
Streaming Parallel GPU Acceleration of Large-Scale filter-based

Spiking Neural Networks

Leszek

´

Slażyński
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Abstract

The arrival of graphics processing (GPU) cards suitable for massively parallel computing promises

a↵ordable large-scale neural network simulation previously only available at supercomputing facil-

ities. While the raw numbers suggest that GPUs may outperform CPUs by at least an order of

magnitude, the challenge is to develop fine-grained parallel algorithms to fully exploit the particulars

of GPUs. Computation in a neural network is inherently parallel and thus a natural match for GPU

architectures: given inputs, the internal state for each neuron can be updated in parallel. We show

that for filter-based spiking neurons, like the Spike Response Model, the additive nature of mem-

brane potential dynamics enables additional update parallelism. This also reduces the accumulation

of numerical errors when using single precision computation, the native precision of GPUs. We

further show that optimizing simulation algorithms and data structures to the GPU’s architecture

has a large pay-o↵: for example, matching iterative neural updating to the memory architecture

of the GPU speeds up this simulation step by a factor of three to five. With such optimizations,

we can simulate in better-than-realtime plausible spiking neural networks of up to 50,000 neurons,

processing over 35 million spiking events per second.

1 Introduction

A central scientific question in neuroscience is understanding how roughly 100 billion neurons wired

together through hundreds of trillions of connections jointly generate intelligent behavior. As psychol-

ogists, biologists and computer scientists try to capture and abstract the essential computations that

these neurons carry out, it is increasingly clear that each individual neuron contributes to the joint

computation. At the same time, canonical computational structures in the brain, like cortical columns

and hypercolumns, comprise of tens to hundreds of thousands of neurons (Oberlaender et al., 2011).

Simulating neural computation in many millions of neurons on very large computers is a great challenge,

and the subject of considerable high-profile e↵ort (Markram, 2006).
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Still, the scientific workflow tremendously benefits from “table-top” neural modeling, both for testing

ideas and for rapid prototyping. The arrival of a↵ordable graphics processing cards suitable for mas-

sively parallel computing - General-Purpose Graphics Processing Units, GPGPU-computing - make it

potentially possible to scale “table-top” neural network modeling closer to the network sizes of canonical

brain structures. At such a scale, neural network modeling can simulate sizable parts of large-scale

dynamical systems like the brain’s visual system, and enable research into the computational paradigms

of canonical brain circuits as well as real-time applications of neural models in for example robotics.

State-of-the-art GPGPU architectures have evolved from Graphical Processing Units (GPU), where

the parallel computations inherent to three-dimensional graphic processing were expanded to allow for

the processing of more general computational tasks (Owens et al., 2008). GPGPU architectures are char-

acterized by a many-core streaming architecture, with memory-bandwidth and computational resources

exceeding that of current state-of-the-art CPUs by at least an order of magnitude. To fully exploit these

resources however, algorithms have to be parallelized such as to fit the peculiars of many-core streaming

architectures.

A number of e↵orts have focused on developing e�cient GPU-based simulation algorithms for spe-

cific di↵erential-based spiking neuron models like the Hodgkin-Huxley model (Lazar and Zhou, 2012;

Mutch et al., 2010), or variants of integrate-and-fire spiking neurons, like the Izhikevich model (Brette

and Goodman, 2011; Fidjeland et al., 2009; Fidjeland and Shanahan, 2010; Han and Taha, 2010a,b; Kr-

ishnamani and Venkittaraman, 2010; Nageswaran et al., 2008; Vekterli, 2009; Yudanov, 2009; Yudanov

et al., 2010). The advantage of di↵erential-based spiking neuron models is that the parameters describing

the neural state tend to be few, and evolving neural dynamics can be computed from the di↵erential

equations.

Here, we consider GPU-acceleration for filter-based spiking neuron models. Filter-based models

approximate integrated versions of di↵erential-based spiking neuron models, expressing the neural state

as a superposition of spike-triggered filters. The most prominent example of a filter-based spiking neuron

model is the Spike Response Model (Gerstner and Kistler, 2002). Filter-based spiking neuron models

o↵er a di↵erent balance between computation and memory usage for spiking neuron simulation, and

allow for parallel updates of the neural dynamics. As a neuron’s state in a filter-based formulation is

defined as a weighted sum of filters, there is the additional benefit that in formulation, given the input

spikes, the numerical error in the membrane potential does not accumulate over time like in models based

on di↵erential equations (Brette et al., 2007; Yudanov, 2009), thus making it more suitable for single

precision computation, the native precision of GPUs.

In this paper, we present in detail a number of data structures and algorithms for e�ciently im-

plementing spiking neural networks comprised of filter-based spiking neuron models on state-of-the-art

GPGPU architectures. The algorithms are implemented in OpenCL, and performance is measured for

two modern GPUs: an NVidia GeForce GTX 470 and an AMD Radeon HD 7950. With GPU specific

optimizations, we demonstrate real-time simulation for filter-based spiking networks of up to 50,000 neu-
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rons with sparse connectivity and neural activity on the AMD Radeon GPU; the GPU then processes

some 35-40 million spiking events per second. With a higher degree of connectivity and higher network

activity, the GPU is able to process up to 600 million spiking events per second, at roughly one third

realtime performance.

Network simulation comprises of three major simulation steps: updating neural states, determining

which neurons generate spikes, and distribution of these spikes to connected neurons. For asymptotically

large neural networks, spike distribution always dominates the simulation complexity (Brette et al.,

2007). However, without optimization, we find that the operation of updating filter-based neurons to

account for the future influence of current spike-events dominates the running time for network sizes up

to several tens of thousands of neurons. Therefore, we optimize the neural updating step to maximize

both parallelism and tune memory access patterns to the GPU architecture. We show that doing so

speeds up neural updating by about a factor of four. After this optimization, spike-distribution becomes

the dominant computation for very large networks.

Spike generation and distribution require the e�cient collection of data from a subset of all neurons,

a typical list structure operation. We implement e�cient parallel list data structures, which greatly

improves performance, and then further tune these algorithms for specific GPU characteristics, increasing

performance of the data structure by another factor of three for typical problem sizes.

This paper is setup as follows: first, in Section 2, we introduce filter-based spiking neuron models

for neural computation, and in Section 3 we introduce the general concepts for parallel computing on

GPUs. In Section 4, we describe the principal phasing of filter-based spiking neural network simulation,

and we analyze the complexity of simulating such networks. In Section 5, we describe the principal

data structures for filter-based spiking neural network simulation, and some GPU-specific optimizations.

In Section 6, we describe GPU-specific parallelized algorithms for simulating filter-based spiking neural

networks. In Section 7, we simulate large scale filter-based spiking neural networks, and quantify the

improvement derived from the algorithmic optimizations. We discuss some technical pitfalls in GPU-

computing in Section 8, and in Section 9, we discuss our contributions in the context of large-scale neural

simulation.
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Figure 1: (a) Spiking neurons communicate through brief electrical pulses – action potentials or spikes.

