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Abstract

Coincident firing of neurons projecting to a common target cell is
likely to raise the probability of firing of this post-synaptic cell. There-
fore synchronized firing constitutes a significant event for post-synaptic
neurons and is likely to play a role in neuronal information processing.
Physiological data on synchronized firing in cortical networks is primarily
based on paired recordings and cross-correlation analysis. However, pair-
wise correlations among all inputs onto a post-synaptic neuron do not
uniquely determine the distribution of simultaneous post-synaptic events.
We develop a framework in order to calculate the amount of synchronous
firing that, based on maximum entropy, should exist in a homogeneous
neural network in which the neurons have known pair-wise correlations
and higher order structure is absent. According to the distribution of
maximal entropy, synchronous events in which a large proportion of the
neurons participates should exist, even in the case of weak pair-wise corre-
lations. Network simulations also exhibit these highly synchronous events
in the case of weak pair-wise correlations. If such a group of neurons
provides input to a common post-synaptic target, these network bursts
may enhance the impact of this input, especially in the case of a high
post-synaptic threshold. Unfortunately, the proportion of neurons partic-
ipating in synchronous bursts can be approximated by our method under
restricted conditions. When these conditions are not fulfilled, the spike
trains have less than maximal entropy, which is indicative of the presence
of higher order structure. In this situation, the degree of synchronicity
cannot be derived from the pair-wise correlations.
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1 Introduction

The occurrence of correlations in the spike-trains of neurons responding to the
same object has raised considerable excitement during the last decade (review by
[1]). Correlations between pairs of neurons are thought to reflect a high degree
of synchronous firing within a larger assembly of neurons [2, 3] and can have a
high temporal precision, in the range of a few milliseconds [4, 5, 6, 7, 8, 9, 5]. Von
der Malsburg [10] suggested that assemblies of neurons might convey additional
information by firing in synchrony, since synchrony could be instrumental in
forming relationships between the members of such an assembly.
However, the possible relevance of fine temporal structure in spike-trains op-

poses another widespread belief. The irregular timing of cortical action poten-
tials is quite often attributed to stochastic forces acting on the neuron [11, 12].
In such a stochastic model, the information is thought to be conveyed to the
next processing stage (cortical layer) by pools of neurons using a noisy rate
code. Each individual neuron is considered to be a slow, unreliable information
processor, reflecting changes in its receptive field by modulating its average fir-
ing rate. Only by pooling the information from a larger number of neurons, a
reliable rate code can be obtained. Obviously, this scheme does not need precise
timing of the individual spikes to convey much information.
These two opposing views on the role of temporal structure of neuronal

information processing are subject of considerable debate [13, 14, 15]. This
debate has focussed on two important questions. First, is the cortical neuron
a coincidence detector (on the millisecond time-scale) and second, how much
coincident input is there?
The first question refers to the relevance of synchronous pre-synaptic spikes.

It has been suggested that synchronous input induces a higher firing rate in the
post-synaptic target cell. Does this assumption hold, especially on a millisec-
ond time-scale? This question has been amply recognized, and several studies
have attempted to answer it. Shadlen & Newsome [14] argue that, based on
physiological considerations, a cortical neuron is not capable of detecting very
tightly synchronized input. However, others have argued that cortical neurons
might have a high sensitivity for the synchronicity in their input [16, 13]. Softky
[16] pointed out that the biological data available leave too many parameters
undetermined to draw any definite conclusions on biological properties that dis-
tinguish the various models. Two further studies on the impact of synchronized
input on a post-synaptic target reinforce this observation. Using detailed models
of groups of neurons, [17] and [18] studied the impact of coincident input on the
firing rate of a post-synaptic neuron. Their conclusions are similar to Softky’s:
within the biologically plausible parameter ranges synchrony may either increase
or decrease the firing rate of post-synaptic neurons.
In the present study we attempt to shed more light on the second question:

how much synchrony is there? In general, it is implicitly assumed that pair-wise
correlations provide a good estimate of the amount of synchrony in a pool of
neurons from which recordings are obtained. However, to date there are no
direct electrophysiological measurements of large synchronous pools of cortical
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neurons. Most of the physiological data on neuronal synchronization so far have
been obtained using cross-correlation techniques (with the notable exception of
the work of [9]). These techniques merely provide information on the probability
of events in which a pair of neurons fires at the same time (that is, within some
time-window). Unfortunately, pair-wise correlations only provide an indirect
estimate of the probability of higher-order events, like the coincident firing of,
say, 5 or 50 neurons. Even when the pair-wise correlations between all neurons
of a network are fixed, the probability of these higher-order events remains
undetermined, as is illustrated in figure 1. Pair-wise correlation is defined as

Figure 1: (A) Three neurons with correlated activity. The pair-wise correlation co-
efficients are ρAB , ρAC and ρBC . (B) Examples of different spike configurations in
windows of the same size. The horizontal lines represent the spike trains, and each
tick denotes a spike. Spikes occurring with a time-window (dotted box) are considered
to be coincident. (C) Three examples of correlated spike trains. Pairs of neurons in the
three panels have the same pair-wise correlation. Spike-doublets are shown as unfilled
arrows, and triplets as filled arrows. It can be seen that the number of triplets differs
from panel to panel.

the difference between the probability of two neurons firing simultaneously, and
the product of their firing rates (the coincidence rate dictated by chance). This
value is the same for any pair of neurons in the three panels of figure 1C.
However, the number of spike-triplets differs considerably from panel to panel.
Given this example, it is quite clear that the number of neurons that fire within
some time-window (the measure of coherence) is not exclusively determined by
the pair-wise correlation coefficient. And, although this is an artificial example,
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it is already quite difficult to determine intuitively how many of these triplets
can be attributed to higher-order correlation, and how many result from two
“doublets” that happen to occur at the same time. In a first attempt to quantify
the incidence of higher-order correlations, Martignon et al. [19] analyzed data
from six cortical neurons. Unfortunately, we found that their methods cannot
be used for the analysis of large numbers of neurons (as will be discussed).
The main goal of the present article is to study the relationship between pair-
wise correlations and the amount of synchronicity in a pool of neurons, and to
determine the impact of the synchronous events on a post-synaptic target cell.

