
Abstractions and Static Analysis
for Verifying Reactive Systems

Nataliya Yustinova

Centrum voor Wiskunde en Informatica

The work reported in this thesis has been carried out at the CWI (Centrum
voor Wiskunde en Informatica) within the SVC (Systems Validation Centre)
project funded by Telematics Institute and the KTVFM project funded by the
Dutch Ministry of Defence.

Nataliya Yustinova
Abstractions and Static Analysis for Verifying Reactive Systems /
by Nataliya Yustinova. - Amsterdam: CWI, 2004.
Proefschrift. - ISBN 906196 525 X

Subject headings: formal methods / software verification / model checking /
static analysis / abstraction / reactive systems

Copyright c©2004 by Nataliya Yustinova, Amsterdam, The Netherlands.
All rights are reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without prior permission of
the author.

VRIJE UNIVERSITEIT

Abstractions and Static Analysis for
Verifying Reactive Systems

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan

de Vrije Universiteit Amsterdam,

op gezag van de rector magnificus

prof.dr.T. Sminia,

in het openbaar te verdedigen

ten overstaan van de promotiecommissie

van de faculteit der Exacte Wetenschappen

op donderdag 4 november 2004 om 10.45 uur

in het auditorium van de universiteit,

De Boelelaan 1105

door

Nataliya Yustinova

geboren te Yaroslavl, Rusland

promotor: prof.dr. W.J. Fokkink

copromotor: dr. N. Sidorova

Acknowledgments

The work presented in this thesis has been started in the last year I was em-
ployed as a teaching assistant at the Chair of Information and Communication
Services, Rostock University, Germany. A major part of this work was done
during the three years I was working at the SEN2 (Specification and Analysis
of Embedded Systems) group of the Department of Software Engineering, CWI
(Centrum voor Wiskunde en Informatica), within the SVC (Systems Valida-
tion Centre) project funded by Telematics Institute and the KTVFM project
funded by the Dutch Ministry of Defence.

There are many people who helped me to finish this thesis and whom I would
like to thank. I am grateful to my promotor Wan Fokkink for his confidence
in my ability to succeed, for his advice, constructive criticism and support
at important moments. He carefully read all parts of this work and provided
feedback that helped me to look at the results of my work from a broader
perspective and to reach a significant progress in presenting the results.

I deeply appreciate the help of my co-promotor Natalia Sidorova who guided
me in my everyday research life. She encouraged and supported me by sharing
with me scientific interests and by being patient explaining me complicated
details. I am grateful for the time she spent reading and commenting on this
thesis. I have learned a lot from her about planning research, writing scientific
articles and giving presentations. Her optimism and good sense of humour kept
me going in moments of uncertainty and helped me to finish this work.

My sincere thanks to my other co-authors Martin Steffen, Dragan Bošnački
and Stefan Blom. I really enjoyed working with Martin. He never stopped
asking critical questions until he was satisfied with the quality of the achieved
results. I appreciate the time that Dragan spent helping me to get into subtle
implementation details of Spin and DTSpin, and reading this work as a member
of the reading committee. His comments helped me to improve the readability of
this thesis. The competent support of Stefan facilitated my work with the µCRL
toolset and verification framework. Thanks for our discussions and scientific
quarrels.

I am grateful to Walter Vogler, Jaco van de Pol and Jan Willem Klop for
their consent to be members of the reading committee. Their comments and
remarks contributed to the quality of this thesis. I also thank Kees van Hee
and Jan Bergstra who agreed to be members of the promotion committee.

Leon Wolters and Michail Petreczky spent uncounted hours in proof-reading
this thesis.

I also owe my success to my former “bosses” Valery Sokolov and Clemens
Cap who persuaded me to go on with my scientific career.

In Rostock, I have really enjoyed the journeys to Rügen and playing squash
with my colleagues Stephan Preuss, Mykhailo Lyubich, Nico Maibaum and

Igor Sedov. Enormous thanks to my flatmates and friends Nadege Spella, Nina
Kitzig, Helge Haufe, Katrin Zansinger, Karsten Kaika, Anja Gellert and Donald
Reebs with whom I spent a lot of nice evenings.

In Amsterdam, I very much enjoyed the company of Simona Orzan and
Daniel Benden who showed me the nightlife of this wonderful town. Thanks to
Vincent van Oostrom for scientific hints. I am grateful to Paul Klint for true
interest in the progress of my work. Thanks to Joost Visser, Alban Ponse and
Engelbert Hubbers who helped me with learning Dutch.

The most heartfelt thanks I want to express to my parents who encouraged
my intellectual curiosity and gave me the opportunity to make my own choices
and mistakes. I always trusted in their help and support.

Table of Contents

Acknowledgments . v

1 Introduction . 1

1.1 Towards Reliable Reactive Systems . 2

1.2 Formal Methods . 4

1.3 Research Questions . 7

1.4 Road Map . 9

1.5 Origins of Chapters . 10

2 Preliminaries . 13

2.1 Partially Ordered Sets and Lattices . 14

2.2 Transition Systems and Behavioural Equivalences 15

2.3 Temporal and Modal Logic . 18

2.4 Model Checking and Automata Theory . 24

2.5 Verification by Abstraction . 28

3 Timer Transformation to Verify SDL Specifications 31

3.1 Introduction . 32

3.2 SDL . 33

3.2.1 Syntax Overview . 34

3.2.2 SDL Semantics . 37

3.3 Timer Transformation . 45

3.4 Model Equivalence . 49

3.5 Conclusion . 68

4 Using Fairness to Make Abstractions Work 69

4.1 Introduction . 70

4.2 Timer Abstraction . 73

4.3 Fair Timer Abstraction . 79

4.4 Incorporating t-Fairness into the Verification Algorithm 82

4.5 T -fairness in DTSpin . 86

4.6 Experimental Results . 87

4.7 Conclusion . 91

5 Closing and Flow Analysis for Model Checking
Reactive Systems . 93

5.1 Introduction . 94

5.2 Semantics . 96

viii Contents

5.3 Marking Chaotically-influenced Variables . 105

5.3.1 Data-Flow Analysis . 105

5.4 Program Transformation . 110

5.4.1 Preservation Result . 114

5.5 Implementation . 129

5.5.1 Extending the Vires Toolset . 129

5.5.2 Implementation of the Program Transformation 130

5.5.3 Experiments . 134

5.5.4 Case Study: a Wireless ATM Medium-access Protocol 139

5.6 Conclusion . 145

6 Timed Verification with µCRL . 147

6.1 Introduction . 148

6.2 µCRL: Basic Notions . 149

6.3 Semantics of Time . 152

6.4 Specifying Timed Systems in µCRL . 154

6.5 Experiments . 158

6.6 Timed Verification . 163

6.6.1 Regular LTL . 163

6.6.2 Regular LTL with Time . 164

6.6.3 tick-encoding of Regular LTL with Time 166

6.7 Conclusion . 170

7 Conclusion . 171

Bibliography . 176

Summary . 187

Samenvatting . 189

1

Introduction

2 Introduction

1.1 Towards Reliable Reactive Systems

In the last decades, the application domain of reactive systems has drastically
increased. Nowadays, reactive systems are used in various areas, from avionics
and automotive systems to telecommunication and manufacturing systems. Re-
active systems are the systems whose role is to maintain an ongoing interaction
with their environment, rather than produce a final value on termination. A
typical reactive system exhibits the following distinctive characteristics [125,
84]:

– It continuously interacts with its environment, using inputs and outputs.
– The inputs and outputs are often asynchronous, meaning they may arrive

and change values at any point of time.
– Its operation and reaction to inputs often reflects strict time requirements.
– It has many possible operational scenarios, depending on the current mode

of operation and on the current values of its data as well as its past behavior.
– Often, it is not expected to terminate.
– In general, it consists of many interacting processes that operate in parallel.

Typical examples of reactive systems are on-line interactive systems, such as
flight reservation systems; traffic control systems; systems controlling mechan-
ical and electronic devices in a train or a plane; systems controlling ongoing
processes in a nuclear reactor.

Behaviour of reactive systems is usually very complex. It cannot be de-
scribed in an unambiguous, clear and concise way by giving a verbal descrip-
tion. Verbal descriptions tend to be lengthy, incomplete and usually not well-
structured. They contain phrases that can be misinterpreted and implemented
in many different ways. Therefore, the need for formal description techniques
was realized a long time ago.

In the second half of the 1970s, ISO (International Organization for Stan-
dardization) started to work on formal description techniques (FDTs) that
allow to specify reactive systems. After eight years of work, the outcome was
standards for Estelle (Extended Finite State Machine Language), LOTOS (Lan-
guage of Temporal Ordering Specification) and SDL (Specification and Descrip-
tion Language) [161]. The last one is the subject of particular attention in this
thesis.

Nowadays SDL is a modern, high-level specification language suitable for
the description of complex event-driven real-time communicating systems. SDL
provides concepts for the specification of behaviour covering asynchronous com-
munication and parallelism. It also allows to express qualitative and quantita-
tive time requirements for reactive systems. SDL concepts used for describing
system behaviour and communication were integrated into those of UML (e.g.
SDL process diagrams correspond to UML state diagrams; SDL communication
links correspond to UML associations [141]).

In the telecommunication field, SDL is the language of choice for the de-
velopment of a broad range of software and hardware. Examples are 3G prod-
ucts, cellular phones, switches, WAP stacks, Bluetooth devices, GPRS systems,

1.1 Towards Reliable Reactive Systems 3

DECT phones, radio systems, network management platforms and network ser-
vices systems. Other examples are telecommunication standards like UMTS,
GSM, ISDN, V5.2, INAP, etc. SDL is also used in factory automation systems,
aerospace and automotive applications, and other safety-critical systems, e.g.
kidney-dialysis devices and train-control systems. SDL is used by standardiza-
tion organizations, universities and companies all over the world (e.g. Alca-
tel, Ericsson, Fujitsu, Hewlett-Packard, Lucent Technologies, Motorola, Nokia,
Nortel, Siemens, BT, Deutsche Telekom and NTT) [157]. In this thesis, we
chose an approach to the specification of reactive systems inspired by SDL.

There is a wide range of reactive systems where errors can have catastrophic
consequences leading to loss of lives, serious environmental damage, failure of
an important mission, or major economic loss. Here are just two examples of
such errors.

Huge losses of monetary and intellectual investment were caused by a rocket
boost failure in Ariane 5 in June, 1996 ([99]). Ariane 5, an expendable launch
system, was designed by the European Space Agency (ESA) and manufactured,
operated and marketed by Arianespace as part of the Ariane program. Ariane
5 software reused old code from Ariane 4 that was not respecified and retested
in the new environment. Ariane 5 being more powerful than Ariane 4 caused
an unanticipated floating-point exception that would never have occurred on
Ariane 4. The exception was not caught. Direct cost of this failure was estimated
at 0.5 billion EUR, indirect cost at 2 billion EUR.

Another example is a failure that caused a power shutdown of cruiser USS
Yorktown in November 1998 ([99]). A crew member of the guided-missile cruiser
USS Yorktown mistakenly entered zero for a data value, which resulted in a
division by zero. The division by zero caused an arithmetic exception, which
propagated through the system, crashed all LAN consoles and remote terminal
units, and led to a power shutdown for about three hours.