(b) Illustration of the main characteristics of the Spike Response Model, after (Gerstner and Kistler,

2002). The membrane potential u(t) is computed as a sum of superimposed post-synaptic potentials

(PSPs) associated with impinging spikes, where the time evolution of each PSP is determined by a

characteristic filter: (t). The neuron discharges an action potential as a function of the distance

between the membrane potential and a threshold #; the discharge of an action potential contributes a

(negative) filter ⌘(t).

2 Filter-based Spiking Neuron Models

Spiking neuron models describe how a neuron’s membrane potential responds to the combination of

impinging input spikes and generated outgoing spikes (Figure 1a). In most standard models, like the

Hodgkin-Huxley model (Hodgkin and Huxley, 1952), the voltage dynamics are defined as di↵erential

equations over the membrane potential dynamics and associated variables like voltage-gated channel

proteins. Filter-based models integrate approximations of these di↵erential equations to obtain formu-

lations where the neuron’s membrane potential is expressed as a superposition of filtered input-currents

and refractory responses, centered respectively on input and output spikes (Figure 1b). Output spikes

are generated either deterministically, as the potential exceeds a threshold, or stochastically as a func-

tion of the membrane potential. The most well-known of such formulations is the Spike Response Model

(Gerstner and Kistler, 2002), which, in various adaptations, closely fits real neural behavior (Brette and

Gerstner, 2005; Jolivet et al., 2006).

Model. Formally, for a neuron i receiving input spikes {t
j

} from neurons j, the membrane potential

u
i

(t) in the SRM is computed as a superposition of weighted input filters (t) and refractory responses

⌘(t):

u
i

(t) =
X

j

w
j

X

{tj}

(t� t
j

)�
X

{ti}

⌘(t� t
i

) + u
r

, (1)
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Figure 2: (a) Four cosine bump basis functions used to represent the input filters and refractory post-spike

response. (b) Example post-spike filter.

where u
r

is the resting potential, and w
j

denotes the synaptic strength between neuron i and a neuron j.

In more involved SRM models, the filters (t) and ⌘(t) may each change as a function of spike-intervals

(Gerstner and Kistler, 2002). Spikes can be generated deterministically, when the potential crosses a

threshold # from below, or stochastically, as a function of the membrane potential (Clopath et al., 2007;

Gerstner and Kistler, 2002; Naud, 2011).

Here, we consider a filtered SRM, where input spikes are filtered with a weighted set of k basis

functions k(t) (e.g. Figure 2a for cosine bump basis functions) and the refractory response is composed

of a set of m weighted basis functions ⌘m(t) (Figure 2b):

u
i

(t) =
X

j

X

k

wk

j

X

{tj}

k(t� t
j

)�
X

m

wm

i

X

{ti}

⌘m(t� t
i

) + u
r

, (2)

where each basis function is associated with a weight: wk

j

and wm

i

. Such a formulation e↵ectively allows

the filtered SRM neuron to have more complex temporal receptive fields, mimicking multiple synaptic

inputs with multiple time-constants, or input from highly correlated neurons Goldman (2009). The

standard SRM0 from (Gerstner and Kistler, 2002) can be recovered by choosing a single basis-function

for the input filters and refractory response.

We choose the filter-based Spike Response Model for large-scale spiking neural network simulation for

two reasons: first, it has inherent parallelism for update dynamics, as each filter has a finite, relatively

short temporal extent and past input spikes can be e�ciently accounted for by maintaining and updating

a bu↵er. Second, filter-based spiking neuron models are less sensitive to numerical error: given the input

spikes, the numerical error in the membrane potential does not accumulate over time like in models

based on di↵erential equations, where the time-resolution for integrating fast potential dynamics is also

problematic (Yudanov, 2009). This suggests that filter-based spiking neurons could be more amenable

for single precision computation, the native precision of GPUs.

3 GPU Computing

The architecture of a GPU determines both the challenges and the opportunities for using the GPU

as a massively parallel streaming co-processor. Where a CPU typically consists of four to eight CPU
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Vendor NVIDIA AMD Intel

Brand and Model GeForce GTX 470 Radeon HD 7950 Core i7 2600

Number of Compute Units 14 28 4/8 [1]

Clock Frequency [MHz] 1215 800 3400

Memory Capacity [GB] 1 3 [16]

Memory Bandwidth [GB/s] 134 240 21

Single Precision FP Perf [GFLOPS] 1088 2870 216

Double Precision FP Perf [GFLOPS] 136 717 108

SIMD Width 32 64 256

Table 1: Basic parameters of GeForce GTX 470 and Radeon HD 7950 GPUs used in the experiments,

compared to an Intel Core i7 2600 CPU. [1] Although there are four CPU-cores, they are presented as 8

cores in OpenCL due to hyperthreading.

cores, a GPU consists of hundreds or even thousands of smaller computational cores. Consequently,

algorithms suitable for GPUs have to be paralellized to a very fine grain to keep all the computational

cores busy. To complicate matters further, and unlike typical parallel algorithms for typical CPUs, many

tasks have to be scheduled to each core to hide memory latency. Consequently, not all algorithms are

suitable for acceleration by GPUs.

GPUs are a part of a host computer system which already has a main processor (CPU) and main

memory (RAM). As co-processors, GPUs have processors and memory of their own. To carry out any

computation, the program and the data have to be copied from the system main memory to the GPU

memory. Then the GPU carries out the computation; after that, the results need to be transferred back

from the GPU memory to the main memory. In some emerging architectures, the GPU and a CPU share

a memory; current state-of-the-art GPUs however are discrete, therefore this work focuses on discrete

architectures.

There are currently two leading general purpose GPU manufacturers, AMD and NVidia. With the

AMD GCN-based GPUs and the NVIDIA Fermi/Kepler-based GPUs, the compute architectures are

converging, although each still has its own set of technical details. In our experiments, we use high-end

cards from both manufacturers, see Table 3 for detailed specifications. Abbreviating, the GPUs are

referred below by the respective brands, Radeon and Geforce.

OpenCL has emerged as the open standard for heterogenous computing in general, and GPU-

computing in particular. Recent studies (Du et al., 2011; Fang et al., 2011) have shown that the level of

performance attained with OpenCL is essentially the same as with the NVidia proprietary CUDA frame-

work. As both vendors support OpenCL on their hardware, we choose this standard for implementation

of the proposed algorithms.
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Figure 3: GPU Computing Architecture. (a) Function parallel work items and work groups. (b) Many-

core organization. (c) Memory hierarchy.

3.1 Architecture

Here, we describe the main architectural concepts for GPU computing, also depicted in Figure 3.

For compatibility with the literature, we use the OpenCL terminology (Stone and Gohara, 2010). There

is no OpenCL term for a set of work-items working in a lock-step, which is called a warp in NVidia’s

terminology and a wavefront in AMD’s. To avoid using vendor specific terminology, we will use the name

bunch to refer to such a set.

Kernels, work items, work groups, local/global sizes. A computation on a GPU is performed by

running multiple instances of the same function, a kernel. As depicted in Figure 3a, each instance runs in

its own thread, and is called a work item. Work items can be grouped together into work groups. Both

global size (all work items) and local size (work items per work group) can have up to three dimensions

for convenient decomposition of the problem. Each work item can access its own data structure and

adjust the computation based on it - e.g. perform some calculation for the ith neuron.

