., & Balleine, B. W. (2002). Reward, Motivation, and Reinforcement 
Learning. Neuron, 38, 285–298. 

Dayan, P., & Yu, A. J. (2002). ACh, uncertainty, and cortical inference (Vol. 1, p. 
189). Presented at the Advances in Neural Information Processing Systems, 
MIT Press. 

Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract 
representations of numbers in the animal and human brain. Trends in 
Neurosciences, 21(8), 355–361. 

Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual 
attention. Annual Review of Neuroscience, 18(1), 193–222. 

Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object 
recognition: Evidence for a common attentional mechanism. Vision 



 36 

Research, 36(12), 1827–1837. 
Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: 

mental programs for intelligent behaviour. Trends in Cognitive Sciences, 
14(4), 172–179. doi:10.1016/j.tics.2010.01.004 

Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing 
in the primate cerebral cortex. Cerebral Cortex, 1(1), 1–47. 

Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding 
of visual space in the monkey's dorsolateral prefrontal cortex. Journal of 
Neurophysiology, 61(2), 331–349. 

Gnadt, J. W., & Andersen, R. A. (1988). Memory related motor planning activity 
in posterior parietal cortex of macaque. Experimental Brain Research, 70(1), 
216–220. 

Gottlieb, J., & Balan, P. (2010). Attention as a decision in information space. 
Trends in Cognitive Sciences, 14(6), 240–248. 
doi:10.1016/j.tics.2010.03.001 

Hickey, C., Chelazzi, L., & Theeuwes, J. (2010). Reward Changes Salience in 
Human Vision via the Anterior Cingulate. Journal of Neuroscience, 30(33), 
11096–11103. doi:10.1523/JNEUROSCI.1026-10.2010 

Jiang, Y., & Chun, M. M. (2001). Selective attention modulates implicit learning. 
The Quarterly Journal of Experimental Psychology A, 54(4), 1105–1124. 
doi:10.1080/02724980042000516 

Kilgard, M. P., & Merzenich, M. M. (1998). Cortical Map Reorganization 
Enabled by Nucleus Basalis Activity. Science, 279(5357), 1714–1718. 
doi:10.1126/science.279.5357.1714 

Kowler, E., Anderson, E., Dosher, B., & Blaser, E. (1995). The role of attention 
in the programming of saccades. Vision Research, 35(13), 1897–1916. 

Krueger, K. A., & Dayan, P. (2009). Flexible shaping: How learning in small 
steps helps. Cognition, 110(3), 380–394. 
doi:10.1016/j.cognition.2008.11.014 

Lennert, T., & Martinez-Trujillo, J. (2011). Strength of Response Suppression to 
Distracter Stimuli Determines Attentional-Filtering Performance in Primate 
Prefrontal Neurons. Neuron, 70(1), 141–152. 
doi:10.1016/j.neuron.2011.02.041 

Libera, Della, C., & Chelazzi, L. (2009). Learning to attend and to ignore is a 
matter of gains and losses. Psychological Science, 20(6), 778–784. 
doi:10.1111/j.1467-9280.2009.02360.x 

Liu, Z., Zhou, J., Li, Y., Hu, F., Lu, Y., Ma, M., et al. (2014). Dorsal Raphe 
Neurons Signal Reward through 5-HT and Glutamate. Neuron, 81(6), 1360–
1374. doi:10.1016/j.neuron.2014.02.010 

Louie, K., Grattan, L. E., & Glimcher, P. W. (2011). Reward Value-Based Gain 
Control: Divisive Normalization in Parietal Cortex. Journal of Neuroscience, 
31(29), 10627–10639. doi:10.1523/JNEUROSCI.1237-11.2011 

Mao, T., Kusefoglu, D., Hooks, B. M., Huber, D., Petreanu, L., & Svoboda, K. 
(2011). Long-Range Neuronal Circuits Underlying the Interaction between 
Sensory and Motor Cortex. Neuron, 72(1), 111–123. 
doi:10.1016/j.neuron.2011.07.029 

Maunsell, J. H. R. (2004). Neuronal representations of cognitive state: reward or 
attention? Trends in Cognitive Sciences, 8(6), 261–265. 