The failure in Ariane 5 software and the power shutdown of cruiser USS
Yorktown are just a few of many reactive system’s failures with serious conse-
quences. Therefore, the production of reliable reactive systems became a funda-
mental concern to computer scientists. Different techniques like static analysis,
testing, and various formal methods were developed by academic and industrial
communities to ensure the quality and reliability of reactive systems.

Static analysis [131] is a broad term covering a wide range of analysis tech-
niques evaluating programs without executing them. Traditionally, static anal-
ysis was aimed at the optimization of programs. Typical applications include
detecting redundant computations, e.g. loop invariants, and detecting super-
fluous computations that lead to results that are not used or results that are
known already at compile-time. Static analysis is also applied for type checking,
performance analysis and partial evaluation. Moreover, there are approaches
integrating static analysis with formal methods. For example, static analysis
is often used prior to model checking (cf. Section 1.2) to slice programs into

4 Introduction

smaller parts or to identify independent fragments of a program that can be
executed in parallel.

Testing [172, 33] is still one of the most popular techniques that is used in
industry to ensure the reliability of systems. In testing approaches, the system
is simulated with certain inputs called stimuli, and the reaction of the system
to stimuli is compared with the one defined by the requirement specification.
Exhaustive testing covering all possible system scenarios is practically impossi-
ble, hence testing allows to gain confidence about the correctness of the system
by looking at some of them but it cannot guarantee the absence of errors. This
thesis does not deal with testing.

Formal methods allow to determine system correctness by formal proofs
that cover all possible scenarios of the system. They not only help to find er-
rors that are missed by testing but can also prove that the system meets its
requirements. The usage of formal methods in early phases of system develop-
ment makes possible early detection of errors, which greatly reduces the costs
of their correction.

1.2 Formal Methods

The term formal methods covers different approaches to specification and verifi-
cation based on mathematical formalisms. Formal methods are aimed at estab-
lishing system correctness with mathematical precision. Every formal approach
to system verification usually involves a mathematical model of a system, a for-
mal language to specify properties of the system, and a method to check whether
the model satisfies the specification.

Labelled transition systems (LTSs) are a common basis for modelling the
behaviour of reactive systems. LOTOS, Estelle and SDL share LTSs as the
formal basis of their operational semantics. Therefore, we have chosen LTSs as
mathematical model for reactive systems.

Various logics have been proposed to specify properties of systems, e.g.
computation tree logic (CTL [62]), linear temporal logic (LTL [137]) and µ-
calculus [112]. In this thesis, we use LTL and some subsets of µ-calculus to
express properties of reactive systems.

Verifying (or checking) whether a model of a system satisfies certain prop-
erties may be partially or completely automated. Two well-established formal
approaches to computer-aided verification are theorem proving and model check-
ing.

Theorem Proving. In theorem proving, a system and its properties are
expressed in terms of some mathematical logic. This logic is defined by a for-
mal system that provides a set of axioms and a set of inference rules. Theorem
proving consists in finding a proof of a property from the axioms of the system.
Steps in the proof appeal to the axioms, rules, and, possibly, to derived defi-
nitions and intermediate lemmas. There are tools supporting machine-assisted
theorem proving, e.g. PVS [134]. Theorem provers are increasingly being used

1.2 Formal Methods 5

today in the mechanical verification of safety-critical properties of hardware
and software designs [43, 149].

Theorem proving can deal directly with infinite state spaces. It relies on
techniques like structural induction to construct proofs over possibly infinite
domains. Interactive theorem provers, by definition, require a lot of interaction
with a human, so the theorem proving process is slow and very expensive [43].
In the process of finding the proof, however, the user often gains better insight
into the system or the property being proved. Theorem proving is out of the
scope of this thesis.

Model Checking. Model checking is considered as the method of choice
in the verification of reactive systems and is increasingly accepted in industry
for its push-button appeal. The term model checking designates a collection
of formal techniques for the automatic analysis of reactive systems. Subtle
errors in the design of reactive systems that often elude conventional verification
techniques like testing can be and have been found in this way. Since model
checking has been proved cost-effective and integrates well with conventional
design methods, model checking has been accepted as a standard procedure to
assure the quality of reactive systems [42, 43].

The input to a model checker is usually a finite-state description of the
system to be analyzed and a number of properties that are expected to hold
for the system, often expressed as formulas of some temporal logic. In contrast
to theorem proving, model checking is completely automatic and relatively
fast, often producing an answer in a matter of seconds. The model checker
reports either that the property holds or that it is violated. In the latter case,
it provides a counterexample, a run of the system that violates the property.
Such a run can provide a valuable feedback and points to design errors. Model
checking can be used to check partial specifications, and thus it can provide
useful information about a system’s correctness even if the system has not been
completely specified.

There are two approaches to model checking: symbolic as in NuSMV [37]
and COSPAN [83], and explicit state (or enumerative) as in Spin [93] and
Cadp [65]. In the symbolic approach, a finite-state system is encoded using a set
of binary variables, just as ordinary data types of programming languages are
represented in binary form on a computer. The transition relation is expressed
as a propositional formula in terms of two sets of variables, one set encoding
the old state and the other encoding the new one. Propositional formulas are
then represented as binary decision diagrams (BDDs [32]). The model checking
algorithm is based on computing fixpoints of predicate transformers that are
obtained from the transition relation [124].

Although the symbolic approach can lead to spectacular results, it is not a
panacea. Effectiveness of symbolic model checking depends on finding a “good”
variable ordering for the representation of a BDD. However, finding a “good”
variable ordering is very difficult [127].

State space enumeration methods consider each reachable state of a model (a
finite-state system) to determine whether the model satisfies a given property.

6 Introduction

The main obstacle in model checking of industrial reactive systems is the
state explosion problem. The size of the model often grows exponentially with
the number of system components working in parallel. The research questions
considered in this thesis mainly deal with the development of techniques to
cope with the state explosion problem in enumerative model checking.

A number of techniques have been developed to mitigate the state explosion
problem: abstraction [122, 41, 50], compositional verification [148], partial-order
reduction [74, 163, 95], and on-the-fly techniques [93].

Abstraction. The size of systems that can be analyzed by model checking
directly remains rather limited. It is still far from the size of real reactive
systems, which are often not only large but infinite. Therefore, model checking
must be performed on abstract models.

Abstraction methodologies are concerned with the following question [48]:
Given a concrete system and a property to be checked, how to get a suitable
abstract system of finite (smaller) size? To answer this question, an abstraction
framework must provide three things: a method for obtaining abstract models, a
method for relating abstract and concrete models, and a logic stating properties
so that properties satisfied on the abstract system can be related to properties of
the concrete system. In general, when we say that a system T α is an abstraction
of a system T , we mean that the observable behaviour of T is contained in the
observable behaviour of Tα.

Methods for obtaining abstract models range from slicing and variable hid-
ing to more general algorithmic approaches like program transformation based
on Abstract Interpretation [46]. The relationship between abstract and concrete
models is usually defined in terms of bisimulation, homomorphism, Galois con-
nection or simulation (cf. Chapter 2). Given a property of some logic, two types
of preservation are considered: weak preservation, when every property that is
true on the abstract model is also true on the concrete one, and strong preserva-
tion, when the same properties hold on the abstract and concrete models [121].

Compositional Verification. State explosion can be alleviated by decom-
posing a system into components and considering the components of the system
one at a time. As in the case of abstraction, compositional verification requires
additional input from the user who must specify appropriate properties of in-
dividual components. The components do not necessarily function properly in
an arbitrary environment. Their behaviour relies on the properties of the rest
of the system. Thus, corresponding assumptions have to be introduced in the
statement of components’ properties [122].

Partial-Order Reduction is aimed at reducing the size of a system by
exploiting the commutativity of concurrently executed actions that result in
the same state when executed in different orders. The effectiveness of partial-
order reduction methods in general depends on the structure of the system:
they are useless for tightly synchronized systems, while they may dramatically
reduce the number of states and transitions explored during model checking of
loosely coupled, asynchronous systems [42].

1.3 Research Questions 7

On-the-fly techniques allow to minimize the memory demands of model
checkers by constructing only those parts of systems that are necessary to verify
or refute a given property [93].

Verification of Timed Systems

Quantitative time aspects are often important for correct functionality of reac-
tive systems. Various formalisms such as timed transition systems [89], timed
automata [1] and logics [3] have been proposed to model them. When modelling
time, two time domains, discrete and dense, are usually differentiated. In the
case of a dense time domain, time is modelled by real numbers and time pro-
gression has a continuous nature. In the case of a discrete time domain, time
is modelled by non-negative integers and time progresses by discrete steps.

Dense time often allows a more adequate representation of reality than
discrete time but it also leads to verification algorithms with higher complexity.
UPPAAL [119] is a leading toolset produced in the academic community for the
verification of timed systems with dense time. Various verification options like
bit-hashing, inactive clock reduction, compact memory management, counter-
example generation, etc. are provided for the verification [15]. Designed for the
analysis of timed aspects of reactive systems, UPPAAL is not aimed at the
verification of the data aspects.

In [88], Henzinger, Manna and Pnueli showed that discrete time suffices for
a large and important class of systems and properties, including all systems
that can be modelled as timed transition systems, and such properties as time-
bounded invariance and time-bounded response. In [29], the authors state that
discrete-time automata can be analyzed using any representation scheme used
for dense time, and additionally can benefit from enumerative and symbolic
techniques, which are not naturally applicable to the systems with dense time.

In this thesis, we limit our attention to reactive systems with discrete time.
DTSpin [24, 55], a discrete time extension of the Spin model checker, was used
for the majority of experiments mentioned in this thesis.

1.3 Research Questions

In this section, we formulate the research questions that are considered in
this thesis. All research questions are related to the state explosion problem,
which can be caused by various factors like interpretation of time, data aspects,
asynchronous communication, etc.

Modelling time aspects

Reactive systems are usually timed systems that must respond within certain
time limits. Interpretation of time and time constraints in a specification lan-
guage is very much affected by the intended mode of its use. In implementation-
orientated languages, time is modelled as an infinitely growing variable of inte-

8 Introduction

ger or real type. One infinitely growing variable immediately leads to an infinite
system.

Timers are usually employed to express time constraints imposed on a reac-
tive system. They can be used for several purposes: to control the release of a
limited resource, to control answers from unreliable resources, to issue actions
on a regular basis, etc. Timers are modelled as alarm clocks that either send
a signal or throw an exception at the right moment of time. Timers are set to
moments in time when they should expire. Since reactive systems are usually
not supposed to terminate, settings of timers are unbounded. This interpreta-
tion, natural for implementation purposes, is, however, not the best choice for
verification.

Taking SDL as an instance of the class of implementation-oriented lan-
guages, our objective is to provide an interpretation of time and timers that
alleviates the state explosion problem and to show that systems with this in-
terpretation can safely be used for verification.

Abstracting timers

Correctness of reactive systems often depends on right timer settings. Model
checkers can only verify a single finite-state system at a time. Direct model
checking whether a system works for all settings of a timer larger than or
equal to some k would require one iteration for each setting larger than some
k, i.e., we would need infinitely many iterations. In some cases, it would be
more convenient to reason automatically about a family of similar systems.
The verification problem in this case can be formulated as follows: given a
family of systems whose timer settings satisfy condition “larger than or equal
to some k” and a property, check whether the property holds for each system in
the family. This problem is undecidable for model checking [7]. In some cases,
an abstraction that treats settings of a timer as a system parameter can be
used to solve this problem.