Cores, lock-step, divergence, group-mapping, latency hiding. Modern GPUs consist of many

compute units (Figure 3b), each containing multiple processing elements, all of which execute the same
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instructions in lock-step. Each processing element runs a work item, therefore a small set of work items

need to execute the same code, we call this set a bunch. If there is any divergence in execution within

a bunch, all the elements have to walk through all the execution paths. This also means that there is

no need for any synchronization within this set. To hide memory latency, a few sets can occupy one

compute unit at the same time: if one set is waiting for a memory transfer, another can execute in the

mean time.

Memory levels, cooperation, local synchronization. GPUs have several memory levels - large

but slow global memory; read-only constant memory; spatially cached read-only texture memory; local

memory and registers (Figure 3c). The local memory is orders-of-magnitude faster than the global

memory and is accessible to all work items running on one compute unit. This allows for cooperative

memory access by work groups (which for this reason always run on one compute unit), and also for

local synchronization within theses groups.

Global synchronization, kernel launch overhead. GPUs generally lack capabilities for global

synchronization within kernels. Applications that need to synchronize are usually realized by kernel

execution followed by the launch of another. There is, however, a noticeable overhead associated with

launching a kernel. Although AMD hardware supports global synchronization through Global Wave

Synchronization, this is not exposed to the programmer in the current OpenCL SDK v2.7. Upcoming

NVIDIA hardware (GK110) and software (CUDA 5) will also include support for a similar feature,

Dynamic Parallelism, additionally allowing running kernels to dynamically launch additional kernels,

and also have the parent kernels wait for completion of the spawned child processes.

Summarizing, e↵ective GPU-algorithms have to attain a very high degree of parallelization with func-

tionally identical work items, and su�ciently many work items have to be scheduled for each core to hide

memory latency. Both vendors o↵er programming and optimization guides: (AMD, 2012) and (NVIDIA,

2012), respectively. Additionally, the memory access itself should be accessed in a way that optimizes

the bandwidth and the number of cache hits.

3.2 Optimizing Memory Usage

Coalesced Access Patterns. According to the respective programming guides, on both AMD

and NVidia hardware the maximum transfer performance is achieved if subsequent work-items access

subsequent elements in globalmemory. On NVidia hardware the memory transfers requested by a bunch

and done in a set of 32- 64- or 128-Byte transactions, therefore it is called coalesced if each bunch accesses

a 32- 64- or 128-Byte aligned segment of memory; otherwise the bunch performs series of transactions

serially. On AMD the memory is organized into channels and banks and one must minimize bank and

channel conflicts; in this case, a conflict also causes serialization of the operations. Ensuring that access
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patterns are as close to optimal as possible is therefore important.

Staggered O↵sets. On AMD hardware if the global access pattern is coalesced then each bunch

accesses only one channel. This pattern is actually e�cient if all the compute-units access di↵erent

channels, so the compute-units can access memory in parallel; the worst-case scenario occurs when a

single compute-unit accesses all the channels. A common access pattern in processing a two-dimensional

array is when consecutive work-groups (so consecutive compute-units) access data with a large power-

of-two stride, leading to channel conflicts. In this case a simple coordinate transformation minimizes

the number of such conflicts. An example of such a change in the order of accessing an array’s tiles is

illustrated in Table 2. We use staggered o↵sets where possible, as they improve performance on AMD

hardware and are neutral on NVidia hardware.

(0, 0) (0, 1) (0, 2) (0, 3)

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1) (2, 2) (2, 3)

(3, 0) (3, 1) (3, 2) (3, 3)

(0, 0) (0, 1) (0, 2) (0, 3)

(1, 3) (1, 0) (1, 1) (1, 2)

(2, 2) (2, 3) (2, 0) (2, 1)

(3, 1) (3, 2) (3, 3) (3, 0)

Table 2: Order of processing before (left), and after (right) applying coordinate transformation. Tiles

which are processed at the same time are marked by the same color.

4 Simulating Neural Populations

The simulation of large scale neural networks can be divided up naturally in a number of main

steps that each allow for fine-grained parallel simulation. Neural simulation typically progresses in three

major steps: neural state updating, spike generation, and spike distribution. Neural updating and spike

generation are often taken together, giving two major steps (Brette et al., 2007). As depicted in Figure 4,

the neural state update accounts for new inputs to the neuron, and the evolution of the internal dynamics

due to past inputs and outputs. The spike generation step then evaluates whether the new internal neural

state causes the neuron to generate an outgoing spike. In the final step, the generated spikes are delivered

to the neurons that each spiking neuron is connected to.

As streaming parallel GPU computing requires that the same function is applied in parallel, we

separate the steps of state updating and spike generation. For state updating in filter-based spiking

neurons, the treatment of new input spikes requires that a weighted set of basis function filters should

be added to its membrane potential for each new spike. Likewise, the presence of an output spike in the
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Figure 4: Neural Simulation Flow Diagram

previous time step has to be similarly accounted for using the post-spike filters.

One can either accumulate all such past events and calculate the current value of the membrane

potential on-the-fly as needed, or keep a bu↵er with current predictions for the future and modify it for

new incoming events. The first approach requires storing a history of past spikes and update weights

associated with them. The update step requires only storing of the sum of update weights for the current

time step, as the state itself is dynamically calculated from them. To calculate the current value of the

membrane potential of a single neuron a large sum over the past spikes needs to be computed, each

element of which is a dot product of vector of update weights and vector of basis function values. The

sum itself can be e�ciently computed using a parallel sum algorithm. The second approach requires

storing of a prediction of membrane potential values for the future. The update step needs to update the

predictions for many future time steps, which can be done in parallel. The update values are calculated

just as in previous case, as a dot product of update weights and basis function values. To determine the

membrane potential of a given neuron requires only loading of the current prediction.

We chose the second approach for our implementation for a number of reasons. First, the amount of

memory needed for the storage of the data structure that can possibly fit incoming spikes for every time

step and for every neuron is smaller by a factor of K, where K is the number of used basis functions.

Furthermore, if a neuron receives spikes in S time steps, each spike influences the neural dynamics for

some number T of time steps. In the first approach, K stored update weights need to be read T times

in the future for every spike: K ⇤ T ⇤ S. In contrast, the second approach requires 1 reads and 1 writes

of T prediction values instantly in each of those S steps: 2 ⇤ T ⇤ S. This fact alone means that already

with K = 2 the overall amount of memory to be transferred is equal, even despite the fact that the

same predictions are read and written many times. Second, and importantly, it is much easier with this

method to achieve memory access coalescence. The second approach is furthermore straightforward to

optimize, without increasing the divergence, for cases when not every neuron receives a spike in every

time step, which is often the case even in large-scale simulations. Additionally, we use the bu↵er with

predictions also for providing a bu↵ered external input current to the network.
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4.1 Computational Analysis

To analyze the complexity of the simulation, we consider a single iteration and assume that the

simulation consists of N neurons, with S synaptic connections each. The length of both the post-spike

filters ⌘m(t) and input filters k(t) is T and there are K basis functions each. From the N neurons,

N
pre

are emitting spikes in a given iteration and N
post

neurons will receive those spikes via synaptic

connections, N
update

is the total number of neurons that need to be updated, the joint set of sending

and receiving neurons.