 37 

doi:10.1016/j.tics.2004.04.003 
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex 

function. Annual Review of Neuroscience, 24(1), 167–202. 
Pastor-Bernier, A., & Cisek, P. (2011). Neural Correlates of Biased Competition 

in Premotor Cortex. Journal of Neuroscience, 31(19), 7083–7088. 
doi:10.1523/JNEUROSCI.5681-10.2011 

Peck, C. J., Jangraw, D. C., Suzuki, M., Efem, R., & Gottlieb, J. (2009). Reward 
Modulates Attention Independently of Action Value in Posterior Parietal 
Cortex. Journal of Neuroscience, 29(36), 11182–11191. 
doi:10.1523/JNEUROSCI.1929-09.2009 

Platt, M. L., & Glimcher, P. W. (1999). Neural correlates of decision variables in 
parietal cortex. Nature, 400(6741), 233–238. 

Raymond, J. E., & O'Brien, J. L. (2009). Selective Visual Attention and 
Motivation The Consequences of Value Learning in an Attentional Blink 
Task. Psychological Science, 20(8), 981–988. 

Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual 
processing. Annual Review of Neuroscience, 27, 611–647. 
doi:10.1146/annurev.neuro.26.041002.131039 

Roelfsema, P. R. (2006). Cortical algorithms for perceptual grouping. Annual 
Review of Neuroscience, 29, 203–227. 

Roelfsema, P. R., & van Ooyen, A. (2005). Attention-gated reinforcement 
learning of internal representations for classification. Neural Computation, 
17(10), 2176–2214. 

Roelfsema, P. R., van Ooyen, A., & Watanabe, T. (2010). Perceptual learning 
rules based on reinforcers and attention. Trends in Cognitive Sciences, 
14(2), 64–71. doi:10.1016/j.tics.2009.11.005 

Rombouts, J. O., Bohte, S. M., & Roelfsema, P. R. (2012). Neurally Plausible 
Reinforcement Learning of Working Memory Tasks (Vol. 25, pp. 1880–
1888). Presented at the Advances in Neural Information Processing 
Systems. 

Rombouts, J. O., Bohte, S. M., & Roelfsema, P. R. (in press). How Attention 
Can Create Synaptic Tags for the Learning of Working Memories in 
Sequential Tasks. PLoS Computational Biology. 

Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning using connectionist 
systems (No. CUED/F-INFENG/TR 166). Cambridge. 

Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36(2), 
241–263. 

Serences, J. T. (2008). Value-Based Modulations in Human Visual Cortex. 
Neuron, 60(6), 1169–1181. doi:10.1016/j.neuron.2008.10.051 

Stănişor, L., van der Togt, C., Pennartz, C. M., & Roelfsema, P. R. (2013). A 
unified selection signal for attention and reward in primary visual cortex. 
Proceedings of the National Academy of Sciences, 110(22), 9136–9141. 
doi:10.1073/pnas.1300117110/-/DCSupplemental 

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: an introduction. 
MIT Press. 

Trabasso, T., & Bower, G. H. (1968). Attention in learning: Theory and 
research. Krieger. 

Treue, S., & Maunsell, J. H. (1996). Attentional modulation of visual motion 



 38 

processing in cortical areas MT and MST. Nature, 382(6591), 539–541. 
doi:10.1038/382539a0 

Whitehead, S. D., & Ballard, D. H. (1991). Learning to perceive and act by trial 
and error. Machine Learning, 7(1), 45–83. 

 



Hold Release

Motion

Change

Fixation marker 1

6

R
a
n
k
 o

rd
e
r

Distracter/Target

motion change

Fix + Motion

onset

Color

onset

Respond

A B

Intertrial

Off

Sustained On

Motor

Regular Memory

Stimuli

sTrace

Feedforward (t) Feedback (t) Feedback (t+1)

Winner

Tag

Stengthened

Connection

FB

C

Figure 1: Task and Model. 



pre-training novel transfer novel transfer

rank

monkey

Figure 2. Generalization of the model to new colour combinations. 



distance

-6p<10-6p<10 p>0.05

d1 d2 d3
80

85

90

95

100

distance

hi
tra

te
 (%

)

Monkey Se

d1 d2 d3
90
92

94

96

98
100

distance

Monkey Ra Model
BA

Figure 3. Effect of difference in colour rank on the error rate. 



Left

Right

Fixation point

F C C CCM1 M1 M1M1F M2 F F

Respond

M2

Ignore Respond Ignore

Hold

Release

Figure 4. Example activity traces of a network trained 
                 on the full colour-ranking task. 



Figure 5. Tuning of memory units to the difference in rank 
                  between the two colours. 
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Figure 8. Learning shapes attentional feedback.
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