2 Mathematical Solution of the three-neuron prob-

lem

To illustrate the general methodology used for estimation of the probability of
higher order events, we examine the three neuron network of figure 1. We wish
to calculate the probability that a triplet (or an N -cluster, where N equals 3)
occurs within a given time-window. The null hypothesis is that no structure
is present in the spike-trains other than the pair-wise correlations. That is,
all triplets should be due to the occurrence of two doublets at the same time,
by chance forming a triplet. Csiszar [20] has proved the unique existence of
a distribution with just this property. The basic approach for calculating the
probability distribution involves maximizing the informational entropy of the
data, while preserving the pair-wise correlation and the firing rate (see also
[19]). This informational entropy is a measure of the “order” in the data: the
more structured the data, the lower the entropy. By measuring the pair-wise
correlations and the firing rates (the first order correlation), a certain degree of
order is fixed. Taking these constraints into account, maximizing the entropy
will minimize all higher-order correlations since higher-order correlations will
add “structure” to the distribution, further lowering the entropy. Therefore,
maximal entropy implies minimal higher-order correlations. Our aim is to obtain
the distribution of N -clusters that has maximal entropy. We will illustrate the
procedure by computing this distribution for three connected neurons.
The neurons are labeled A, B and C, their firing probabilities f1A, f1B and

f1C and the pair-wise correlation coefficients are denoted as ρAB , ρBC and ρAC

(f1i denotes the probability that neuron i fires in a particular time bin, and
depends on the firing rate and the size of the time bins. Dividing the firing
probability by the length of the time bin in seconds thus yields the firing rate.
The rationale of the suffix 1 will become clear below). Given these coefficients
as constraints, probabilities for all 2n possible events can be calculated. For
example G010 designates the probability of the event in which B is firing and A
and C are silent (Fig. 1B).
There are 8 probabilities to solve for. Since firing probabilities and pair-wise

correlation coefficients are fixed, 7 equations can easily be obtained: The sum
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of the probabilities of all possible events equals one:

G000 +G001 +G010 +G011 +G100 +G101 +G110 +G111 = 1 (1)

The firing-probability of a neuron A is:

G100 +G101 +G110 +G111 = f1A (2)

(The equations for f1B and f1C are derived analogously) Let f2AB denote the
probability that A and B fire simultaneously (the suffix now indicates a cluster
of size 2). f2AB is determined by the correlation coefficient ρAB , since

ρAB =
f2AB − f1Af1B

√

(f1A − f21A)(f1B − f21B)
(3)

This implies that ρAB determines f2AB and since f1A and f1B are fixed, this
yields:

G110 +G111 = f2AB (4)

and corresponding equations are derived for ρAC and ρBC. These seven equa-
tions (1,2a-c and 4a-c) yield one free parameter (G111, for example), which
determines the entropy of the probability distribution. By calculating the value
at which the distribution has maximal entropy, we fix this last free parameter.
The entropy-function is defined as:

S ≡ −
∑

i

Gi ln(Gi) i over all possible spike configurations (5)

The entropy is maximized by solving the following equation, which has a unique
solution (see appendix A)

∂S

∂G111
= 0 (6)

Using this equation the probability distribution of configurations with the de-
sired zero higher-order correlation can easily be calculated (see also [19]).

3 Calculating the Distribution with N Identical

Neurons

For more than three neurons, the equations can no longer be solved easily
by analytical means. For instance, for 4 neurons, the same calculations yield
the entropy as a function of 5 free parameters. Calculating the maximum of
this function is already quite complicated. Extending this to N neurons, only
1 + N(N + 1)/2 equations are determined by the pair-wise correlations and
firing-probabilities, with 2N parameters to solve for. To overcome this prob-
lem, an iterative algorithm for calculating the maximal entropy distribution has
been provided by Gokhale & Kullback [21]. Unfortunately, this algorithm has
a serious drawback: the number of calculations increases exponentially with
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the number of neurons. If one is interested in the behavior of many correlated
neurons, computational restrictions prohibit this method of calculating the dis-
tribution for more than 20 neurons on a workstation, thus putting the more
serious number of neurons out of reach of even the fastest supercomputers.
To overcome the problem of increasing computation time we made the ad-

ditional assumption that all neurons have identical properties, which implies a
major degeneration of the probability-space. Since any two neurons are equal,
the same will hold for the probability of all permutations of spike configurations.
In addition, the N firing probabilities and the N(N −1)/2 pair-wise correlation
coefficients will also be equal. The distribution of spike configurations is de-
scribed by N + 1 variables, D0 through DN , where Di denotes the probability
of a particular spike configuration in which exactly i neurons fire.
In the case of N = 7: D1 = G1000000 = G0100000 = . . . = G0000001;D2 =

G1100000 = G1010000 = G0010010, etc. Since all permutations of i spiking and
N − i silent neurons have the same probability Di, the requirement that all
probabilities add up to 1 now reads:

1 =

N
∑

i=0

(

N
i

)

·Di (7)

The firing probability of a cell equals (see appendix A):

f1 =

N
∑

i=1

(

N − 1
i− 1

)

·Di (8)

Under the assumption of identical neurons, in (3) f1B equals f1A. Rewriting
(5), replacing f1A and f1B by f1, and f2AB by f2 yields:

ρ =
f2 − f21

f1(1− f1)
(9)

Thus, f2 can once again be calculated from the firing probability of a neuron
and the correlation. f2, the probability that any two particular neurons fire at
the same time equals:

f2 =

N
∑

i=2

(

N − 2
i− 2

)