Abstractions, however, introduce infinite traces that do not correspond to
any behaviour of the real system that can lead to false negatives. Our objective
is to show how to exclude nuisance behaviour in case of a timer abstraction
and how to do that in the most efficient way.

Closing open systems

Most model checkers cannot handle open systems. Therefore, the next step
following the decomposition of a system into components is closing components
with an environment.

Closing open systems is commonly done by adding an environment that is
an abstraction of the real environment. The simplest safe abstraction of the
environment thus behaves chaotically . When done manually, this closing, as
simple as it is, is tiresome and error-prone for large systems, for instance due
to the sheer amount of signals.

1.4 Road Map 9

For model checking, the approach to closing should be well-considered, to
counter the state explosion problem. This is especially true in the context of
model checking reactive systems where components communicate asynchro-
nously . Sending arbitrary message streams to unbounded input queues will
immediately lead to an infinite system, unless some assumptions restricting
the environment behaviour are incorporated in the closing process. Even so,
external chaos results in a combinatorial explosion caused by all combinations
of messages in the input queues.

Another problem addressed by closing is that the data carried with the
messages coming from the environment is usually drawn from some infinite
data domain. Special care must be taken to ensure that chaos also shows more
behaviour with regards to timing issues such as timeouts and time progress.
Our objective is to provide an automatic approach to closing asynchronous
open timed systems.

Reuse of untimed verification methods for timed verification

Many formalisms have been proposed for timed verification. Most of them are
designed for the analysis of timed aspects of reactive systems, while data aspects
are usually not taken into account. On the other side, there exist powerful
formalisms that are able to handle both data and behaviour aspects of reactive
systems but are originally not aimed at the verification of time issues. Our
challenge is to show how to reuse untimed formalisms with good support for
data types and behaviours for the verification of reactive systems with discrete
time.

1.4 Road Map

Chapter 2 reviews some mathematical notions and some notions from computer
science that will be used in the rest of the thesis.

Chapter 3 presents a transformation of SDL timers aimed at reducing the
infinite domain of timer values to a finite one. We justify the proposed trans-
formation by proofs that allow us to transfer both negative and positive results
of verification from the transformed model to the original one. We show that
the transformed model and the original one are related by path equivalence
up to stuttering. This guarantees that any LTL−X -formula satisfied by the
transformed model is satisfied by the original one, and that a counterexample
trace found in the transformed system can also be found in the original one.

In Chapter 4, we propose a timer abstraction and argue its correctness.
The abstraction introduces infinite traces that have no corresponding traces
at the concrete level. We show how to exclude them by imposing a strong
fairness constraint on the abstract model. By employing the fact that the timer
abstraction introduces a self-loop, we render the strong fairness constraint into
a weak fairness constraint and embed it into the verification algorithm.

10 Introduction

In Chapter 5, we propose an automatic transformation yielding a closed sys-
tem. By embedding the outside chaos into the system, we avoid the state-space
penalty in the input queues mentioned above. To capture the chaotic timing
behaviour of the environment, we introduce a non-standard three-valued timer
abstraction. The transformation is based on data-flow analysis that detects
instances of chaotic variables and timers. The approach is implemented in a
tool that automatically closes DTPromela translations of SDL-specifications.
To corroborate the usefulness of our approach, we compare the state space of
a system closed by embedding chaos with the state space of the same system
closed with chaos as external environment process on a case study for a wireless
ATM medium-access protocol.

In Chapter 6, we propose a manner of introducing discrete time into the
µCRL language without extending the language. The specification language
µCRL [78] (micro Common Representation Language) is a process algebraic
language that was especially developed to take account of data in the study
of communicating processes. The µCRL toolset [19] together with the Cadp
toolset [65] provides support for enumerative model checking. The semantics of
discrete time we use makes it possible to reduce the time progress problem to
the diagnostics of “no action is enabled” situations. The synchronous nature
of µCRL facilitates this task. We show some experimental verification results
obtained on a timed communication protocol.

Each of these chapters contains an introduction giving an elaborated moti-
vation and an overview of related work.

Chapter 7 discusses how our research questions are answered in this thesis.

1.5 Origins of Chapters

Chapter 3, “Timer Transformation to Verify SDL Specifications”, was co-
authored with Natalia Sidorova. It was published earlier as:

N. Ioustinova and N. Sidorova. Transformation of SDL specifications - a step
towards the verification. In D. Bjorner, M. Broy, and A. Zamulin, editors, Post-
proceedings of Andrei Ershov Fourth International Conference Perspectives of
System Informatics (PSI 01), volume 2244 of Lecture Notes in Computer Sci-
ence, pages 64–78. Springer, 2001.

Chapter 4, “Using Fairness to Make Abstractions Work”, was co-authored
with Dragan Bošnački and Natalia Sidorova. It was published earlier as:

D. Bošnački, N. Ioustinova, and N. Sidorova. Using fairness to make abstrac-
tions work. In S. Graf and L. Mounier, editors, Proc. of the 11th Int. Spin
Workshop on Model Checking of Software, volume 2989 of Lecture Notes in
Computer Science, pages 198–215. Springer, 2004.

1.5 Origins of Chapters 11

Chapter 5, “Closing and Flow Analysis for Model Checking Reactive Sys-
tems”, was co-authored with Natalia Sidorova and Martin Steffen. It was pub-
lished earlier as:

N. Ioustinova, N. Sidorova, and M. Steffen. Abstraction and flow analysis for
model checking open asynchronous systems. In P. Strooper and P. Muenchaisri,
editors, Proc. of the 9th Asia Pacific Software Engineering Conference (APSEC
2002), pages 227–235. IEEE Computer Society, 2002.

N. Ioustinova, N. Sidorova, and M. Steffen. Closing open SDL-systems for model
checking with DTSpin. In L. H. Eriksson and P. A. Lindsay, editors, FME
2002: Formal Methods - Getting IT Right, Proc. of International Symposium of
Formal Methods Europe, FME 2002, volume 2391 of Lecture Notes in Computer
Science, pages 531–548. Springer, 2002.

N. Ioustinova, N. Sidorova, and M. Steffen. Synchronous closing and flow ab-
straction for model checking timed systems. In Proc. of the Second International
Symposium on Formal Methods for Components and Objects (FMCO’03), vol-
ume (to appear) of Lecture Notes in Computer Science. Springer, 2004.

Chapter 6, “Timed Verification with µCRL”, was co-authored with Stefan
Blom and Natalia Sidorova. It was published earlier as:

S. Blom, N. Ioustinova, and N. Sidorova. Timed verification with µCRL. In
M. Broy and A. Zamulin, editors, Proc. of the 5th Int. Conf. Perspectives of
System Informatics, volume 2890 of Lecture Notes in Computer Science, pages
178–192. Springer, 2003.

2

Preliminaries

This chapter reviews some mathematical notions and some notions
from computer science that will be used in the rest of the thesis.

14 Preliminaries

2.1 Partially Ordered Sets and Lattices

The notions of a partially ordered set, a complete lattice and fixed points play a
crucial role in static analysis. Here we review basic definitions and some results
about partial orders, lattices, least and greatest fixed points [53].

Definition 2.1. [partial order]
Let S be a set. An order (or partial order) on S is a binary relation v on S
such that for all s, s1, s2, s3 ∈ S,

– s v s,
– s1 v s2 ∧ s2 v s1 ⇒ s1 = s2,
– s1 v s2 ∧ s2 v s3 ⇒ s1 v s3.

These conditions are referred to as reflexivity, antisymmetry and transitivity,
respectively. A set S equipped with an order relation v is called an ordered set
(or partially ordered set) denoted (S;v). Further we use the shorthand poset.

Many important posets are expressed in terms of existence of certain upper
and lower bounds of subsets of S. The most important classes of posets defined
in this way are lattices and complete lattices. s ∈ S is the least element of S
if s v s′ for all s′ ∈ S. The greatest element of S is defined dually. A subset
S′ of S has s ∈ S as an upper bound if for all s′ ∈ S′ : s′ v s. A subset S′ of
S has s ∈ S as an lower bound if for all s′ ∈ S′ : s v s′. A least upper bound s
of S′ is an upper bound of S′ such that s v s′′ for all upper bounds s′′ of S′.
A greatest lower bound s of S ′ is a lower bound of S′ such that s′′ v s for all
lower bounds s′′ of S′.

Definition 2.2. [complete lattice]
A complete lattice is a poset S such that all its subsets have a least upper bound
and a greatest lower bound.

Further, greatest lower bound and least upper bound of S, when they exist,
are denoted as lub(S) and glb(S), respectively.

Definition 2.3. [fixpoint]
Let S be a poset and f : S → S be a function. We say s ∈ S is a fixpoint of f
if f(s) = s. The set of all fixpoints of f is denoted fix(f). The least element
of fix(f), when it exists, is called the least fixpoint of f . Similarly we define
the greatest fixpoint of f .

Let (S,v) be a complete lattice and f : S → S be a function. We say that
f is monotonic if f(s) v f(s′) whenever s v s′.

Theorem 2.1. [Knaster/Tarski]
Let (S,v) be a complete lattice and f : S → S be a monotonic function. Then
f has a greatest fixpoint gfp(f) and a least fixpoint lfp(f).

Definition 2.4. [Galois connection]
Let (S;v) and (A;�) be posets. A pair of mappings α : S −→ A, γ : A −→ S
is a Galois connection (α, γ) from S to A iff for all s ∈ S and a ∈ A, α(s) �
a⇔ s v γ(a).

2.2 Transition Systems and Behavioural Equivalences 15

2.2 Transition Systems and Behavioural Equi-

valences

Definition 2.5. [transition system]
A transition system T is a tuple (S,R) where S is a set of states and R ⊆ S×S
is a transition relation.

A transition system can have various attributes. Often a subset S0 ⊆ S is
designated to represent the initial states. A transition system may come with
an interpretation function I : P → 2S that specifies interpretation of atomic
propositions from P over the states (see Section 2.3). Alternatively, valuation of
literals in states may be given by a labelling function L : S → 2P specifying the
propositions that hold in a state. A transition system with initial states and an
interpretation function L is also called Kripke structure [113] (see Section 2.3).
Not only states but also transitions of the system can be labelled.

Definition 2.6. [LTS]
A labelled transition system (LTS) T is a tuple (S,Lab,→, s0) where

– S is a set of states or locations;
– Lab is a set of labels;
– →⊆ S × Lab × S is a labelled transition relation;
– s0 ∈ S is an initial state.

Further we write s →λ s′ for a triple (s, λ, s′) ∈→. A triple (s, λ, s′) is
also referred to as a λ-step of T .

Definition 2.7. [trace]
Let T = (S,Lab,→, s0) be an LTS. A trace ζ of T is a pair of mappings
ζγ : N −→ S and ζλ : N \ {0} −→ Lab, where either N = {0, 1, 2, . . . , n} or
N = N, and (ζγ(i) →ζλ(i+1) ζγ(i+1)) ∈→ for all i, (i+1) ∈ N . If N = N, trace
ζ is called an infinite trace; otherwise, it is called a finite trace. The length of
ζ is defined as |N \ {0}| and referred to as |ζ|.

We use ζ(m) to denote the prefix of ζ ending at ζγ(m). We also use ζ(m) to

denote the suffix of ζ starting at ζγ(m). Of course ζ(m) is defined iff ζ has a
length at least m. ζ(m) is defined only in case ζ has a length at least m+ 1.