Neural Update. In the simulation of filter-based spiking neuron models, only N
update

of all the N

neurons need to update their internal state. That requires an update of N
update

· T values. The K · T

values of basis functions need to be read (or calculated). Each of the update values is calculated from a

dot product of weights and basis functions values - two vectors of length K.

Spike Generation. Generating spikes, in general, requires checking each of the N neurons, to

determine whether it generates a spike at given time t. If we consider I iterations, at least N · I such

checks must be done. The checks can also be done during the update, but since the internal state values

may change, it means roughly k times more checks, where k is the number of spikes sent or received

during the interval of I iterations.

Spike Distribution. This phase requires all N
pre

spiking neurons to consider the weights associated

with post-spike filter and input filters for all S outgoing synaptic connections (K weights each). Those

N
pre

· (S + 1) values need to be accumulated for all the N
update

neurons and the total update weight

values need to be calculated from them.

From this analysis, we see that all of the phases are memory intensive, as the ratio of computation to

memory transfers is fairly low. This suggests that the main optimizations should be concerned with

improving memory access patterns and reducing the amount of memory that has to be accessed.

5 Data Structures

While we divide up the neural simulation process in three steps, three data structures are essential

for parallel neural computation: the weight matrix, which is a directed graph representing the neural

network structure; the potential bu↵er, which for each neuron stores the superposition of filters resulting

from past inputs and outputs; and the compact list structure, which is used in many places in the

simulation where elements need to collected or added for further processing. Below, we describe these

data structures, and how we implement them for GPU-acceleration of filter-based spiking neural network

simulation.
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Weight Matrix. Representing synaptic connection weights corresponds to representing a weighted

graph, or a dense matrix in general. As neural network models tend to be sparse, a dense representation

(one including all N2 values, including empty elements) of the weights is not feasible. Assuming that

four basis functions are used, it would require 1.5GB to store weights of just 10,000 neurons. For truly

large, but sparsely connected networks, more e�cient representations are needed.

We use a compressed sparse row (CSR) format to store the weights. In this format a matrix is stored

in three one-dimensional arrays. The first array stores all non-zero values as read from a full matrix left-

to-right, top-to-bottom; the second stores the original column indices for all those elements; the third

stores for each of the original rows the index of its beginning in the two previous arrays, and then at

the and of the array the total number of non-zero elements. For N neurons with S synaptic connections

each and K synaptic weights such representation requires N · (S + 1) · (4 ·K + 4) + 4 · (N + 1) bytes of

memory. For 10,000 neurons with 100 synapses each this is less than 20MB.

Since this representation allows for more e�cient processing of matrix in per-row than per-column

basis, a row can correspond to either a spike emitting (presynaptic) or receiving (postsynaptic) neuron.

For e�ciency of the spike distribution phase, we chose the row to correspond to a presynaptic neuron, so

that it lists all the postsynaptic neurons and the associated weights in contiguous memory for e�cient

access.

Potential Bu↵er. The internal neuron state bu↵er – the potential bu↵er – is a two-dimensional

array of size N ⇥ B where N is the number of neurons and B is the length of the filters. As the time

advances in the simulation, there is always need to keep next B values in the bu↵er. For a single neuron

this can be implemented using a circular bu↵er, in which the e↵ective index is the time modulo length

of the array. For all neurons together the corresponding bu↵er is a so-called cylindrical bu↵er in which

one of the dimensions is circular. The array can be stored so either subsequent time steps for a single

neuron are contiguous in memory, or so that subsequent neurons for given time are. We cover algorithms

for neural updating in more detail in Section 6.1.

Compact Lists. In many places in the simulation there is a need to have a list of elements and an

operation for appending an element at the end: for example a list of neurons currently spiking, or the

accumulated weights for postsynaptic neurons. On a CPU the standard approach is to employ a suitable

data structure, such as a vector or a list; for a multi-threaded CPU application a synchronized version

of such data structure would be used.

On a GPU, a vector or list data structure can be maintained similarly using atomic counters. The

use of atomic counters however hurts performance, since append operations issued at the same time are

serialized. A more common approach is to first gather all the data in a sparse format and then transform

this format to the desired dense format. This problem is usually called Compact and can be solved by

using a parallel algorithm for a Scan operation - that is, calculating all the prefix sums for an array.

We tested two algorithms, one using a parallel Reduction (Harris, 2008) and following with sequential
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Reduction and Scan (Sengupta et al., 2008) - resulting in two kernel launches, and the recursive Scan

algorithm - requiring more additional memory and resulting in up to three kernel launches for hundreds

of thousands of neurons. In both cases we modified the algorithms so that there is no need to explicitly

write the final Scan results. We find that performance of either algorithm is similar, where for relatively

small problems, with tens and hundreds of thousands of operations, Reduction+Scan usually performs

somewhat better than recursive Scan; therefore we choose Reduction+Scan in our implementation.

Having selected the Reduction+Scan for the Compact list data structure, we consider three further

technical optimizations that are known to accelerate GPU computing:

Opt1 loop unrolling and barrier removal.

Opt2 reading and writing two elements per work item.

Opt3 not writing all the results, just the list and a marker.

We incrementally added these optimizations to the Reduction+Scan data structure, and incremental

performance improvement is plotted in Figure 5. Cumulatively, these optimizations improve the per-

formance of the Reduction+Scan data structure, for a list of size 250,000 elements by a factor of three

compared to baseline performance (Table 3).

Table 3: Comparison of running times for an array of 250,000 elements on the Radeon HD7950.

Improvement [%]

Version Time [ms] Step-wise Total

Base 0.137 100 100

Opt1 0.099 138 138

Opt2 0.052 190 263

Opt3 0.045 116 304
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Figure 5: Running times for Reduction+Scan with successive optimizations Opt1 (1), Opt1+Opt2 (2)

and Opt1+Opt2+Opt3 (3). Optimizations incrementally improve performance, altogether reducing

run-time by a factor of three. Both Radeon and GeForce GPUs exhibit similar linear performance, where

the ratio of performance approaches the ratio of the respective peak bandwidth of 1.8.

6 Algorithms

We consider each of the three steps in the neural simulation process for both algorithmic and technical

optimizations, given the data structures described in Section 5. As noted, for large neural networks, spike

distribution always dominates the simulation complexity (Brette et al., 2007). We find however that the

expensive operation of forward updating in filter-based neurons dominates running times for network

sizes of up to several tens of thousands of neurons with sparse connectivity and moderate, realistic average

network activity (see also Section 7.3). Therefore, we here focus on optimize the neural updating step

to maximize parallelism and tune memory access patterns to the GPU architecture. Below, we describe

these optimizations, and how we implement them for GPU-acceleration.

6.1 Neuron Update

The potential bu↵er can be stored in two ways: neuron-major order, where the subsequent time bins

for the same neuron are stored contiguously; and time-major order, where states of subsequent neurons

for a given time step are stored contiguously.