·Di (10)

By maximizing the entropy S, we derive the remaining N − 2 equations: The
entropy is defined as:

S =

N
∑

i=0

(

N
i

)

·Di ln(Di) (11)

Maximization of entropy yields:

∂S

∂Di

= 0 for i = 3 . . . N (12)
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(A proof of a unique solution of this set of equations is included in appendix A)
After some calculations the N − 2 equations turn out to have the form:

ln(Di) = −(−
1

2
i+ 1)(i− 1) ln(D0)− i(i− 2) ln(D1) +

+
1

2
i(i− 1) ln(D2) for i = 3 . . . N (13)

Inserting these N − 2 equations into (7), (8) and (10), we can numerically solve
for D0, D1, and D2 using the Newton-Raphson method for nonlinear systems
of equations [22].
The maximal entropy distribution, thus defined, depends on only two pa-

rameters, the firing probability f1, and the pair-wise correlation ρ. Figure 2
illustrates the shape of the N -cluster distribution with maximal entropy for a
network of 150 neurons, and its dependence on f1 and ρ. Figure 2 shows the
probability Pi that a particular number of neurons fire simultaneously, where
Pi equals the sum of the probabilities of all configurations in which exactly i
neurons fire:

Pi =

(

N
i

)

·Di (14)

For small values of ρ, the distribution of N -clusters approaches a binomial
distribution. This determines the first peak of the N -cluster distribution, cor-
responding to small cluster sizes. For larger values of ρ, a second peak appears
in the distribution, the amplitude of which grows with increasing ρ. A second
influence of increasing ρ is a divergence of the two peaks. This divergence can
be seen most clearly in the contour plots of figure 2D-F. Indeed, in the limiting
case of ρ = 1, the first peak approaches a cluster size of 0, and the second peak
a cluster size of 150, since all neurons fire at exactly the same time.
An increase in f1 shifts the first peak of the distribution to larger values, as

is predicted by the binomial distribution (Fig. 2A-C). Remarkably, an increase
in f1 is also associated with a shift of the second peak, to smaller values. Thus,
the maximal entropy distribution predicts that low firing probabilities are asso-
ciated with sparse, but highly synchronized bursts (eg: the average size of the
second peak in A at ρ = 0.165 equals 142 vs 110 in C, whereas the cumulative
probability increases from 0.009 in A to 0.076 in C. The second peak is defined
as all clusters with p > 10−4, starting on the positive slope after the first peak).
With a higher firing probability, synchronous bursts occur more frequently, but
comprise fewer spikes.

4 An artificial neuron network

We now compare N -cluster distributions obtained from simulations of an artifi-
cial neural network to the maximal entropy distribution. Any difference between
the two distributions can then be attributed to higher-order correlations. The
network used is based on a network described in [23], which, in turn, is based
on the work of [24]. This network was chosen since it could easily be adapted
to consist of identical neurons.
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Figure 2: (A-C) Probability of N -clusters (p) as a function of the pair-wise correlation
ρ, for three firing probabilities, f1 = 0.05 (A), 0.146 (B) and 0.225 (C). Probabilities
are clipped at a value of 10−4. (D-F) Contour plots of the same data show that the
separation between the two peaks becomes larger with increasing ρ. Contour levels
indicate probabilities of 0.001, 0.01 and 0.1.

4.1 The neuron model

The neuron model involves four variables: the membrane potential E(t), a potas-
sium current g(t), the spiking threshold Θ(t) and the neuronal output o(t). The
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dynamics of neuron i are described by four coupled equations:

τE

dEi(t)

dt
= −(Ei(t)− E0)− (gi(t)− g0)(Ei(t)− Ek) + ηi(t) +

−





∑

j

wij · oj(t− τij)



 (Ei(t)− Eex) (15)

τΘ
dΘi(t)

dt
= −(Θi(t)−Θ

0) + c(Ei(t)− E0)0 ≤ c ≤ 1 (16)

τg

dgi(t)

dt
= −(gi(t)− g0) + τgboi(t) (17)

oi(t) =

{

1 if Ei(t) > Θi(t)
0 otherwise

(18)

Without input, the membrane potential Ei(t) is driven towards its resting value
E0 with a time constant τE . An influx of potassium drives the potential towards
the potassium equilibrium potential Ek. Excitatory input moves the potential
towards the ionic equilibrium value Eex. In the simulations, the values used in
[23] were adopted: E0 = 0, τE = 2.5 msec, E

k = −1, Eex = 7. We remark that
the membrane time constant τE may appear to be rather small, although some
have argued that it may be within the biologically plausible range [13, 25]. In
the discussion we will address the dependence of our results on this particular
choice. Input to the cells was strictly excitatory, with synaptic delay τij = 0.5
msec. External input is provided by external stochastically spiking units and
is treated equivalent to internal input. Internal noise is added by the additive
noise term ηi(t) in (15), with a standard deviation of 0.06Ei(t). Equation (16)
describes the slow adaptation of the threshold Θi to the membrane potential,
modeling an adaptation of the neuron to excitation (Θ0 = 1, τΘ = 10 msec,
c = 0.3). Equation (17) governs the potassium current decay dynamics, which
is driven towards g0 = 0 with time constant τg (5 msec). In the case of a spike,
the potassium current rises by an amount b(4.0) corresponding to the outward
potassium current. A spike is generated each time the membrane potential
exceeds the threshold (18), after which the neuron is in a refractory state for
another 1.5 msec. In the actual numerical implementation of the neuron model,
a discrete time analogue of (15)-(18) was used. These equations were iterated
with time-steps corresponding to 0.5 msec of real time.
Each neuron was connected to every other neuron with a fixed homogeneous