Definition 2.8. [partitioning]
Let ζ = (ζγ , ζλ) be a trace of an LTS T . Let N be the domain of ζγ. Let I
be a connected subset of N , i.e., it is either I = {z | k ≤ z ≤ m}, where
k < m, or I = {z | z ≥ k}. A pair ζI = (ζI

γ , ζ
I
λ) of mappings ζI

γ : I −→ S and

ζI
λ : I \ {k} −→ Lab is called a part of trace ζ iff the following conditions are

satisfied:

– for all i ∈ I: ζI
γ(i) = ζγ(i);

– for all j ∈ I \ {k}: ζI
λ(j) = ζλ(j).

16 Preliminaries

Let ζI1 and ζI2 be two parts of ζ. ζI1∪I2 is called the concatenation of ζI1

and ζI2 iff I1 = {k, . . . ,m} and mini∈I2
i = m.

A partitioning of trace ζ is a finite or infinite sequence ζI1ζI2 . . . of parts of
ζ such that the concatenation of the parts coincides with ζ.

Definition 2.9. [reachable state]
Let T = (S,Lab,→, s0) be an LTS. A state s ∈ S is reachable from the initial
state of the system if there is trace ζ of T such that ζγ(0) = s0 and ζγ(i) = s
for some i ≥ 0.

A wide range of behavioural equivalences and relations has been developed
to distinguish two systems. Often the notion of equivalence between two sys-
tems is based upon the idea that we only distinguish between system T1 and
system T2 if the distinction can be detected by an external system interact-
ing with each of them. [71] provides an overview and comparison of existing
behavioural equivalences. Further we review notions of trace equivalence, simu-
lation, bisimulation and isomorphism for LTSs. Trace equivalence requires that
systems can execute the same traces but does not require that systems have the
same branching structure. Bisimulation and isomorphism allow to distinguish
systems that have different branching structures. Let T1 = (S1,Lab1,→

1, s10)
and T2 = (S2,Lab2,→

2, s20) be two LTSs.

Definition 2.10. [strong equivalence of traces]
Let ζ and ρ be traces of LTSs T1 and T2 respectively. We say that ζ ≡tr ρ iff
|ζ| = |ρ| and ζλ(i+ 1) = ρλ(i+ 1) for all i = 0..|ζ|.

Definition 2.11. [strong trace inclusion]
We say that the set of traces generated by LTS T2 includes the set of traces
generated by LTS T1, written as T1 �tr T2, iff for every trace ζ of T1 there
exists a trace ρ in T2 such that ζ ≡tr ρ.

Definition 2.12. [strong trace equivalence]
Two LTSs T1 and T2 are trace equivalent, written as T1 ≡tr T2, iff both T1 �tr

T2 and T2 �tr T1.

Definition 2.13. [strong simulation]
A relation R ⊆ S1 × S2 is a strong simulation relation between LTS T1 and
LTS T2 iff s10Rs

2
0, and pRq together with p →1

λ p
′ implies q →2

λ q
′ and p′Rq′,

for some q′ ∈ S2.
We write T1 � T2, if there exists a strong simulation relation R between T1

and T2.

Definition 2.14. [strong bisimulation]
A relation R ⊆ S1 × S2 is a strong bisimulation relation between LTS T1 and
LTS T2 iff both R and R−1 are strong simulations.

We write T1 ↔T2, if there exists a strong bisimulation relation R between
T1 and T2.

2.2 Transition Systems and Behavioural Equivalences 17

It is straightforward to check that ↔ is an equivalence relation, i.e., ↔ is
reflexive, symmetric and transitive.

Definition 2.15. [isomorphism]
Two LTSs T1 and T2 are isomorphic iff there is a bijection g : S1 → S2 such
that ∀s, s′ ∈ S1, s→

1
λ s

′ iff g(s) →2
λ g(s

′).

Isomorphism implies strong bisimulation; strong bisimulation implies strong
trace equivalence; strong simulation implies strong trace inclusion.

[72] provides an overview of existing process equivalences and relations in
context of process algebras with silent moves. There, only a set of external
actions of a system is visible to an observer and the internal structure of the
system is hidden. Which activities of the system are hidden is a matter of choice
that depends on the level of detail at which one wants to analyse the system.
The hidden activities of the system are denoted as τ .

Weak trace equivalence relates two systems that can perform exactly the
same sequence of observable actions.

Definition 2.16. [weak equivalence of traces]
Let ζ and ρ be traces of LTSs T1 and T2 respectively. We say that ζ ≡wtr ρ
iff ζ and ρ can be partitioned as ζ1ζ2 . . . and ρ1ρ2 . . . respectively, so that the
following conditions are satisfied:

– every ζk, ρk has at most one step labelled with λ 6= τ ;
– ζk contains a step labelled by λ 6= τ iff ρk contains a step labelled by λ 6= τ .

Definition 2.17. [weak trace inclusion]
We say that the set of traces generated by LTS T2 weakly includes the set of
traces generated by LTS T1, written as T1 �wtr T2, iff for every trace ζ of T1

there exists a trace ρ in T2 such that ζ ≡wtr ρ.

Definition 2.18. [weak trace equivalence]
Two LTSs T1 and T2 are weakly trace equivalent, written as T1 ≡wtr T2, iff
both T1 �wtr T2 and T2 �wtr T1.

Intuitively, a τ -step is not truly silent if it results in a change of “potential”
of the system. For example, consider the LTS on Fig. 1. After execution of the
τ -step the system loses the option to execute step a. Therefore, the τ -step of
the system is not truly silent. The intuition of a truly silent τ -step is formalized
in the notions of branching simulation and branching bisimulation [70].

Definition 2.19. [branching simulation]
A relation R ⊆ S1×S2 is a branching simulation relation between LTSs T1 and
T2 iff s10Rs

2
0 and pRq together with p →1

λ p′ implies that one of the following
conditions holds:

1. q →τ q
′
1 →τ . . . →τ q

′
n →λ q

′, for some n ≥ 0 and q′, q′1, . . . , q
′
n ∈ S2 such

that pRq′i for all i = 1..n and p′Rq′;

18 Preliminaries

a τ

b

Fig. 1. Not truly silent τ

2. λ = τ and p′Rq.

We write T1 �br T2 if there exists a branching simulation relation R between
T1 and T2.

Definition 2.20. [branching bisimulation]
A relation R ⊆ S1 × S2 is a branching bisimulation relation between LTSs T1

and T2 iff both R and R−1 are branching simulations.
We write T1 ↔ brT2 if there exists a branching bisimulation relation R be-

tween T1 and T2.

In [13], it was shown that branching bisimulation is indeed an equivalence
relation.

2.3 Temporal and Modal Logic

Various logics have been developed to specify properties of systems and pro-
grams, e.g., computation tree logic (CTL?) [62], linear temporal logic (LTL)
[137] and µ-calculus [112]. They allow to express universal and existential prop-
erties that hold for all or some traces of a system respectively. Various safety
(“nothing bad will ever happen”) and liveness (“something good must eventu-
ally happen”) properties can be expressed as well.

Definition 2.21. [CTL?]
Given a set of atomic proposition P, the logic CTL? consists of state ϕ and
path ψ formulas defined by the following grammar:

ϕ :: = p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Aψ | Eψ, where p ∈ P

ψ :: = ϕ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | Fψ | Gψ | ψUψ | ψRψ

In definition 2.21, A and E are path quantifiers meaning “for all paths”
and “for some paths” respectively; F, G, X, U, R are temporal operators
expressing properties of a single path. Formally, the CTL? semantics is defined
by Def. 2.24. The “eventually” operator F specifies that a property holds at
some state of the path. The “always” operator G requires that a property holds

2.3 Temporal and Modal Logic 19

at every state of the path. The “next” operator X expresses that a property
holds in the second state of the path. The “unless” operator U holds if there
is a state on the path where the second property holds and the first property
holds at every state preceding this state. The “release” operator R is used to
specify that the second property holds in all states along a path up to and
including the first state that satisfies the first property. The first property is
not required to be eventually satisfied.

Linear Temporal Logic, LTL, is a subset of CTL? that consists of formu-
las having the form Aψ where ψ is a path formula in which the only state
subformulas permitted are atomic propositions.

Definition 2.22. [LTL]
Given a set of atomic prepositions P, the logic LTL consists of path formulas
of the form defined by the following grammar:

ψ :: = p | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Fψ | Gψ | Xψ | ψUψ | ψRψ
where p ∈ P.

In LTL context, 2 is often used instead of G to denote the “always” operator
and 3 is used instead of F to denote the “eventually” operator.

CTL? formulas are interpreted over Kripke structures.

Definition 2.23. [Kripke structure]
A Kripke structure K is a tuple (T, S0,L), where T is a transition system
(S, R), S0 is a set of initial states, L : S → 2P is an interpretation function
and P is a set of atomic propositions.

A sequence in the Kripke structure K = (S,R, S0,L) is π = s0s1s2 . . .
such that (si, si+1) ∈ R holds for all i ≥ 0. A path in the Kripke structure
K = (S,R, S0,L) is an infinite sequence. We use π(i) to denote the suffix of

π starting at state si; π
(i) is used to denote the prefix of π starting at s0 and

ending at si. In case a state s has no outgoing transitions, we say that there is
a deadlock in this state. Both paths and finite sequences π = s0s1 . . . sk ending
at a state sk that has a deadlock are called computations of K. The length of
π (denoted |π|) is the number of states on it. The satisfaction of a formula is
defined inductively.

Definition 2.24. [CTL? semantics][42]
Let K = (S,R, S0,L) be a Kripke structure over P. Let p ∈ P, φ, φ1, φ2 be
state formulas and ψ, ψ1, ψ2 be path formulas, s ∈ S and π be a path in K.
The relation |= is defined inductively as follows:

– K, s |= p iff p ∈ L(s);
– K, s |= ¬φ iff K, s 6|= φ;
– K, s |= φ1 ∨ φ2 iff K, s |= φ1 or K, s |= φ2;
– K, s |= φ1 ∧ φ2 iff K, s |= φ1 and K, s |= φ2;
– K, s |= Eψ iff there exists a path π starting in s such that K,π |= ψ;

20 Preliminaries

– K, s |= Aψ iff for every path π starting in s, K,π |= ψ;
– K,π |= φ iff π starts in s and K, s |= φ;
– K,π |= ¬ψ iff K,π 6|= ψ;
– K,π |= ψ1 ∨ ψ2 iff K,π |= ψ1 or K,π |= ψ2;
– K,π |= ψ1 ∧ ψ2 iff K,π |= ψ1 and K,π |= ψ2;
– K,π |= Xψ iff K,π(1) |= ψ;
– K,π |= Fψ iff there exists a k ≥ 0 such that K,π(k) |= ψ;
– K,π |= Gψ iff for all i ≥ 0,K, π(i) |= ψ;
– K,π |= ψ1Uψ2 iff there exists a k ≥ 0 such that K,π(k) |= ψ2 and for all

0 ≤ j < k, K,π(j) |= ψ1;
– K,π |= ψ1Rψ2 iff for all k ≥ 0, ∀i < k K, π(i) 6|= ψ1 implies K,π(k) |= ψ2.