The bu↵er order a↵ects the memory access patterns. In the time-major order case, synchronous spike

checks have coalesced read patterns, and updates can have partly coalesced writes when neighboring

neurons are updated at the same time. In the neuron-major order case, the read in a synchronous check
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is scattered, but the update of a single neuron results in writes to contiguous locations - possibly allowing

for an e�cient parallelization. Similar to array storage, the algorithm used for the update may use either

neurons (N) or time (T ) as the primary dimension.

Neuron-major (1). In the simplest case of a neuron-major approach, we launch N work items:

one for updating each neuron (Listing 1). To achieve partly coalesced write patterns, a neuron-major

representation of the bu↵er is used. Since every work item accesses the basis function values in the same

order, storing those values in constant memory, optimized for access patterns like this, greatly improves

the performance.

1 foreach n in neurons in paral le l

2 sum = get sum o f we ight s (n)

3 i f (sum != 0)

4 for dt = 0 . .T�1

5 s t a t e [ n , t+dt ] += dot (sum , ba s i s [ dt ] )

Listing 1: Pseudocode for Neuron-major neuron update

Compact neuron-major (2). In filter-based spiking neural networks, for any given time step, only

those neurons that receive incoming spikes need to be updated, as well as those neurons that spiked in

the previous time step. One optimization then is to first use Compact on the input array with sums of

weights. This approach reduces divergence among the threads resulting in more e�cient execution, but

also results in lower coalescence in the writes.

Time-major. The simplest case of a time-major approach would be launching T work items: one

for each time bin. Every work item processes (sequentially) the neurons that need to be updated from

the compacted list. This results in coalesced writes to the array in time-major representation. Work

items can also bu↵er the neuron list in local memory to achieve coalesced reads. The number of time

bins usually is, however, small compared to the number of neurons, and implementations like this tend

to under-utilize the GPU, despite theoretically achieving very good write and read e�ciency.

Two-dimensional (3). Unifying the best features of time-major and neuron-major approaches is

launching work items in both dimensions. The primary dimension is time (T ) - to ensure that on a low-

level the work items working in lock-step are the ones writing to contiguous memory locations. Since the

whole length of the array needs to be updated, the writes are fully coalesced. The second dimension is

neurons (N) to ensure enough parallel workload is given to the GPU (Listing 2, for X = T and Y = N).

Technical optimizations. In the two-dimensional case we spawn X · Y work items and test for

optimal values of X  T , Y  N . When X < T and/or Y < N , each of the work items contains a

loop over a few elements (either over T , N , or both). Because of di↵erent access patterns, in this case
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(a) (b)

Figure 6: (a) Synchronous spike-generation: all neurons are checked at each time step; constant time

steps. (b) Asynchronous updating: all neurons are checked only when (at least) one neuron generates a

spike; variable time steps.

it is also more e�cient not to store the basis function values in constant memory, as the use of the

global cache results in better performance. The reads and writes are done using Staggered O↵sets. We

additionally eliminate the need for scattered reads in synchronous spike checks by introducing a separate

bu↵er, which is maintained on-the-fly during the update and can be checked in an e�cient way.

1 for x = 0 . .X�1 in paral le l

2 for y = 0 . .Y�1 in paral le l

3 i = y

4 while i < s i z e ( a c t i v e neu ron s )

5 (n , sum , j ) = ( ac t i v e neu ron s [ i ] , ac t ive sums [ i ] , x )

6 while j < T

7 s t a t e [ n , t+dt ] += dot (sum , ba s i s [ dt ] )

8 j += X

9 i += Y

Listing 2: Pseudocode for two-dimensional neuron update. The variables X and Y determine the number

of work items that is spawned.

6.2 Spike-Generation

In principle, there are two main approaches for determining which neurons are spiking at a current

time step. In a synchronous approach, there is a check at every time step to determine whether a neuron

spikes (Figure 6a). This check results in a boolean vector of spikes, which is used in later simulation

stages. In an asynchronous approach, every neuron keeps track of the nearest time at which it might

spike (if nothing occurs until that time). Such information can be updated on-the-fly along with the

neurons’ internal state. This results in a array of possible spike times, which then can be e↵ectively

reduced to extract the nearest time at which any neuron will spike, as well as all the neurons that spike

at this time (Figure 6b).
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Synchronous checks. The synchronous approach is straightforward. It is optimized by ensuring

e�cient memory access patterns – processing of a few subsequent elements by a work item result in larger

reads and writes. Additionally the workload is balanced by moving the work into the kernel - addition

of an outer loop resulting in processing of a few such bunches with a large stride in sequential manner.

Asynchronous events. For asynchronous event processing, the current value for the nearest spike

is read every time a neuron is updated. Then, while updating, the minimum is updated in local memory

and at the end written back to global memory if needed.

If the asynchronous event processing algorithm is used, the simulation e↵ectively has variable time

steps - in theory it can advance by an arbitrary amount of time in a single iteration. If simulation requires

some periodic action (e.g. input of external current, visualization, gathering of statistics) this poses a

problem, as it requires time-consuming GPU-CPU synchronization just to determine current simulation

time. An additional mechanism was implemented optionally allowing to enforce a maximum time step,

thus allowing for implementation of such actions.

For large-scale neural networks simulated with time-steps of for example 1 millisecond, at least some neu-

rons will be generating spikes at every time step and synchronous updating will be more e�cient. How-

ever, for smaller simulations, or simulations with (much) smaller time-steps, the asynchronous method

will have higher performance. We implemented both synchronous and asynchronous spike-generation

methods, where we observed the expected behavior. Since we are focusing on large scale simulations,

the results we further report are obtained using synchronous checks.

6.3 Spike-Distribution

Given the list of pre-synaptic neurons, the simulation needs to calculate for each neuron the synaptic

weights for the next update. Here, we assign work items on a per-output basis, so that the output

is an array with N entries, which later is subjected to Compact. While assigning the work-items on

per-synapse basis would result in a better algorithmic complexity, this approach eliminates the need

for synchronization and allows for coalescing of both reads and writes. The fact that both the spiking

neuron list and synaptic lists are sorted allows for e�cient processing. The possibility of cooperation

within work-groups also partly compensates for the added complexity.

Post-Synaptic List Check. We implement Spike-Distribution using a Post-Synaptic List Check:

each of the outputs inspects the post-synaptic lists of each spiking neuron. As every neuron needs to

process the same lists, these lists can be loaded and processed e�ciently in the local memory. Since

only a fraction of the neurons are spiking at any given time point, the use of a post-synaptic list results

in a smaller amount of memory to load, even though each of the groups needs to load the lists separately.

The load into local memory does not limit the number of synapses per neuron, as lists larger than local
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memory can be loaded in parts sequentially, at a small performance impact. As all the groups process

the same lists concurrently, the access is likely to have a high cache-hit ratio.