synaptic weight wij = wint/N > 0. Here, wint denotes the sum of the strengths
of all synapses from within the network impinging on a single cell. External
input consisted of N independent stochastic elements generating spikes with
p = 0.05 per msec (50 Hz), connected in a 1 to 1 fashion with the network
neurons with a constant weight wext = 0.8.
The parameter wint was varied during the simulation. Increasing the value

of the weights drives the network from a stochastic mode into an oscillatory
mode (Deppisch et al., 1993). Somewhere within this range of synaptic weights
the network alternates between the stochastic and oscillatory mode.
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All results are based on simulations with a network with N = 150 neurons,
with the exception of the results in section 4.5. This was a compromise between
a realistic number of neurons, and a network consideration: the absence of
inhibitory neurons makes a network very quickly prone to saturation, a state
where the constant excitation induces a very sharp oscillation. A further increase
in the number of neurons also narrows the weight-range in which the network
is in the alternating state. The network output was obtained by recording the
output of all 150 neurons. A sample of the output of 50 neurons is shown in
figure 3.

Figure 3: Upper panel, activity of 50 of the 150 neurons. On the horizontal axis time
is displayed (sampling-time, 0.5 msec). The vertical ticks indicate action potentials.
Oscillatory episodes are alternated by periods of more random activity. In the lower
panel the summed activity of all 150 neurons is shown.

4.2 Network Simulations

In order to vary the average pair-wise correlation, simulations were performed
with different values of the synaptic weight wint. As was noted in [23], the
network exhibits three distinct modes, which depend on the value of the synap-
tic weight. The first, at low values of the synaptic weights, is the stochastic
mode in which the average correlation between pairs of neurons is near zero. At
the other end of the scale is the mode with high values of internal weight. In
this mode the network activity is highly oscillatory. In between these extremes
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are synaptic weight values for which the network exhibits episodes in which
many neurons fire synchronously, alternated by episodes in which neurons are
synchronized to a lesser degree. Typical activity of the neurons in these three
network modes is shown in figures 4A-C. Also plotted are the cross-correlations
between a pair of neurons in the network (Fig. 4D-F). As observed in [23],
these cross-correlograms show qualitative resemblance to data obtained from
electrophysiological recordings (e.g [26]). Remarkably, the network with inter-
mediate synaptic strength (w = 3.875, ρ = 0.03, for 2 msec bin-size) exhibits
occasional population bursts, which hardly show up in the correlation function
(Fig. 4B,E). Thus, a network state in which a number of highly synchronous
population bursts occur, can be associated with correlation functions indicative
of weak pair-wise coupling. When investigating the relationship between occur-
rences of N -clusters and the pair-wise correlation, an additional assumption has
to be made with regard to the maximal time-difference between two spikes that
are considered to be synchronous. As a first approach we used a time-window of
2 msec. The maximal firing rate of the neurons is determined by the refractory
period (1.5 msec) and the duration of an action potential (0.5 msec). As all
experiments, with the exception of those described in section 4.4, have a bin-
width of 2 msec, the firing rate (in Hz) in these experiments can be obtained by
multiplying the firing probability with a factor of 500. During network bursts,
neurons reach this maximal firing rate, and a single spike occurs in each 2 msec
bin. The effect of changing the bin-width on the distribution of cluster-sizes will
be investigated in section 4.4.
Figure 5 shows the relationship between the occurrence of N -clusters and

the pair-wise correlation. Plotted is the probability Pi (see also eq. (14)) of a
particular number of coincident spikes, for simulations with different pair-wise
correlations (different values of wint). As can be seen in figure 5 A, most 2
msec bins are occupied by N -clusters containing a fairly low number of spikes.
This corresponds to the stochastic activity between bursts and the probability
of these events is approximated by a binomial distribution. Synchronous bursts
are represented by the second peak in the probability distribution, as can be
seen more clearly in the logarithmic plot of figure 5 B. Between these two peaks
is a plateau of time bins in which an intermediate number of neurons fire. These
events are caused by time bins that are aligned on the onset or end of a burst.
Increases in the pair-wise correlation are associated with a slightly smaller first
peak, and an enhanced second peak. For very large, and biologically implausible,
pair-wise correlations a third peak containing intermediate cluster sizes is visible
which can be attributed to the onset and offset of bursts. Let us now consider
the impact of this distribution on a post-synaptic cell, receiving input from all
the network neurons. For such a cell, the exact number of synchronous spikes
(the quantity plotted in figure 5 A,B) is not important. Rather, for a post-
synaptic neuron with a firing-threshold of m EPSP’s the incidence of m or more

coincident spikes is a much more significant quantity, since this determines its
firing rate to a large extent. Therefore, we computed a cumulative probability

distribution: the probability that m or more neurons fire synchronously. The
cumulative probability distributions (the cumulatives of Fig. 5B) are plotted

11



Figure 4: Network activity for 3 values of the synaptic weight, wint. (A-C) Summed
activity of the 150 neurons. The synaptic weight was 3.5 (A, ρ = 0.003), 3.875 (B, ρ =
0.03) and 4.375 (C, ρ = 0.20) Pair-wise correlations were determined for coincidences
within a window of 2 msec. (D-F) Cross-correlation functions of 2 randomly selected
neurons for the same synaptic weights as are plotted on the left. Even for a low pair-
wise correlation (ρ = 0.03) highly synchronous network bursts occur, but these hardly
show up in the cross-correlogram.