There are several approaches to the interpretation of CTL? path formulas.
Although in the original definition of CTL? in [62] both finite and infinite
computations are taken into consideration, definition of CTL? in [63] and in
[60] revise the original definition by quantifying over paths only. A similar
definition is given in [41]. In [61, 39], a transition relation of a Kripke structure
is required to be total (i.e., every state must have an outgoing transition so
that all computations are infinite).

In case only paths are taken in consideration, no properties about finite
computations of the system can be expressed. If a Kripke structure contains a
deadlock, this will not be caught by checking some CTL? formula.

This deficiency is often repaired by assuring that all computations of the sys-
tem are infinite before checking any other properties. In [47], a Kripke structure
is extended by adding an extra state s and a transition leading to s from every
state having no outgoing transitions (including s itself). New atomic proposi-
tion is in s, which is true only in s, is added to the set of atomic propositions.
The check of deadlocks can be performed by checking AG¬is in s over system
transformed as described above. If this check succeeds, this implies that the
original system is deadlock free. Once the system has been checked to be free
from deadlocks, the extra transitions and state s can be removed again.

Similar approach is taken in [129]. There, the transition relation of Kripke
structure does not have to be total. The authors propose a livelock extension
for Kripke structures that is obtained by applying the following transformation:
For each state that has no outgoing transitions or occurs in a cycle of states
with the same labels, a new outgoing transition is added. The transition leads
to a new state s that is labelled by a new proposition that occurs in no other
labels on states.

Further in this thesis, we deal with transition systems (LTSs) where the
transition relation is total due to the fact that a system is timed and time can
progress even if the system can not do anything useful.

Next-free logic

Reactive systems are usually developed by a number of successive steps. At each
step, the system is described in more detail and closer to the implementation

2.3 Temporal and Modal Logic 21

level. Refinement allows the replacement of a higher level system specification
by a lower, more detailed one. Refinement often changes the granularity of
actions, i.e., high-level actions are mapped to multiple low-level actions, and
therefore, high-level actions lose their atomicity.

The next operator X is closely related to the notion of a next state that can
be reached by one step of the system. The X operator can be useful to express
system properties, but it should be used with caution. The intuitive meaning of
the X operator is not associated with the granularity of actions that the system
can perform. In case the X operator is employed to express properties of the
system, a change of the granularity can lead to a situation where properties
satisfied by a higher level model become false for a lower level one.

The necessity of the X operator was already questioned in [117]. The main
objection against the X operator was that it allows the designer to express
irrelevant properties of the model. Using the X operator one can write a spec-
ification of a queue that includes a requirement: “removing an element from
the queue should take exactly 17 steps”. This property is not meaningful if one
gives a high-level specification of a queue. It is a property of an implementa-
tion of the “remove” operation, but not a property of the “remove” operation
itself. Therefore, Lamport proposed to drop the X operator from temporal log-
ics. Further we refer to next-free CTL? and to next-free LTL as CTL?−X and
LTL−X respectively.

The work of Lamport is related to developments in the field of process
equivalences, namely to the research on comparative concurrency semantics [71]
in the context of process algebras with silent moves [72]. In [73], it is argued that
branching bisimulation equivalence is the coarsest equivalence that respects
the branching structure of a process with silent moves. In [129], De Nicola
and Vaandrager showed that CTL?−X induces on LTSs the same identification
as branching bisimulation. According to [73], considering CTL? would induce
an equivalence that is too fine for processes with silent moves. In [47], Dams
considers the development from strong bisimulation to branching bisimulation
as the parallel of the shift of attention from CTL? to CTL?−X in specification
logics.

Formulas of temporal logic are usually interpreted over Kripke structures;
LTSs are mainly used for modelling purposes. In [129], De Nicola and Vaan-
drager introduced a new kind of structure that can be naturally projected on
both LTSs and Kripke structures. The structure is called doubly labelled tran-
sition systems.

Definition 2.25. [doubly labelled transition systems] [129]
A doubly labelled transition system (L2TS) is a structure D = (S,Lab, →,
s0,L), where (S,Lab,→, s0) is an LTS and L : S → 2P is a labelling func-
tion that associates a set of atomic propositions to each state. With LTS(D)
we denote the substructure (S,Lab,→, s0) and KS(D) denotes the substructure
(S,R, s0,L) such that ∀s, s′ ∈ S, (s, s′) ∈ R iff s→λ s

′ ∈→ for some λ ∈ Lab.

22 Preliminaries

Equivalences defined on LTSs or Kripke structures can be naturally lifted
to L2TSs by ignoring state or transition labels respectively. The notions of a
path and a computation in an L2TS are defined analogously to the notion of
a path and a computation in a Kripke structure. The notion of a trace in an
L2TS is defined analogously to the notion of a trace in an LTS. For an L2TS
D and a formula ϕ of LTL, we write D |= ϕ iff KS(D) |= ϕ. Further we give a
definition of path equivalence up to stuttering and an overview of results from
[135, 136] relating path equivalence up to stuttering with LTL−X .

Definition 2.26. [stuttering-free projection] [135, 136]
Let π = s0s1s2 . . . be a sequence in L2TS D = (S,→, S0,L). The stuttering-free
projection Pr(π) of π is defined coinductively as follows:

– Pr(s0s1s2 . . .) = s0 if ∀i > 0 (or ∀0 < i ≤ |π|), L(si) = L(s0);

– Pr(s0 . . . sksk+1 . . .) = Pr(s0 . . . sk)Pr(sk+1 . . .) if L(sk) 6= L(sk+1).

Definition 2.27. [equivalence up to stuttering] [135, 136]
Let π and ρ be paths in L2TSs D1 = (S1,→

1, s10,L1) and D2 = (S2,→
2, s20,L2)

respectively, where the range of labelling functions L1 and L2 is 2P . We say that
π and ρ are equivalent up to stuttering, written as π ≡st ρ, iff L1(Pr(π)(i)) =
L2(Pr(ρ)(i)) for all i ≥ 0 (or ∀0 < i ≤ |Pr(π)| and |Pr(ρ)| = |Pr(π)|), i.e.,
the interpretations of the stuttering-free projections of π and ρ are the same.

Definition 2.28. [path equivalence up to stuttering] [135, 136]
Let D1 = (S1,→

1, s10,L1) and D2 = (S2,→
2, s20,L2) be two L2TSs where the

range of labelling functions L1 and L2 is 2P .
We write D1 �st D2 iff for each path π in D1 there is a path ρ in D2 such

that π ≡st ρ.

D1 and D2 are path equivalent up to stuttering, written as D1 ≡st D2, iff
D1 �st D2 and D2 �st D1.

Theorem 2.2. [135]
Let D1 and D2 be two L2TSs, where the range of labelling functions L1 and L2

is 2P .

Let D1 �st D2. Then D1 |= ϕ if D2 |= ϕ for any LTL−X formula ϕ over P.

Let D1 ≡st D2. Then D1 |= ϕ iff D2 |= ϕ for any LTL−X formula ϕ over
P.

Modal µ-calculus

Definition 2.29. [modal µ-calculus, Lµ] [112, 51]
Let Var be a set of propositional variables. Let P be the set of atomic proposi-
tions. Moreover, let p ∈ P, x ∈ Var, ϕ ∈ Lµ. The logic Lµ is the set of formulas
that is defined by the following grammar:

ϕ :: = p | ¬p | x | ϕ ∨ ϕ | ϕ ∧ ϕ | 2ϕ | 3ϕ | µx.ϕ | νx.ϕ

2.3 Temporal and Modal Logic 23

Formula 2ϕ expresses that ϕ is true for every immediate successor, while
3ϕ expresses that there is at least one successor for which ϕ is true. µx.ϕ and
νx.ϕ are the least and greatest fixpoint operators respectively. Their meaning
is the smallest (respectively, greatest) set x of states in which ϕ holds.

Here we consider only formulas in positive normal form, where all negations
occurring in the formula are applied to atomic propositions and no variable is
quantified twice [112]. The universal and existential fragments 2Lµ and 3Lµ

are subsets of Lµ in which the only allowed next-state operators are 2 and 3

respectively. L+
µ denotes the positive fragment of Lµ, where the use of negation

is forbidden even on the atomic propositions.

Lµ formulas are interpreted over a transition system (see Def. 2.5) with an
interpretation function associated to the transition system. Intuitively, I(p) is
the set of states where p holds. A function ‖ · ‖ interprets an Lµ formula over
a given transition system with an interpretation function.

Definition 2.30. [Lµ semantics] [51]
Let T = (S,R) be a transition system and I : P → 2S be an interpretation
function. The function ‖ · ‖ : (Lµ × (Var → 2S)) → 2S is defined as follows. Let
p ∈ P, x ∈ Var, ϕ, ϕ1, ϕ2 ∈ Lµ and e : Var → 2S.

‖p‖e = I(p)

‖¬p‖e = I(p)

‖x‖e = e(x)

‖ϕ1 ∨ ϕ2‖e = ‖ϕ1‖e ∪ ‖ϕ2‖e

‖ϕ1 ∧ ϕ2‖e = ‖ϕ1‖e ∩ ‖ϕ2‖e

‖2ϕ‖e = {s ∈ S | ∀ s′ ∈ S sRs′ ⇒ s′ ∈ ‖ϕ‖e}

‖3ϕ‖e = {s ∈ S | ∃ s′ ∈ S sRs′ ∧ s′ ∈ ‖ϕ‖e}

‖µx.ϕ‖e =
⋂
{S′ ⊆ S | ‖ϕ‖e[x 7→S′] ⊆ S′}

‖νx.ϕ‖e =
⋃
{S′ ⊆ S | S′ ⊆ ‖ϕ‖e[x 7→S′]}

e[x 7→S′] is the same as e except that x is mapped to S ′. We write s |= ϕ for
s ∈ ‖ϕ‖. For a set of states S ′, the notation S′ |= ϕ abbreviates ∀ s ∈ S′, s |= ϕ.
When there may be confusion between different systems and interpretation
functions we write T, (I), s |= ϕ to denote that s |= ϕ in T with interpretation
function I.

The existential and universal fragments of µ-calculus subsume the existen-
tial and universal fragments of CTL? ([87]).

24 Preliminaries

2.4 Model Checking and Automata Theory

Model checking [38, 120, 165, 35, 42] is a formal technique for verifying finite-
state systems with respect to their specification. The properties of a system
are expressed as formulas in some temporal logic [137, 60]. A model checker
either confirms that the system satisfies the properties or reports that they
are violated. In case a property gets violated, the model checker produces a
counter-example that is a system run that violates the property.

Model checking comes in two fashions: symbolic model checking as e.g. in
NuSMV [37] and COSPAN [83], where Ordered Binary Decision Diagrams [32]
are used to represent states of the system symbolically, and explicit state model
checking as in Spin [93] and Cadp [65], where the states of the system are ex-
plicitly enumerated. Here we give an overview of the explicit-state automata-
based approach to model checking [165, 93]. In this approach, both the system
and the negation of a property are turned into a finite automaton on infinite
words [158]. The verification consists in checking whether the language recog-
nized by the synchronous product of the above automata is empty.

Further we focus on finite automata over infinite words. The simplest au-
tomata over infinite words are Büchi automata [34].

Definition 2.31. [Büchi automaton] [127]
A Büchi automaton B = (Q, I, δ, F) over an alphabet Σ is given by a finite
set Q of states, a non-empty set I ⊆ Q of initial states, a transition relation
δ ⊆ Q×Σ ×Q and a set F ⊆ Q of accepting states.