1 foreach n post in a l l n eu r on s in paral le l

2 sum = 0 , idx = 0

3 foreach n pre in sp i k ing neurons

4 l i s t = g e t l i s t ( n pre ) , l s z = g e t l i s t s i z e ( n pre )

5 idx = lower bound ( l i s t + idx , l i s t + l s z , n post )

6 i f ( l i s t [ idx ] == n post )

7 sum += get we ight ( ge t index ( idx ) )

8 update weights [ n post ] = sum

Listing 3: Pseudocode for the Post-Synaptic List Check

where lower bound(first, last, value) returns an o↵set of the first element in the sorted range

[first,last) which does not compare to less than value.

18



7 Results

In this section, we assess the performance impact of the various algorithmic improvements for a given

experimental setup. Combining those results, we then present run-time results for large-scale spiking

neural networks.

7.1 Experimental Setup

Hardware Setup. All experiments were performed on two machines with identical software and

hardware except for the di↵erent GPUs and therefore also di↵erent OpenCL runtimes actually used.

The machines featured an Intel Core i7-2600 CPU with 4 physical cores running at 3.40GHz, and 16GB

of 1333 MHz DDR3 RAM. The machines were running Fedora Core 16 with kernel 3.3.5-2. Both machines

used the following OpenCL runtimes and versions: NVIDIA CUDA 4.2.9 (OpenCL 1.1), AMD APP SDK

v2.7 (OpenCL 1.2), Intel OpenCL SDK 2012 (OpenCL 1.1). The GPUs used are detailed in Table 3.

Time Measurements. To measure performance of both single algorithms and the whole simulation,

we measure kernel execution times – time spent by the GPU while executing di↵erent kernels. This

measure is defined by the di↵erence in time of execution start and finish, i.e. it does not include the

initial transfer of data to the GPU and the overhead from queuing and launching the kernel itself. In the

cases where we consider algorithms spanning several sequential kernel launches we consider the di↵erence

between the time of execution finish of the last kernel and start of the first - i.e. the measure includes

some of the overhead, for fair comparison with algorithms spanning less kernels. The measurements are

taken using OpenCL clGetEventProfilingInfo function. All of the presented times are averaged over

10 runs, error bars in the graphs denote one standard deviation, when not show it is due to their small

size.

Numerical Verification. For each of the algorithmic optimizations we verified the results with the

reference implementation. Since the optimizations should not introduce any changes that a↵ect accuracy

of the results, the verification is done with zero error tolerance policy. Using standardized multiply-add

instruction, we verified that for identical simulation settings, the results are always the same for all

optimized algorithmic versions on all the platforms; we cover this in more detail in Section 8.

7.2 Optimizing Neural Updating

We first explore the degree to which performance is influenced by memory access patterns when

updating the neural state. For filter-based spiking neurons, the principal concern is the order in which

the potential bu↵er is accessed.

Shown in Figure 7a is the running time of a single time-step for various network sizes when updating

neurons using a neuron-major kernel (1), a compact neuron-major kernel (2), and two-dimensional ker-

nel (3). Results are shown for both Radeon and GeForce GPU, for a network with low activity, where
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randomly 10% of the neurons in the network are updated in this single time-step. By comparing (1)

and (2) we can see that adding a compact step indeed increases performance, here by 125%. We also

see that using a two-dimensional approach to achieve coalesced access patterns further improves per-

formance nearly 300% when comparing (2) and (3). Additionally, by introducing additional parallelism

the two-dimensional kernel (3) greatly improves performance for smaller networks, up to 16,000 neurons,

where the other two versions exhibit similar running times regardless of the network size.

We further test the algorithms by setting the number of neurons at 50,000 and varying the fraction

of neurons that needs to be updated. Again, we choose neurons to be updated in a random fashion.

Resulting running times can be seen in Figure 7b. We find that the compact version of neuron-major

algorithm (2) slightly improves performance for lower activities but for larger activities it performs

worse than the baseline. The speedup is due to the reduced divergence when using a compacted data

structure, while the slowdown is caused by ine↵ective memory access patterns: in the baseline case the

access pattern from entire work-group is always coalesced, even if some work-items might not participate;

in the compact algorithm, the accesses from a single work-group refer to distant elements, resulting in

serialization.

The two-dimensional kernel eliminates this problem by reducing the divergence while maintaining

optimal memory access patterns. We find that the best performance is achieved when both local and

global sizes in the time dimension are chosen to be exactly at the bunch size. In neuron dimension, we

find that processing more elements per work-item improves performance at lower activities, we settle for

4 neurons per work-item resulting in nearly linear scaling of runtime depending on fraction of neurons

to be updated. This is an important property, as the real simulation is likely to exhibit non-uniform

network activity patterns with phases of lower and higher activity.

7.3 Large-scale Simulations

So far, we studied GPU specific optimizations to data structures and algorithms for the di↵erent

neural simulation steps. Ultimately, the optimizations are aimed at improving the runtime of large scale

spiking neural networks; here we present run-times and related performance measures for large-scale

filter-based spiking neural networks. We report numbers only for the faster Radeon GPU; we find that

the GeForce GPU is generally slower by a factor of around 1.8, consistently with the bandwidth ratio of

the devices.

Model Setup. While our implementation allows for an arbitrary basis set, in all of the tests we

use the basis function set of raised cosine bumps as shown in Figure 2 to describe both input filters

and post-spike filters; both basis function sets consist of four such bumps and have a length of 1024

time bins. Simulations are run for 1 ms time steps. The connections are therefore described by four

randomized weights each. Input into the network is driven by 10 constantly stimulated neurons firing

at approximately 100Hz. Each neuron is connected to 100 other randomly selected neurons; 80% of
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Figure 7: Optimizing Neural Updating on both GPUs. (a) Running times for (1) neuron-major kernel,

(2) compact neuron-major kernel, (3) two-dimensional kernel for di↵erent network sizes when 10% of

neurons is updated. The two-dimensional kernel significantly outperforms the other neural updating

methods. (b) Running time of the same algorithms for 50,000 neurons depending on the fractions of

neuron to update. The two-dimensional kernel shows linear scaling performance, and also outperforms

the other neural updating methods when a larger fraction of the neurons requires updating in single time

step.

the neurons are excitatory in the sense that the filter weights are positive; the remaining 20% of the

neurons are inhibitory, projecting negative filter weights. To balance excitation and inhibition, and thus

ensure network stability, the inhibitory weights were taken to be three times as large as the excitatory

weights. For these conditions, the network neurons fired on average at 7-8Hz during simulation. We

choose a constant number of connections per neuron rather than a fixed fraction to ensure that simulation

performance for increasing network sizes is determined by linearly increasing workload, rather than the

quadratically increasing weight matrix. Measurements are taken over 2 seconds of network simulation.

Execution-time breakdown. For the model setup, we examine the degree to which the three main

simulation steps account for network simulation time for various network sizes, shown in Figure 8a. We

see that the optimized neural updating step dominates the running time for network sizes up to 60,000

neurons. Beyond this network size, spike propagation becomes the dominant term.