in figure 5C. Suppose that the membrane-potential of a post-synaptic neuron,
which receives input from all cells in our network, equals the resting potential
at time t. The probability that this neuron fires at time t + 1 is equal to
the probability of Θ’ or more coincident spikes, where Θ’ is the ratio between
the post-synaptic threshold (Θ) and the EPSP amplitude. In other words,
the curves in figure 5C illustrate the relation between the threshold and firing
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Figure 5: (A,B) Probability distribution of N-clusters, plotted on a normal scale
(A) and a logarithmic scale (B). (C) Cumulative probability of N-clusters. Abscissa,
cluster-size (Θ’). Ordinate, probability of a cluster with a size that is equal to, or
larger than Θ’(D) Comparison of the cumulative N-cluster distribution (solid line)
to the firing-probability of a post-synaptic neuron, which receives input from all 150
neurons in the network. The threshold Θ’ is defined as Θ/wi,151. (E) Dependence of
the firing probability of a neuron receiving input from all 150 neurons on its relative
threshold Θ’ and the pair-wise correlation in the network. Different curves correspond
to different values of Θ’. Triangles, dependence of the average firing probability f1

on the pair-wise correlation. (F) Same as (E), but the firing probability of the post-
synaptic cell and f1 are plotted as a function of wint.
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probability of a neuron, which receives input from all neurons in the network, in
the case of a very short membrane time constant. The curve for a very low pair-
wise correlation coefficient (ρ = 0.003) shows the quickly declining probability
of higher order events. The curves for network activity with a larger pair-
wise correlation exhibit a plateau before their decline at very high numbers of
synchronized spikes. This plateau results from the second peak in the N -cluster
probability distribution. It is remarkable that even small changes in the strength
of the pair-wise correlations, which are not physiologically implausible (e.g [5,
27]), exhibit a strong effect on the firing probability in case of an intermediate
threshold Θ’. Indeed, the firing probability of a neuron with a threshold of, say,
50 EPSP’s is raised by more than an order of magnitude by an increase in the
pair-wise correlation as small as 0.08 (compare the distributions for ρ = 0.03
and ρ = 0.11).
The question remains how closely the firing-rate of a post-synaptic neu-

ron with non-zero membrane time-constant is approximated by the cumulative
probability distribution. There would obviously be a one-to-one relationship for
a post-synaptic neuron that has “zero” memory, i.e. a neuron which is only
influenced by the input in the previous time-step (the bin-size for which spikes
are considered synchronous, as discussed above).
However, typical neurons have parameters with larger time constants, in-

cluding the refractory period, and the time-constant of the membrane. In order
to assess the impact of the “non-zero memory”, an additional 151th neuron
was included in the network. This cell was identical to the other 150 neurons
from which it received input, but it did not project back to them. The pair-
wise correlation was fixed at 0.12 and the membrane-time constant was fixed
to the same value as the other 150 neurons, thus realizing a non-zero memory
post-synaptic neuron. Simulations were performed with different values of the
post-synaptic threshold Θ’, by varying wi,151 (1 < i < 150), the strength of the
synapses projecting onto neuron 151. The dependence of the firing probability
on Θ’ (Θ/wi,151) is shown in figure 5D. Superimposed on this graph is the dis-
tribution of N -clusters. As expected, some minor differences between the firing
probability and the cumulative probability distribution are observed. Most of
these differences can be explained, given the fact that the non-zero average ac-
tivity in a pool of neurons keeps the membrane potential of individual neurons
at a somewhat higher level than the resting potential. This lowers the aver-
age number of coincident spikes the neuron would require to cross threshold.
On the whole however, the firing probability of the post-synaptic neuron with
a non-zero membrane constant is predicted with good accuracy by the cumu-
lative probability distribution. A remarkable feature of figure 5D is that the
firing probability of a neuron with a threshold of for example 40 does not differ
much from that of a neuron with a much higher threshold (e.g. 130). Most
of the spikes of a post-synaptic cell with a threshold larger than 40 are trig-
gered by synchronous bursts in which the majority of neurons participate. As
these bursts are separated in time by about 15 msec, a relatively large number
compared to the membrane time-constant, this result shows that regarding the
firing rate of a post-synaptic neuron in our model, the actual time-structure
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in the cluster-distribution is of far less importance than the sheer number of
bursts.
Using this interpretation of the cumulative probability distribution, the ef-

fect of an increase in the pair-wise correlation in the network on post-synaptic
neurons was investigated by varying the synaptic weight (wint). Figure 5E shows
the relationship between the average pair-wise correlation and the firing prob-
ability of a hypothetical post-synaptic neuron with threshold Θ’. Calculated
were the firing-probabilities for thresholds Θ’ = 30, 50 and 100. It can be seen
that in the biologically relevant range of pair-wise correlations (ρ = 0 − 0.2),
there is a monotonic relationship between the post-synaptic firing probability
and the pair-wise correlation. For values of ρ below 0.2, changes in the pair-wise
correlation are associated with a relatively large increase in the firing probability
of the post-synaptic neuron. Importantly, higher values of ρ are also associated
with an enhanced firing rate of the pre-synaptic network neurons (Fig. 5E).
This increase in activity undoubtedly contributes to the enhanced probability
of higher order events. However, it should be noted that the probability of
higher order events exhibits a steeper dependence on ρ than the firing probabil-
ity of the network neurons (Fig. 5E). Figure 5F illustrates the dependency of
the firing probability of the post-synaptic neuron on wint, the parameter that
was actually varied during the simulations.