A run of B over an ω-word w = a0a1 . . . ∈ Σω is an infinite sequence
ρ = q0q1q2 . . . such that q0 ∈ I and (qi, ai, qi+1) ∈ δ holds for all i ∈ N. The run
ρ is accepting iff there exists some q ∈ F such that qi = q holds for infinitely
many i ∈ N.

A language L(B) ⊆ Σω is the set of ω-words for which there exists some
accepting run ρ of B. A language L ⊆ Σω is called ω-regular iff L = L(B) for
some Büchi automaton B.

Finite automata can be used to model concurrent and interactive systems. A
Kripke structure directly corresponds to a finite automaton over infinite words
where all states are accepting. Specifically, a Kripke structure K = (S,R, s0,L)
where L : S → 2P can be seen as an automaton A = (S, S0, δ, S) over 2P , where
(s, a, s′) ∈ δ for s, s′ ∈ S iff (s, s′) ∈ R and a = L(s) [168]. (Note that in the
general case there is a set of initial states, but for model checking we only
require a single initial state.) The specification can be transformed into an
automaton B, over the same alphabet. The system A satisfies the specification
B when L(A) ⊆ L(B). That can be rewritten as L(A)

⋂
L(B) = ∅, i.e., there

is no behaviour of A that is disallowed by B. If the intersection is not empty,
any behaviour in it corresponds to a counter-example.

Büchi automata are closed under intersection and complement [34]. This
means that there exists an automaton that accepts exactly the intersection of
the languages of two automata and an automaton that recognizes exactly the

2.4 Model Checking and Automata Theory 25

complement of the language of a given automaton. In some implementations
such as Spin [93], the automaton for the complement of the specification is
used instead of the automaton for the specification. In this case, not the good
behaviour is specified, but the bad behaviour.

We show how to construct an automaton that recognises the intersection of
two languages accepted by a pair of Büchi automata. Since all the states of the
automaton for the modelled system are accepting, we give the definition of the
product for the case when all the states of one of the automata are accepting.

Definition 2.32. [synchronous product] [42]
Let B1 = (Q1, δ1, Q

0
1, Q1) and B2 = (Q2, δ2, Q

0
2, F2) be Büchi automata

over Σ. The synchronous product of B1 and B2 is the automaton B over Σ
given by (Q1 ×Q2, δ, Q

0
1 ×Q0

2, Q1 × F2) such that ((q1, q2), a, (q
′
1, q

′
2)) ∈ δ iff

(q1, a, q
′
1) ∈ δ1 and (q2, a, q

′
2) ∈ δ2.

It is straightforward to show that the synchronous product of automata B1 and
B2 accepts L(B1)

⋂
L(B2).

Let ρ be an accepting run of a Büchi automaton B = (Q, I, δ, F) over an
alphabet Σ. Then ρ contains infinitely many accepting states from F . Since Q
is a finite set, there is some suffix ρ′ of ρ such that every state of Q that is met
along the suffix appears infinitely many times. Each state on ρ′ is reachable
from any other state on ρ′, i.e., the states in ρ′ form a cycle. This component
is reachable from some initial state. It contains an accepting state of the au-
tomaton and generates an accepting run of it. Checking non-emptiness of L(B)
is equivalent to finding a strongly connected component that is reachable from
an initial state and contains an accepting state. In other words, the language
L(B) is non-empty if and only if there is a reachable accepting state that is on
a cycle [42].

The automaton for the specification can have as many as 2O(n) states where
n is the number of subformulas in the specification [165]. The size of the product
automaton which determines the overall complexity of the method is propor-
tional to N · 2O(n), where N is the number of reachable states of the mod-
elled system. Model checking on-the-fly allows to detect a property violation
by constructing and visiting only some part of the search space containing a
counter-example.

The nested depth first search (ndfs) algorithm (Fig.2) is used for finding
cycles with accepting states (accepting cycles) “on-the-fly” [96, 45, 127]. Given
a property ϕ and a Kripke structure K, the model checking problem is re-
formulated as follows: Does there exist a run of K that does not satisfy ϕ?
We ask whether the language of the automaton defined by the product of the
automaton for K and the automaton for ¬ϕ is empty or not.

ndfs is an “on-the-fly” algorithm because the exploration of reachable states
is interleaved with the search for acceptance cycles. The algorithm keeps the
stack of all states whose successors need to be explored and the set of states
that have already been visited. Starting from an initial state, the procedure
ndfs generates reachable states until an accepting state is met. The search

26 Preliminaries

Procedure 2.3 (emptyness) [127]
\\ initialization
stack = emptystack(); visited = emptyset(); seed = nil;
for each q0 ∈ Q0 {

push q0 onto stack;
enter (q0, false) into visited;
ndfs(false)

}

Procedure 2.4 (ndfs(boolean search cycle))
q = top(stack);
for each q′ ∈ successors(q) {

if (search cycle ∧ (q′ == seed))
report acceptance cycle and exit;

if ((q′, search cycle) 6∈ visited) {
push q′ onto stack;
enter (q′, search cycle) into visited;
ndfs(search cycle);
if (¬search cycle ∧ (q′ is accepting)) {

seed : = q′; ndfs(true);
}

}
}
pop(stack);
}

Fig. 2. Nested depth-first search algorithm

2.4 Model Checking and Automata Theory 27

then switches to the cycle search mode (indicated by the boolean variable
search cycle) and tries to find a path that leads back to the accepting state.
The algorithm reports an acceptance cycle if one exists, although it does not
guarantee to find all cycles, because the exploration stops as soon as an error
has been found [127].

Lemma 2.1. [correctness of ndfs algorithm] [45]
The ndfs algorithm returns a counterexample for the emptiness of the automa-
ton B exactly when the language L(B) is not empty.

If the acceptance cycle is found, the sequence of system states in the stack
represents a path of K that violates property ϕ. The algorithm needs to store
only the path from the current state back to the initial state and the set of
visited states. If no acceptance cycle is found, all reachable states have to be
visited.

Spin and DTSpin

For the majority of experiments mentioned in this thesis, we used DTSpin [24,
55], a discrete time extension of the Spin model checker.

Spin [93] is a state-of-the-art, enumerative model-checker with an expres-
sive input-language Promela. In an extensive list of industrial applications,
Spin and Promela have proven to be useful for the verification of industrial
systems. Spin can be used not only as a simulator for rapid prototyping that
supports random, guided and interactive simulation, but also as a powerful state
space analyzer for proving user-specified correctness properties of the system.
As standard Spin does not deal with timing aspects of protocols, DTSpin, a
discrete time extension of Spin, has been developed [24, 55], that can be used
for verification of properties depending on timing parameters. The extension is
compatible with the standard untimed version of the Spin validator, except for
the timeout statement, which has different semantics and its usage is no longer
allowed (nor necessary) in discrete-time models.

Fairness

The behavior of a reactive system depends not only on the properties of the indi-
vidual components running in parallel, but also on the interactions among those
components. These interactions depend on external factors such as the relative
speed of processors or the particular scheduler implementation whose details
can be complex or even unknown. By introducing appropriate fairness assump-
tions stating that every sufficiently enabled component eventually proceeds, we
can abstract away from these details without ignoring them completely.

Most of the common notions of fairness share the same general form: Every
entity that is enabled sufficiently often will eventually make progress. Depend-
ing on the interpretations of “entity” and “sufficiently often” we get different
notions of fairness. In the context of communicating processes, there are many

28 Preliminaries

different kinds of entities to consider, each choice leading to a different notion
of fairness. In particular, Francez [68] and Kuiper and de Roever [114] have
identified a hierarchy of fairness notions for CSP that includes the following
forms of fairness: process fairness, channel fairness, guard fairness, and commu-
nication fairness. Each of these fairness notions have weak and strong varieties,
which differ in the interpretation of “sufficiently often”: weak forms of fairness
concern with continuously enabled entities, whereas strong forms of fairness
concern with infinitely (but not necessarily continuously) enabled entities.

Process fairness is one of the most common notions of fairness, due to its ap-
plicability in the context of communicating processes. Weak (process) fairness
(also known as justice [110]) states that every continuously enabled process will
eventually make progress. Intuitively, weak fairness ensures that the scheduler
will never forget the process forever. It is straightforward to implement weak
fairness as a scheduling policy, using a simple round-robin scheduling queue. An
alternative to weak fairness, strong (process) fairness (also known as compas-
sion [110]), states that every infinitely enabled process makes progress infinitely
often.

2.5 Verification by Abstraction

Model checking can be applied to programs that have a relatively small finite
state space. State space explosion remains a stumbling block of model check-
ing. Various techniques were developed to solve this problem. One of them is
verification by abstraction. Abstraction means replacing a semantical model by
an abstract, in general simpler (finite) one. In addition to the requirement that
an abstract (verification) model should have a smaller state space than the con-
crete (implementation) one, the abstraction needs to be safe, which means that
every property checked to be true on the abstract model, holds for the concrete
one as well. A safe abstract system is, intuitively, a system whose behaviour
contains at least the behaviour of the concrete system [47]. This allows the
transfer of positive verification results from the abstract model to the concrete
one.

Let M be a system, whose semantics is given by transition system T =
(S,R), and let αT = (αS, αR). Description relation ρ ⊆ S × αS gives for the
states from T their “descriptions” in αT .

Definition 2.33. [pre-image and post-image functions] [121]
Given a relation ρ ⊆ S×αS we define pre[ρ] : 2αS → 2S and post[ρ] : 2S → 2αS

by:

pre[ρ](X) = {s ∈ S | ∃sα
∈ X, (s, sα) ∈ ρ}

post[ρ](Y) = {sα
∈ αS | ∃s ∈ Y, (s, sα) ∈ ρ}

The duals p̃re[ρ] : 2αS → 2S and p̃ost[ρ] : 2S → 2αS are defined by

p̃re[ρ](X) = pre[ρ](X) and p̃ost[ρ](Y) = post[ρ](Y).

2.5 Verification by Abstraction 29

Given a description relation ρ, the functions α = post[ρ] and γ = p̃re[ρ],
called abstraction and concretization respectively, form a Galois connection (see
Def. 2.4) from 2S to 2αS .

Lemma 2.2. [Galois connection generated by relation] [121]
If ρ ⊆ S ×Sα, then (post[ρ], p̃re[ρ]) is a Galois connection from 2S to 2αS and
(pre[ρ], p̃ost [ρ]) is a Galois connection from 2αS to 2S.

Further we review the definition of simulation parameterized by a Galois
connection and the definition of simulation parameterized by a description re-
lation ρ. Lemma 2.3 and Lemma 2.4 from [121] show that these two notions
of simulation coincide. Let T = (S,R) and αT = (αS, αR) be two transition
systems.

Definition 2.34. [simulation parameterized by connection] [121]
Let (α, γ) be a Galois connection from 2S to 2αS. Define T v(α,γ) αT iff
α ◦ pre[R] ◦ γ ⊆ pre[αR].

Definition 2.35. [simulation parameterized by description] [121]
Let ρ be a description relation, ρ ⊆ S × αS. Define T vρ αT iff
R−1 ρ ⊆ ρ αR

−1.

Lemma 2.3. [from v(α,γ) to vρ] [121]
For any description relation ρ ⊆ S × αS, there exists a Galois connection (α, γ)
from 2S to 2αS such that T vρ αT iff T v(α,γ) αT .