Processing Rate. We also plotted the number of neurons processed by the GPU per second in

Figure 8b. We see that for small network sizes the GPU runs the simulation at two times real time, and

the throughput increases almost linearly as a function of network size up to networks of about 50,000

neurons. This observed “filling” e↵ect shows that up to 50,000 neurons, the GPU is not fully utilized, and

increasing the workload a↵ects running time only slightly. For larger network size, throughput plateaus

as spike-propagation becomes the dominant simulation activity. At this plateau, the GPU processes

about 35 million spike events per second, counted as the number of spikes per neuron per second times
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Figure 8: (a) Breakdown of runtime in simulation processing steps: neural updating (blue triangles)

spike generation (blue circles), and spike propagation (blue squares). For increasing network sizes, spike

propagation starts to dominate the running time. Red circles and squares show the running time for the

collection of spike events (circles), and collecting update weights (squares). Measurements are taken over

2 seconds of network simulation, repeated ten times. (b) Neurons processed per second as a function of

network size. Shaded area is (better than) real-time processing, where real-time is defined as the point

where a millisecond of real time is simulated in less than a millisecond. For increasing network size,

throughput increases almost linearly before reaching a plateau.

the number of connections times the number of neurons. Reducing the number and length of the basis

function filters only improves the initial linear ramp of the graph, as spike-propagation starts to dominate

the workload at larger network sizes.

Network Activity. One of the most influential factors on the simulation performance is the network

activity. We explore the performance for di↵erent levels of uniform activity varying from 1 to 100 Hz for

network comprised of 50,000 neurons with 100 synaptic connections each. The running times of di↵erent

phases and the resulting simulation throughput are shown in Figure 9.

The runtime of Neural Update phase rises with increasing activity to later reach a plateau at higher

activities. This e↵ect is due to fact that all the incoming spikes are e↵ectively aggregated in the Spike

Propagation phase, and once at least one spike is received by each neuron each time step, the Update

phase no longer depends on the number of received spikes per neuron. The Propagation phase runtime

rises rapidly in linear fashion, and quickly becomes the dominant phase above 30 Hz. The e↵ective

throughput of the simulation also rises and slowly nears a plateau as the Propagation phase becomes

increasingly dominant.

The fact that the throughput of the simulation actually rises with the increase of activity has an

important consequence: the performance for a given level of uniform activity cannot be treated as an

approximation of performance for non-uniform activity at the same mean level. This is an important
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Figure 9: Dependency of Running Times (left axis, point series) and Throughput (right axis, shaded area)

on the level of uniform network activity in the network for 50,000 neurons and 100 synaptic connections

per neuron. For increasing network activity, Spike Propagation starts to dominate the computation;

Neural Updating plateaus as each neuron is updated each time-step.

di↵erence between filter-based and di↵erential based approaches to spiking neuron simulation, like that in

(Brette et al., 2007): in the latter, each neuron is updated each time step, at a fixed, relatively small cost.

In the filter-based approach, the cost per update will be higher, but especially for lower or non-uniform

activity levels per time step, potentially much fewer updates need to be applied.

Connection Density. We also explore the influence of the number of synaptic connections per neuron

on the simulation performance. We run a network comprised of 50,000 neurons with varying number

of uniformly distributed random connections varying from 10 to 1000. The simulations are run at two

uniform activity levels of 8 and 31 Hz. The breakdown of execution time into simulation phases and the

e↵ective throughput can be seen in Figure 10.

Figure 10 shows that time spent in the Neural Update phase rises with the number of synaptic

connections per neuron but then plateaus at approximately the same level for both activity levels, again

due to aggregation of incoming spike events. The time spent in the Spike Propagation phase rises

significantly with increasing activity, while overall throughput for a larger network still increases, which

in both cases increases nearly linearly with the number of connections.

As throughput increases with neural activity, we achieved throughput as high as 600 million events

per second in simulations when using 1000 connections per neuron and approximately 60 Hz of uniform

activity. While such simulation scenario might not be plausible, and this number cannot be used to
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Figure 10: Dependency of Running Times (left axis, point series) and Throughput (right axis, shaded

area) on the level of uniform network activity and connectivity in the network for 50,000 neurons and:

(left) 8 Hz moderate activity level; (right) 31 Hz medium-high activity level. Graphs are aligned to

the same scale for a clear comparison. While the computational cost of Neural Updating plateaus once

each neuron is updated each time-step, the cost of Spike Propagation keeps growing. Combined, the

throughput measure keeps increasing.

conclude performance in other setting, periods of very high activity do happen in realistic simulations,

and this fact allows for faster processing of simulations with varying activity.

We further investigate in detail the performance of the spike propagation algorithm as a function of

network connectivity. The comparison of running times for network with uniform 8 Hz activity and 100,

250 and 500 connections per neuron is shown in Figure 11. The small di↵erence in performance of the

post-synaptic list algorithm for 250 and 100 connections is due to fact that that the bigger list fits as

well into memory as the smaller one, while in the latter case the memory could be used more e�ciently.

8 Pitfalls

In this section we describe in more depth some of the encountered pitfalls related to parallelization

and optimization for GPU computing. The issues presented here can greatly a↵ect performance and

correctness of an application; they apply to any kind of GPU-enabled application and are not limited to

spiking neural network simulations.

Numerical Verification. Unlike earlier hardware, numerical accuracy is a lesser concern with current

GPUs as they now fully conform to the IEEE 745 standard. Still, the same code compiled for di↵erent

platforms might give di↵erent results, while still not violating this standard in a strict sense.

One place in our implementation sensitive to numerical accuracy is the addition of the kernel value

from the basis functions and the weights. This is a dot-product operation followed by an addition
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Figure 11: Performance of Spike Propagation Post-synaptic List (Post-L) algorithm at uniform 8 Hz

activity network with 100, 250 and 500 connections per neuron. Increasing connectivity incurs only a

modest performance penalty (results shown are for the Radeon GPU shown only, the same trends were

observed on the GeForce GPU).

value += dot(weights, basis). OpenCL allows for expressing this operation exactly with dot func-

tion. The math can also be assigned explicitly, using + and * operators. Alternatively, the shortcut mad

function for multiply-add can be used, or the fma function which calculates a fused multiply-add. The

latter is both faster and more accurate on the GPU, because it has only one rounding step instead of

two in a*x + b. As a result of intermediate rounding, the algorithmic results can di↵er between cases

with and without the usage of fma. Still, even the dot itself for a 4-vector can be in theory computed in

a di↵erent order by di↵erent implementations, resulting in di↵erent results.

We computed checksums of all of the values computed in a simulation of three seconds of 51,200

neurons to determine the di↵erences. As can be seen in Table 4, the results do di↵er among di↵erent

OpenCL runtimes and platforms. All the platforms, however, yield exactly the same results when

explicitly using fma, since the operations and their order is explicitly specified. Consequently, we use

fma by default if the hardware supports it.

Barrier Removal. The removal of barrier calls, while usually not recommended for portability

reasons, can greatly improve performance, and if done correctly does not introduce errors1. One of the

optimizations we implemented is the removal of barrier calls when we know that there is no need for

1To maintain portability, versions of the code with limited use of barrier calls could be created based on preprocessor

macro checks when compiling for a specific device or a device class.
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Radeon GeForce Core i7

Explicit 13C A9A 13C

DOT 5B7 13C C51

FMA 8B7 8B7 8B7

MAD 4F9 8B7 4F9

Table 4: Di↵erent checksums (color-coded) for the simulation values depending on the used method on

di↵erent platforms, using the default compiler optimization settings. Simulations were identical when

using thefma function.