4.3 Estimation of the N-cluster distribution by entropy

maximization

In most electrophysiological experiments only data is available on firing prob-
abilities and pair-wise correlations. Using the mathematical framework devel-
oped in section 3, we investigated whether the observed relationship between
the probability of N -clusters and the correlation coefficient could have been
predicted from these two types of measurements. For the network behavior at
different values of wint (3.5, 3.875 and 4.125), distributions of N -clusters were
calculated which maximized entropy under the constraints of the observed fir-
ing probability and pair-wise correlations. A comparison between distributions
based on the maximal entropy calculation and the experimental distribution is
shown in figure 6A-C. The distribution that maximized the entropy deviates
somewhat from the observed distribution for larger values of ρ.The maximal en-
tropy calculation underestimates the incidence of clusters between 60 and 100
spikes, which occur during start and end of population bursts, as was discussed
above. In addition, the second peak in the maximal entropy distribution is lo-
cated at a cluster size of 130, whereas the actual location of this peak is 150.
Typically, all neurons fire within a 2 msec window during a network burst. In
order to estimate the effect of these discrepancies on the firing probability of
a neuron receiving input from the network, the cumulative probability distrib-
utions are plotted in figures 6D-F. It can be seen that the underestimation of
the incidence of intermediate cluster-sizes by the maximal entropy calculation
is compensated by the overestimation of the incidence of clusters with a size
between 100 and 140. For values of Θ’ smaller than 130, the largest deviation
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Figure 6: Comparison of the probability of N -clusters in the network simulation, and
their probability based on maximal entropy. (A-C) Probabilities of N -clusters in the
simulation are shown as solid curves for three values of the synaptic weights. Dashed
line: the corresponding maximal entropy probability distributions with the same firing
probability and pair-wise correlation. (D-F) Relationship between firing probability
(ordinate) and threshold (abscissa) of a neuron with an integration window of 2 msec
that receives input from all 150 neurons of the network (cumulatives of A-C).

is about a factor of 2. This approximation is reasonable, since the maximal
entropy calculation depends on only 2 parameters, which are estimated from
the network activity: the firing probability and the pair-wise correlation. Nev-
ertheless, large deviations occur for values of Θ’ larger than 130. However, these
high threshold values are physiologically implausible, because they would imply
that a post-synaptic neuron would only fire when almost every input is active

16



within a narrow time-window.

4.4 The effects of varying bin-width on the maximal en-

tropy distribution

The results of the maximal entropy calculation described so far, were obtained
with a bin-width of 2 msec, which equals the minimal inter-spike interval. Figure
7 shows the dependence of the N -cluster distribution and the maximal entropy
estimation on the bin-width. Spike trains obtained with a synaptic weight (wij)
of 4.125 were re-binned, using bin-widths of 0.5, 1.0, 2.0 and 4.0 msec. The
rebinning process influenced the pair-wise correlation, and f1, the probability
of firing in a time-bin (eq. 8). Smaller bin-widths reduce f1. This results in
a leftward shift in the location of the first peak in the distribution of cluster-
sizes, which represents stochastic activity between bursts (compare Fig. 7A,
B to Fig. 7C). A second effect of reducing the binwidth is a disappearance
of clusters with sizes larger than 110. This disappearance is related to the
refractory period, which prohibits neurons from firing in consecutive bins during
population bursts. Spikes fired by different neurons during these bursts are
therefore divided between successive time-bins, and no bins remain in which all
neurons fire simultaneously. This modification of the distribution of cluster-sizes
is not captured by the maximal entropy estimation, which underestimates the
incidence of clusters with sizes between 20 and 110, and grossly overestimates
the incidence of clusters with a size larger than 130 (Fig. 7A-B). In other
words, the refractory period adds structure to the spike trains, which therefore
have less than maximal entropy. When a bin-width is used that is longer than
the refractory period, this additional structure is lost, and the maximal entropy
calculation may provide a reasonable estimate of the distribution of cluster sizes.
For bin-sizes that are longer than the minimal inter-spike interval, there are

time-windows, during which individual cells fire more than a single spike. It is
possible, in principle, to adapt the maximal entropy estimation to this situation.
One approach, in the case of a bin-size that may include 2 spikes, is to compute
the probability that N neurons fire once, and M neurons fire twice in a bin,
for each combination of N and M . Unfortunately, this increases the number of
variables that should be calculated from 151 (D0 to D150) to more than 10.000.
The computational requirements increase further if 3 or more spikes can occur
in a single bin. Therefore, we took an alternative approach in which the state
of a neuron was labeled “off”, in the case of no spike, and labeled “on” in the
case of one or more spikes within a time bin. This keeps the computational
requirements within bounds, but at the cost of losing spikes in the rebinning
process. Figure 7D compares the distribution of cluster sizes to the maximal
entropy distribution for a bin-width of 4 msec. The experimental distribution is
largely described by a broad first peak, which is shifted to the right, and a very
narrow second peak at a cluster size of 150. An increase in f1 also shifts the first
peak of maximal entropy distribution to the right. However, larger values of f1
are also associated with a leftward shift of the second peak in the distribution
of maximal entropy, as was discussed in section 3. This causes large deviations
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Figure 7: (A-D) Comparison of the maximal entropy distribution to the distribution of
N -clusters in the simulation, for bin-sizes ranging from 0.5 msec to 4 msec. The quality
of the maximal entropy approximation depends on bin-size, i.e. on what is considered
coincident. In our simulations, a bin-size of 2 msec yields the best approximation (C).
For smaller binsizes (A: 0,5 msec, B: 1 msec), the actual and predicted distributions
deviate considerably. (E-H) The impact of these deviations on a post-synaptic neuron
with threshold Θ’.

for cluster sizes between 60 and 120, the incidence of which is overestimated by
the maximal entropy estimation. Moreover, the narrow peak at a cluster size of
150 is absent in the distribution of maximal entropy. In summary, reasonable
estimates of the N -cluster distribution are only obtained for a bin width, that
is equal to the minimal interspike interval. In the discussion we will address the
question whether these results can be generalized to other network architectures.
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4.5 The effects of network scaling