Lemma 2.4. [from vρ to v(α,γ)] [121]
For any Galois connection (α, γ) from 2S to 2αS, there exists a description
relation ρ ⊆ S × αS such that T v(α,γ) αT iff T vρ αT .

Definition 2.36. [abstraction]
We say that αT is an abstraction of T iff there exists a description relation
ρ ⊆ S × αS such that T vρ αT .

The notion of consistency defined below shows when an abstraction function
α : 2S → 2αS preserves the meaning of the atomic propositions defined by an
interpretation function I (see Sec. 2.3) on 2S . The abstraction function α is
consistent with I : P → 2S , where P is a set of atomic propositions, if for all
atomic propositions p the abstractions of I(p) and I(p) by α are disjoint, i.e.,
abstractions of interpretation of p and ¬p are not contradictory. In case (α, γ)
is a Galois connection, consistency of α with I expresses the fact that γ̃ ◦ α
strongly preserves the interpretation of all atomic propositions (see Lemma 2.5).

Definition 2.37. [consistent abstraction function] [121]
Let I : P → 2S be an interpretation function. α : 2S → 2αS is consistent with
I if ∀ p ∈ P, α(I(p)) ∩ α(I(p)) = ∅.

30 Preliminaries

Lemma 2.5. [characterization of consistency] [121]
If (α, γ) is a Galois connection from 2S to 2αS, then α is consistent with I iff

∀p ∈ P , γ(α(I(p))) = I(p)

We give here an overview of the preservation results for the 2L+
µ and 2Lµ

fragments of modal µ-calculus from [121]. The preservation results allow the use
of the following verification method: Given a concrete system T and some Galois
connection (α, γ), compute an abstract system αT , such that T v(α,γ) αT . In
order to verify a property expressed as a formula ϕ of 2Lµ, verify the property
on αT . If ϕ holds on αT , it also holds on T .

Theorem 2.5. [preservation of 2L+
µ and 2Lµ] [121]

Let T v(α,γ) αT . Let I : P → 2S and αI : P → 2αS be two interpretation func-
tions. Then γ̃ preserves the formulas of 2L+

µ from αT to T and if γ̃ is consistent
with αI then γ̃ preserves the formulas of 2Lµ from αT to T .

3

Timer Transformation to Verify SDL

Specifications

Industrial-size specifications/models, whose state spaces are of-
ten infinite, can in general not be model checked in a direct way.
Program transformation is a way to build a finite-state verifica-
tion model that can be submitted to a model checker. This chap-
ter presents a transformation of SDL timers aimed at reducing
the infinite domain of timer values to a finite one while preserv-
ing system behaviours.

The chapter is based on [101].

32 Timer Transformation to Verify SDL Specifications

3.1 Introduction

The development of a specification language and its semantical concept are
greatly affected by the intended mode of its use, its application domain. Often,
the final objective is to provide an executable specification/implementation.
In that case, the specification language and its semantics should provide a
framework for constructing faithful and detailed descriptions of systems. No
wonder that specifications written in these implementation-oriented languages
are harder to verify than the ones written in the languages developed as in-
put languages for model checkers. In this chapter, we concentrate on some
aspects of modelling time in implementation-oriented languages, taking SDL
(Specification and Description Language) [133] as an instance of this class of
languages.

SDL is used for the specification of real-time systems like telecommunication
software as well as aircraft and train control, medical and packaging systems,
all of which must respond within certain time limits. Time-supervision is em-
ployed to control response time from unreliable resources and release of shared
or limited resources. It can also be used to establish activities that must be re-
peated on a regular basis. Behaviour of a system specified in SDL is scheduled
with the help of timers declared in the specification. The model of SDL timers
was induced by manners of implementation of timers in real systems. An SDL
timer can be activated by setting it to a value (NOW + δ) where the expres-
sion NOW provides an access to the current system time and δ is a delay after
which this timer expires, i.e., the timer expires when the system time (system
clock) reaches the point (NOW + δ). Such an implementation of timers immedi-
ately means that the state space of SDL specifications is infinite just because
timer variables take an infinite number of values due to the value of NOW which
grows during the system run. An inverse timer model is normally employed in
verification-oriented languages: a timer indicates the delay left until its expi-
ration, i.e., a timer is set to a value δ instead of (NOW + δ), and this value is
decreased at every tick of the system clock. When the timer value reaches zero,
the timer expires. This model of timers guarantees that every timer variable
takes only a finite (and relatively small) number of values.

Another SDL peculiarity that adds to the complexity of verification is the
manner in which timers expire. SDL is based on the Communicating Extended
State Machines; communication is organized via message passing. For the uni-
formity of communication, timers are considered as a special kind of signals and
a process learns about a timer expiration by dint of a signal with the name of
the expired timer, inserted in the input port of the process. The timeout mes-
sage can be added in the input port at any point of the time slice, in which the
timer is ready to expire. From the verification point of view it would be better
if a timer expiration had been diagnosed by a simple check of the timer value.
Treating timeouts as messages, one gets all possible combinations of timeouts
with messages exchanged by the processes, which increases the state space of
the system.

3.2 SDL 33

Though formal verification of SDL specifications is an area of rather active
investigations [25, 94, 91, 147, 160], for a long time the time-concerned difficul-
ties were being got around by means of abstracting out time and timers. Due to
engineering rather than formal approaches to constructing abstractions, some
proposed abstractions turned out to be unsafe (see [25] for details).

In [25], a toolset and a methodology for the verification of time-dependent
properties of SDL-specifications are described. The SDL-specifications are first
translated into DTPromela, the input language of the DTSpin (Discrete Time
Spin) model checker [24], and then verified against LTL formulas. Some infor-
mal arguments in favour of correctness of the DTPromela translation to the
original specification are given, but no formal proof that the results of the
verification of the transformed system are transferable to the original one is
provided.

In this chapter, we propose a transformation that substitutes the traditional
SDL timers by timer variables. In the transformed model, the timers are inverse
and timeouts are not put into the input queue, but modelled directly by guards.
The underlying idea is similar to the one in [25], but we provide a formal proof
of path equivalence up to stuttering, which substantiates that the transformed
system can be safely used for verification. The semantics of transformed systems
will be further used in Chapter 5 to present an approach to automatic closing
SDL specifications.

The chapter is organized as follows. In Section 3.2, we give an overview
of syntax and define the semantics of the subset of SDL we concentrate on.
The transformation substituting timeouts-as-messages by timeouts-by-guards
is given in Section 3.3. This section also gives the semantics of transformed
systems. The proof that the results of the verification of the transformed system
are transferable to the original one is provided in Section 3.4. We conclude this
chapter with Section 3.5.

3.2 SDL

The development of SDL started in 1972 when a study group within the
telecommunications union ITU-T (CCITT at this time) representing several
countries and large telecommunication companies began research on a speci-
fication language for the telecommunication industry. SDL is standardized by
ITU-T as standard Z.100. The first version of the language issued in 1976 was
followed by new versions every fourth year since. The formal semantics of SDL,
defined in 1988 and further updated for subsequent versions of the SDL lan-
guage in 1992 and 1996, is based on the combination of the VDM meta language
Meta-IV with a CSP-like communication mechanism. It provides a formaliza-
tion of the static [143] and dynamic semantics [145] of SDL. The semantics
is documented by more than 500 pages of Meta-IV descriptions and hardly
manageable because of its size. The latest version of SDL called SDL-2000 was
approved as an international standard in 1999 [142, 144, 146].

34 Timer Transformation to Verify SDL Specifications

Besides an official semantics developed within ITU-T there are other ap-
proaches to the formalization of the semantics of SDL. In [30, 90, 92], semantics
of various subsets of SDL are defined based on stream processing functions of
FOCUS [31]. SDL processes are modelled as discrete streams of signals. This
stream based semantics neither supports the concept of states and transitions
nor provides an adequate treatment of time aspects of SDL. It restricts the
fundamental notion of system time that makes it not suitable for our purposes.
The transformation proposed in this chapter deals mainly with time aspects,
so the stream based semantics is not suitable for proving the correctness of the
transformation.

In [66], SDL Time Nets (an extended Petri Net model) are proposed as a
basis for the formal verification of communication protocols specified in SDL. A
process algebra semantics of a restricted version of SDL is defined in [16]. The
authors admit that the extension of discrete time process algebra with relative
timing, used to describe the meaning of language constructs of SDL, is fairly
large and rather intricate. A compiler-oriented semantics of SDL-2000 [64] is
defined by an SDL semantics group. The key issues of this approach that uses
abstract state machines as a formal basis are maintenance and executability of
an SDL specification.

Further in this section, we provide an example of an SDL process, give an
overview of the syntax, define the set of specifications we work with, and define
their semantics. The transformation that we propose is related to behavioural
aspects of SDL systems, rather than to structural ones. Therefore, we concen-
trate on a subset of SDL that is used for specification of behaviour, without
considering structuring concepts used for describing large system. We also do
not deal with abstract data types, but assume a specification to be well-typed
and a few data types together with their interpretations to be predefined.

3.2.1 Syntax Overview

Systems described by SDL consist of many processes that run simultaneously
and communicate with each other by exchanging signals via channels. An SDL
system is specified by a system diagram that consists of a system text area,
where channels and signals are defined, and a process interaction area. Further,
we refer to the set of channel names defined in a system text area as Chan. The
set Chan is partitioned into Chan i and Chano of input and output channels,
and we write ci , c

′
o , . . . to denote membership of a channel in one of these

classes. The set of signal names defined by the signal declarations is denoted
as Sig . A process interaction area is formed by one or more process diagrams.

A process diagram is formed by a process heading, a process text area and
a process graph area enclosed by a frame symbol (see Fig. 3). A process text
area contains declarations of process variables and timers. For variables, we
assume data types Integer, Boolean, Time and Duration together with
their natural interpretations Z, Bool , Z and Z to be predefined.

3.2 SDL 35

process RCM

TIMER T;

ACQUIRE_AP

SET (NOW+k, T)

busy

T

’non−deterministic choice’

’success’ ’failure’

ACQUIRE_AP_OK ACQUIRE_AP_KO

process heading

start state

process diagram

state

transition

input

decision

task

text area

output

busy

idle

idle

Fig. 3. An SDL process

A process graph area contains a graph defining process behaviour in terms of
states and transitions with a start state as its root. Transitions are decorated by
input, output, task and decision symbols. The process diagram in Fig. 3 defines
process RCM. The process stays in state idle until it gets the ACQUIRE AP
signal as input. After this input, the process sets timer T and waits in state
busy until timer T expires. Upon expiration of the timer, the process makes
a non-deterministic decision between sending either the ACQUIRE AP OK or
the ACQUIRE AP KO signal and returns to the idle state.

Formally, we define a specification of a process P by a tuple (pid , In , Out ,
Var , Timer , Loc, Act , Edg , l0), where pid is a unique process identity, In is
a finite set of input channel names of the process, Out is a finite set of output
channel names, Var denotes a finite set of variables, Timer denotes a finite set
of timers, and Loc denotes a finite set of locations or control states; Act is the
finite set of actions; the set Edg ⊆ Loc × Act × Loc denotes the set of edges.
For an edge (l, α, l̂) ∈ Edg of P , we write more suggestively l −→α l̂.