1 i f (my id < 64)

2 bu f f e r [ my id ] += bu f f e r [ my id+64] ;

3 b a r r i e r (CLK LOCALMEM FENCE) ;

4 i f (my id < 32)

5 bu f f e r [ my id ] += bu f f e r [ my id+32] ;

6 b a r r i e r (CLK LOCALMEM FENCE) ;

7 i f (my id < 16)

8 bu f f e r [ my id ] += bu f f e r [ my id+16] ;

9 b a r r i e r (CLK LOCALMEM FENCE) ;

10 . . .

(a) Original Code

1 i f (my id < 64)

2 bu f f e r [ my id ] += bu f f e r [ my id+64] ;

3 b a r r i e r (CLK LOCALMEM FENCE) ;

4 i f (my id < 32) {

5 bu f f e r [ my id ] += bu f f e r [ my id+32] ;

6 mem fence (CLK LOCALMEM FENCE) ;

7 bu f f e r [ my id ] += bu f f e r [ my id+16] ;

8 mem fence (CLK LOCALMEM FENCE) ;

9 . . .

10 }
(b) Code Without Bariers

Figure 12: Example of barrier removal.

the synchronization. This is the case when all the working work items are in lock-step, i.e. belong to

one warp in NVidia, or wavefront in AMD terminology.

Care should be taken when removing barrier calls however, even when synchronization is not needed.

Without barrier calls, the OpenCL compiler can actually break the code as optimizations can reorder

the instruction execution order, or the results may be cached instead of being written to the local memory.

This pitfall can be avoided in OpenCL by using instructions to explicitly order memory read and write

operations, using mem fence, mem read fence and mem write fence functions. Those functions ensure

that all reads or writes made by the work item are visible to all other work items in the work group, but

they do not cause synchronization as the barrier does, so only work items that are guaranteed to be

able to read the values after encountering this instruction are the ones that are working in a lock-step

with work item in question.

Synchronization Interval. We have found that on AMD hardware on the Linux operating system

there is a large overall overhead - time not actually spent in the kernels - during the simulation. We were

able to greatly reduce this overhead, gaining speedups from 20% to over 40% in simulations of up to

hundreds of thousands of neurons. This overhead is associated with what we call synchronization interval

26



I
s

: the number of simulation time steps submitted to the GPU before waiting for their completion.

We measured the real running time using standard UNIX gettimeofday function for several long

simulations in order to determine the size of this overhead depending on I
s

. The simulations did not

include any additional operation after the synchronization (which would usually be the case in a real

network simulation). As can be seen in Figure 13 the running time decreases significantly on the Radeon

HD 7950 with increasing interval; on the GeForce GTX 470 the tendency is the same but the change

itself is barely measurable. Percentage-wise, reducing the overhead obviously aids the smallest network

sizes the most, although for the Radeon we still see a 20% performance increase for a network with

130,000 neurons.
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Figure 13: Running Times for N = M ·1024 neurons depending on I
s

. The Radeon benefits significantly

from increasing the synchronization interval to at least once every 10 iterations.

In the current implementation, there are only a few cases when such synchronization between GPU

and CPU is necessary. First there is visualization of the network activity, which requires GPU/CPU

synchronization every few time steps to ensure synchronization between OpenCL and OpenGL contexts.

Second is the profiling mode - gathering performance measurements after every iteration. Another

important case is when there is a need to send data between the CPU and GPU, e.g. downloading

results for validation, or uploading of external input to the network. In this case, if bu↵ering and

sending data less often is acceptable it can highly improve performance because of both this overhead

and the e�ciency of the transfer itself.

We also found that for intervals bigger than 250-500 iterations the overhead slowly begins to rise

again. Bigger values of I
s

also have a side e↵ect of increasing the memory usage. With this in mind,
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we settled for a default interval I
s

= 250 in our simulations, even when there is no actual need for

synchronization.

9 Discussion

We developed algorithms for implementing large scale neural networks with filter-based spiking neuron

models on general purpose GPUs. While parallel algorithms for spiking neurons have been developed,

in particular for di↵erential based neuron models, we focus on adaptations of the standard simulation

workflow specific for the many-core streaming computation architecture of GPUs. Additionally, we focus

on filter-based models for two reasons: first, filter-based models allow an extra dimension of parallel neural

state updating. Second, as filter-based models compute the internal neural state as a superposition of

filters, such computations are less sensitive to numerical errors as compared to integration methods for

di↵erential equations. Since GPUs are typically much more e↵ective for single precision computations as

compared to double precision, a significant speedup can be achieved at little cost in terms of simulation

accuracy.

A substantial body of work has focused on e�cient ways of computing spiking neurons, see e.g. the

review in Brette et al. (2007), More recent work has also explored vectorized algorithms suitable for

streaming computing using for example the SIMD units on CPUs, and also with GPU computing in

mind (Brette and Goodman, 2011). We specifically focused on algorithms that improve on this work by

taking into account the specifics of general purpose GPU computing, such as optimal work set sizes, and

data structures and update algorithms optimized for a GPU’s memory hierarchy. We then considered the

e↵ect of technical optimizations that further optimize the simulation for the quirks of current hardware

and software implementations. We find that both the architectural optimization and the technical

optimization improve the running speed of the simulation significantly. With these optimizations, we

can run in real-time (or better) networks comprised of up to 50,000 neurons, with each neuron spiking

at on average 7-8 Hz (and the GPU thus processing 35-40 million spike-events per second).

Having implemented our optimizations, spike-distribution starts to dominate the run-time of simu-

lations. Here, network activity clustering like in (Fidjeland et al., 2009) may help scale the networks

further. This would also be an promising approach for dividing large scale simulations over multiple

GPUs. While our optimizations are generic for the simulation workflow, algorithms could further be

tuned to specific network structures and neuron models, such as configurations of special biological

interest.

A commonly reported benchmark is the speedup that is achieved by running simulations on a GPU

versus the same simulation running on a CPU. To a large degree this is a meaningless number since it is

not clear to what degree optimization e↵orts on either GPU or CPU are exhaustive. At the same time,

theoretical peak numbers for either GPU or CPU are hard to compare as the extent to which actual peak

performance can be achieved depends greatly on the degree to which an algorithm can be parallelized
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and also on specific optimizations.

For GPUs acceleration to be useful for a broader public, the intricacies of GPU optimizations have

to be largely hidden from neural modelers (and the same holds for CPU optimizations). For example,

the performance penalty for synchronization in current AMD Linux drivers requires some bu↵ering of

input and output requests to CPU-driven parts of the simulation such as visualization, or inter-GPU

communication when multiple GPUs are present. The memory access optimizations, algorithms and

bu↵ering solutions presented here are fairly generic for spiking neuron simulations, and the algorithms

serve as showcases for the amount of improvement that detailed optimizations can provide2.

2The sources are available as open source from http://www.cwi.nl/~sbohte
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