In order to investigate how the network behavior and the goodness of fit of the
maximal entropy distribution depends on network size, simulations were run
with networks composed of 75, 150 and 200 neurons. Figure 8A shows the cu-
mulative distribution of N -clusters for a network of 75 neurons with a wint of
3.55, which exhibited a pair-wise correlation of 0.07. It should be noted that
wint represents the sum of the synaptic weights wij of all inputs converging
onto a single neuron (section 4.1). When the network size is doubled, each cell
receives input from twice as many neurons, and the strength of the individual
synapses wij was reduced accordingly, in order to maintain a constant value of
wint. Nevertheless, a doubling of the network size resulted in a clear leftward
shift of the distribution of N -clusters, and a reduction of the pair-wise corre-
lation to 0.003. This indicates that a constant value of wint is not sufficient
to guarantee a qualitatively similar network behavior when the network size is
increased. Indeed, a larger number of synapses with reduced weight impinging
on a network unit results in a reduction of the fluctuations in the input, as long
as the network is in the stochastic mode. This reduces the probability of bursts
in the network [28]. Tsodyks & Sejnowski [28] have suggested that the variance
in the input to network units may be kept approximately constant, by reducing
the release probability of the synapses, rather than reducing their strength wij ,
when network size is increased. Figure 8C shows the cumulative distribution of
N -clusters for a network of 150 neurons, in which the effective input strength
was kept constant by reducing the release probability to 50%. The pair-wise
correlation was 0.12, and the cumulative distribution of N -clusters was qualita-
tively similar to that of the smaller network, in accordance with [28]. Figure 8D
shows a similar result for a network composed of 200 neurons. In all cases the
estimate based on maximal entropy was reasonable (dashed lines in Fig. 8A-D),
which indicates that the quality of the maximal entropy calculation does not
depend critically on the size of the network.

5 Discussion

In most physiological studies on the synchronization behavior of cortical neu-
rons, recordings are obtained from pairs of neurons, or pairs of cell clusters.
The present results illustrate that these data can only supply limited informa-
tion about the probability of higher order events, like the probability that, for
example, 30 or more neurons project that to a target neuron fire simultaneously.
As an approximation for the probability of higher order events, we used the dis-
tribution of maximal entropy. This method provides the most unstructured
distribution, given the constraints supplied by the firing probabilities and the
pair-wise correlations. The N -cluster distribution with maximal entropy for a
homogeneous network without higher-order correlations exhibits two peaks. The
first peak represents stochastic activity, and resembles a binomial distribution.
This peak also occurs in the absence of correlations. If the firing probability
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Figure 8: Effect of scaling the network size. (A) Continuous line, probability of N -
clusters with a minimal size of Θ’, as a function of Θ’, for a network with 75 neurons.
Dashed line, distribution of maximal entropy with the same firing probability and pair-
wise correlation. Parameters of the simulation: wij = 4.73?10−2, ρ = 0.07. (B) N -
cluster distribution for a larger network with 150 neurons. The total input converging
on a neuron, wint, was kept constant by reducing wij to 2.37?10−2. Nevertheless, the
distribution of N -clusters was shifted to the left, and the pair-wise correlation was
reduced to 0.003. (C) Same as B, but the effective wint was kept constant by reducing
the release probability to 50% rather than by reducing wij . The synaptic strength wij

was 4.73?10−2, and ρ = 0.12. (D) N-cluster distribution for a network of 200 neurons,
with a ρ?of 0.15. The synaptic weight wij was identical to that in (A), but release
probability was reduced to 37.5%. Note the similarity of the distributions in (C) and
(D) to the distribution in (A).

is moderate (< 0.25), a second peak occurs at a relatively large cluster size.
The magnitude of this second peak depends on the strength of the pair-wise
correlation. Thus, an absence of higher order correlations dictates that the net-
work should generate coincidences in a number of tightly synchronized network
bursts. The N -cluster distribution observed in the simulations also exhibited
two peaks, although the position of the second peak was different from the sec-
ond peak in the maximal entropy distribution. Questions about the generality
of these results, and in particular, about their dependence on the details of the
network implementation will have to await further experimentation.
Previous studies on the impact of correlations among neurons that project

to a common post-synaptic target have used N -cluster distributions with a
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drastically different shape (e.g. [17, 18]). In these studies correlations were
introduced in the input by forcing a subset of the pre-synaptic neurons to fire in
perfect synchrony, but independently of the other pre-synaptic neurons. Since
the resulting N -cluster distribution is relatively devoid of highly synchronous
events, and has less than maximal entropy, the generality of the results obtained
in these earlier studies may also be limited.
It is obvious that network bursts in which a large number of neurons par-

ticipate are rather effective in driving a post-synaptic neuron, especially in the
case of a high post-synaptic threshold. Indeed, a recent study [8] uncovered
tight correlations, with a peak-width in the cross-corellogram of less than 1
msec, among pairs of neurons in the LGN. In cases in which the LGN neurons
projected to a common cortical neuron, the impact of synchronous events was
stronger than that of asynchronous spikes. We observed an orderly relationship
between the incidence of highly synchronous network bursts and the pair-wise
correlation. Relatively small increases in the pair-wise correlation, which are
not physiologically implausible, may raise the incidence of highly synchronous
events, and thereby the firing rate of a post-synaptic cell, by more than an order
of magnitude (Fig. 5C,E).
We will now discuss the limitations of the maximal entropy estimation, and

the way in which these limitations may be overcome by future studies. First,
the quality of the approximation by the distribution of maximal entropy exhib-
ited a strong dependence on the choice of the binsize. Reasonable results were
only obtained for binsizes larger than the refractory period of the neurons. If
the binsize was smaller than the refractory period, structure was added to the
N -cluster distribution, which therefore had less than maximal entropy. This
limitation is a direct consequence of the way in which the entropy was defined.
The entropy was determined by the distribution of N -clusters within individual
time-bins, and was independent of the order of N -clusters in successive bins.
The equivalent situation for a cross-correlation study would be to only calculate
the center bin of the cross-correlation functions, i.e. only the probability that
two neurons fire at exactly the same time. A possible extension of the method
would be to reformulate entropy in order to include 2nd order correlations with a
time delay (i.e. the non-central bins in the auto- and cross-correlation functions)
in the calculation. We wish to remark, however, that such an extension is likely
to result in a substantial increase in the number of variables and equations.
Second, the quality of approximation by the maximal entropy distribution

was also degraded if a binwidth was chosen that was larger than the minimal
interspike interval (larger than 2 msec in our simulations). In this situation, mul-
tiple spikes of a single neuron occurred within a single time bin. The membrane
time constant of the postsynaptic neuron provides a natural temporal window
over which input is integrated, i.e. the natural coincidence window. At present,
the value of the effective membrane time constant in cortical neurons is a topic
of considerable debate (e.g. [25, 13, 14]). A coincidence window of 2 msec, as
we used, is presumably at the lower end of the physiologically plausible range.
However, it seems likely that an increase in the width of the bin in which spikes
are considered to be coincident to 5 or even 10 msec may be unproblematic in
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the case of cortical neurons. Typical peak firing rates of cortical neurons are
around 100 Hz, which implies that the probability of multiple spikes within a 5
or 10 msec bin will still be rather low. Without multiple spikes, it is easy to see
that widening the time-window than merely corresponds to a simple re-scaling
of the time-axis.
Alternatively, the calculation of the maximal entropy may be adapted to

allow for multiple spikes in a single bin, as was discussed in section 4.4. If a
very large binsize is chosen, the distribution of the number of spikes fired by a
single neuron in a bin may approach a normal distribution. In this case it is
relatively easy to calculate the distribution of N-clusters if the only correlations
are of second order.
Third, the method according to which we derived the distribution of maximal

entropy is only valid for a homogeneous network. For a non-homogeneous net-
work, the number of variables grows exponentially with the number of neurons
(section 3). We have, for example, incorporated a single inhibitory neuron in
our network, which received input from all excitatory cells and provided strong
inhibitory feedback (data not shown). The inhibitory neuron added structure to
the spike trains by curtailing population bursts. We did not explicitly incorpo-
rate the firing pattern of the inhibitory neuron in our calculations, which caused
a considerable discrepancy between the maximal entropy distribution and the
actual distribution of N-clusters.
These limitations, taken together, imply that it will be rather problematic

to predict the probability of highly synchronous events from firing rates and
pair-wise correlations in physiological experiments. In a physiological study
on higher order events among neurons of the frontal cortex, Martignon et al.

[19] obtained discrepancies between the probability of actually occurring events
and their probability predicted by entropy maximization. Unfortunately, even
in this study, in which simultaneous recordings from 6 neurons were studied,
sampling problems occurred which were caused by the exponentially growing
number of spike configurations and the limited recording time available during
such experiments. Another, presumably fruitful way in which the probability of
highly synchronous events can be estimated is by direct, in vivo measurements
of the distribution of the post-synaptic potential. A comparison of the post-
synaptic potential to the size of individual EPSPs, with and without blockade
of inhibition, could provide valuable insight in the degree of synchronicity among
neurons that project to a common target cell.
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A Maximizing the entropy in a homogenous net-

work

For N neurons three equations are derived from the pair-wise correlation, the firing
probability and the fact that all probabilities should add up to 1. First, the probabil-
ities should add up to 1:

1 =

N
∑

i=0

(

N
i

)

· Di (19)

Second, the firing probability f1 is fixed. For example, in the case that N = 7 it is
easy to see that f1 equals:

f1 =

1
∑

i=0

1
∑

j=0

1
∑

k=0

1
∑

l=0

1
∑

m=0

1
∑

n=0

G1ijklmn =

7
∑

i=1

(

6
i − 1

)

· Di (20)

In the general case of N = n this reads:

f1 =

N
∑

i=1

(

N − 1
i − 1

)

· Di (21)
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Third, the pair-wise correlations are fixed, and this implies that the probability that
two neurons fire simultaneously is also fixed. Analogously to (8) we find for f2:

f2 =

N
∑

i=2

(

N − 2
i − 2

)

· Di (22)

These equations can be rewritten as:

D0 = 1 −

n
∑

i=1

(

n
i

)

Di

= 1 − nD1 − n

(

n
2

)

D2 −

n
∑

i=3

(

n
i

)

Di (23)

D1 = f1 −

n
∑

i=2

(

n − 1
i − 1

)

Di

= f1 − [n − 1]D2 −

n
∑

i=3

(

n − 1
i − 1

)

Di (24)

D2 = f2 −

n
∑

i=3

(

n − 2
i − 2

)

Di (25)

Solving for D0 , D1 and D2:

D0 = 1 − nf1 + n(n − 1)f2 −

(

n
2

)

f2 +

+

[(

n
2

)

− n(n − 1)

]

·
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Di (26)

D1 = f1 − (n − 1)f2 + (n − 1)

n
∑

i=3

(

n − 2
i − 2

)

Di −

n
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i=3

(

n − 1
i − 1

)

Di (27)

D2 = f2 −

n
∑

i=3

(

n − 2
i − 2

)

Di (28)

With the entropy defined as:

S =

N
∑

i=0

(

N
i

)

· Di ln(Di) (29)

This is a concave function (which is easily verified), and therefore it has a single,
unique maximum. To obtain the maximum, we calculate the derivative to Di:

∂S

∂Di

= 0 for i = 3 . . . N (30)
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∂S

∂Di
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−
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)

ln (Di) = 0 (31)

We note that the equations (26-28) are linear in Di, and that a concave function
remains concave on a linear subspace. In other words: equations (26-28) and (30)
taken together, also have a unique solution. Equation (31) can be rewritten as:

ln(Di) = −(−
1

2
i+ 1)(i − 1) ln(D0) − i(i − 2) ln(D1) +

+
1

2
i(i − 1) ln(D2) for i = 3 . . . N (32)

Inserting these values for Di into equations (26-28) yields three equations with three
unknowns and a unique solution which is found using the Newton-Raphson method
as described in [22]. Use of this algorithm in Maple V v4.0 allowed us to solve the
equations for up to 150 neurons in about 2 hours on a Pentium 150Mhz.
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