The set Loc consists of states declared by the process diagram and inter-
mediate control states between statements decorating arrows of transitions. In
the set Loc, we distinguish the subset Loci of input locations, i.e. the locations
where input actions are allowed. Note that only input actions are allowed in
these locations. The initial location l0 does not necessarily belong to Loci.

36 Timer Transformation to Verify SDL Specifications

The set Edg defines possible changes of locations by performing actions from
the set Act . As untimed actions, we distinguish (1) input of a signal s containing
a value to be assigned to a local variable, (2) sending over a channel c a signal s
together with a value described by an expression, and (3) assignments. In SDL,
each transition starts with an input action, hence we assume the inputs to be
unguarded, while output and assignment are guarded by a boolean expression
g, its guard. The three classes of actions are written as ?s(x), gB c!s(e), and
gBx := e, respectively, and we use α, α′ . . . when leaving the class of actions
unspecified. We use env to denote environment, the world outside the system.
We define the set of internal signals Sig int as the set of all signals sent by the
processes within the system. The set of signals exchanged with environment is
denoted as Sigext . Note that it can be the case that the same signal can come
both from the environment and from a process of the system.

Time aspects of a system behaviour are specified by actions dealing with
timers. A timer is a stopwatch, defined by a local declaration of a process.
Each process has the finite set Timer of timers with typical elements t, t1,
A timer can be either set to a value, i.e., activated until the system time reaches
a certain point, or deactivated by a reset action. Actions setting and resetting
a timer t are denoted as gB SET(e, t) and gB RESET(t), respectively. There is
a timeout signal associated with each timer t. Further, we assume T to be the
set of timeout signals defined by the specification.

Definition 3.1. [process specification]
A process specification SpecP is a tuple (pid , In, Out ,Var ,Timer ,Loc, Act ,
Edg , l0), where pid is a unique process identity, In is a finite set of input
channel names, Out is a finite set of output channel names, Var is a finite set
of variables, Timer is a finite set of timers, Loc is a finite set of locations with
an initial location l0, Act is a finite set of actions, and Edg ⊆ Loc ×Act ×Loc
is a finite set of edges.

We assume the sets of variables and timers, sets of locations and sets of
input channels of processes Pi in a specification to be disjoint. A mapping
from variables to values is called a valuation; we denote the set of valuations
by Val = {φ | φ : Var → D}. We write D when leaving the data domain
unspecified, and we silently assume all expressions to be well-typed.

Definition 3.2. [system specification]
A system specification Spec is given by a finite set of channels Chan, a finite
set of signals Sig and a finite set of process specifications, {SpecP1

, . . . , SpecPn
}

such that the following conditions hold for all j, k = 1..n:

– Inj

⋂
Ink = ∅ if j 6= k;

– Var j

⋂
Vark = ∅ and Timer j

⋂
Timerk = ∅ if j 6= k;

– Locj

⋂
Lock = ∅ if j 6= k;

–
n⋃

j=1

Inj ⊆ Chani and
n⋃

j=1

Out j ⊆ Chano.

3.2 SDL 37

Note, that Spec specifies an open system. The channel names used by the

environment are not necessarily in
n⋃

j=1

Inj . Further we refer to the the channels

and processes specified by a system specification as entities.

3.2.2 SDL Semantics

Here, we define a small step structural operational semantics [131] of a speci-
fication in terms of configurations and a transition relation expressing how a
configuration is changed by one step of computations. First, we consider the lo-
cal semantics of separate entities like a process and a channel. The semantics of
a process (channel) is an LTS, which is defined with the help of the rules of Ta-
ble 1 and Table 2 mapping an edge from Edg to a transition. Rule Expiration
of Table 1 and rules In, Out of Table 2 have no edges in premises. Further,
we give a definition of n-ary composition that allows to put n processes into
communication with each other.

Local semantics

Behaviour of a single process is given by sequences of transitions σ0 →λ1

σ1 →λ2
. . . starting from the initial state.

A process state, denoted as σ, consists of an actual process location, a
valuation of process variables, a valuation of timers and an input queue of the
process. The process starts from the initial location with the default valuation
of variables, all timers being deactivated and an empty input queue. The set of
process statesΣ is a subset of the Cartesian product Loc×Val×TVal×Q , where
Val denotes the valuations of process variables, TVal denotes the valuations of
timers and Q denotes the contents of the input queue.

An input queue receives and holds signals (both timeout and nontimeout)
until they are consumed by the process. We write ε for the empty queue;
s(pid , v) :: q denotes a queue with message s(pid , v) (consisting of a signal s, an
identity of a sender pid and a value v) at the head of the queue, i.e., s(pid , v) is
the message to be input next; likewise the queue q :: s(pid , v) contains s(pid , v)
most recently entered. We use M to denote a set of messages that can be sent
in the system, M = Sig × Id ×D. The set of input queue contents is defined
as Q = Seq(M ∪ T) where Seq(X) denotes the set of all sequences over X.

Definition 3.3. [process state]
A state σ of a process P is a tuple (l, φ, θ, q), where l is a location, φ is a
valuation of process variables, θ is a valuation of timers and q is an input
queue of the process. Σ denotes the set of process states.

The step semantics is given as a labelled transition relation between states.
The labels differentiate between internal τ -steps, tick -steps, which represent
time progress, and communication steps (either input c?s(pid , v) or output
c!s(pid , v)) which are labelled by a quadruple of a channel name, a signal,

38 Timer Transformation to Verify SDL Specifications

an identity of a sender and a value being transmitted, so LabP = {τ, tick ,
ci?s(pid , v), co!s(pid , v) | s ∈ Sig , v ∈ D, pid ∈ Id}.

Depending on location, valuation of process variables, valuation of timers,
the possible next actions, and the content of the input queue, the possible
successor states are given by the rules of Table 1. In the table, the notation
φ[x 7→ v] stands for the valuation equalling φ for all y ∈ Var\{x} and mapping
variable x to the value v.

An input of a signal, l −→?s(x) l̂ ∈ Edg , is enabled if the signal at the head
of the queue matches signal s expected by the process. Input ?s(x) results in
removing the signal s(v) from the head of the queue and updating the valuation
φ of process variables to φ[x 7→ v] (rule Input).

Discard is a specific feature of SDL92: if the signal from the head of the
queue does not match any input defined as possible for the current input lo-
cation, then the signal is removed from the queue, and the location, the val-
uation of process variables and the valuation of timers remain the same (rule
Discard).

Receiving and sending are communication steps of a process. Denoted by a
label ci?s(pid , v), receiving a signal s with a value v via a channel c leads to
adding the message s(v, pid) to the input queue and does not influence process
variables, timers and current location (rule Receive).

Output is guarded, so sending a message involves evaluating the guard and
the expression to be sent according to the current valuation of variables. It
leads to a change of location of the process that sends the message. The mes-
sage is sent along the channel with name c and the output step is labelled by
co!s(pid , v) (rule Output).

An assignment l −→g B x:=e l̂ ∈ Edg is enabled if the guard g evaluates
to true. It results in a change of the current location and an update of the
valuation φ[x 7→ v], where [[e]]φ = v (rule Assign).

Modelling time in SDL

In SDL, the concept of timers is employed to specify timing conditions im-
posed on a system. Two predefined data types, Time and Duration, are used
to specify values related to time. A Time value indicates some point of time,
whereas a Duration value denotes a time delay. A process can access the cur-
rent system time by means of the NOW expression. A valuation [[NOW]] maps this
expression to a value of the predefined type Time representing current system
time. SDL is intended to specify distributed systems with asynchronous com-
munication, so no assumption on the temporal ordering of events in different
processes can be based on reading NOW.

Each timer is related to a process; a timer is either active (set to a value)
or inactive (reset). Two operations are defined on timers: SET and RESET (rules
Set and Reset). A timer can be activated by setting it to a value on(v), where
v is the time when the timer should expire. The value v is given by an expression

3.2 SDL 39

l −→?s(x) l̂ ∈ Edg s 6∈ T
Input

(l, φ, θ, s(pid , v) :: q) →τ (l̂, φ[x 7→ v], θ, q)

s′ 6∈ {s | l −→?s(x) l̂ ∈ Edg} l ∈ Loci s′ 6∈ T
Discard

(l, φ, θ, s
′(pid , v) :: q) →τ (l, φ, θ, q)

v ∈ D c ∈ In
Receive

(l, φ, θ, q) →ci?s(pid,v) (l, φ, θ, q :: s(pid , v))

l −→g B c!(s,e) l̂ ∈ Edg [[g]]φ = true [[e]]φ = v
Output

(l, φ, θ, q) →co !s(pid,v) (l̂, φ, θ, q)

l −→g B x:=e l̂ ∈ Edg [[g]]φ = true [[e]]φ = v
Assign

(l, φ, θ, q) →τ (l̂, φ[x 7→ v], θ, q)

l −→g B SET(e,t) l̂ ∈ Edg [[g]]φ = true [[e]]φ = v
Set

(l, φ, θ, q) →τ (l̂, φ, θ[t 7→ on(v)], πt(q))

l −→g B RESET(t) l̂ ∈ Edg [[g]]φ = true
Reset

(l, φ, θ, q) →τ (l̂, φ, θ[t 7→ off], πt(q))

[[t]]θ = on(v) v ≤ now
Expiration

(l, φ, θ, q) →τ (l, φ, θ[t 7→ off], q :: t)

l −→?t l̂ ∈ Edg t ∈ T
TInput

(l, φ, θ, t :: q) →τ (l̂, φ, θ, q)

t′ 6∈ {t | l −→?t l̂ ∈ Edg} l ∈ Loci t′ ∈ T
TDiscard

(l, φ, θ, t
′ :: q) →τ (l, φ, θ, q)

blocked(σ)
TickP

now →tick now + 1

Table 1. Step semantics of process specification SpecP

40 Timer Transformation to Verify SDL Specifications

(NOW+e). A RESET action sets the timer to off . So the set TVal of valuations of
timers is defined as follows: TVal = {θ | θ : Timer → {off , on(v) | v ∈ Time}}.

If a SET or RESET operation is performed on an expired timer after adding
the timer signal to the process queue but before the signal is consumed from
the queue, the timer signal is removed from the queue. We write πt(q) for the
queue obtained from q by projecting out the timeout signal t.

There are a pseudo-signal and an implicit transition, called a timeout tran-
sition, associated with each timer. A timer expires when the system time now

reaches the value to which the timer was set, i.e., the timeout transition of the
timer set to on(v) becomes enabled and may occur when now is larger than or
equal to v. Execution of the timeout transition, captured by the Expiration
rule, adds the corresponding pseudo-signal to the process input queue and re-
sets the timer to off . The TInput rule captures consumption of a timeout
signal from the input queue. The TDiscard is similar to Discard.

Rule TickP allows time progression by action tick that increases the value
of system time now by 1 and does not change the state of the process. Time
can progress only when the process is blocked, i.e., it cannot do anything ex-
cept receiving signals from the outside world. Due to the discarding feature,
this implies that the input queue of processes should be empty. This situation
is determined by a predicate blocked that is true if the process is in a state
(l, φ, θ, ε) and l ∈ Loci. None of the other steps can change the system time.

Definition 3.4. [process P]
A process P is an LTS (Σ × Time,LabP ,→λ, (σ0, 0), In,Out) where σ0 =
(l0, φ0, θ0, ε) is an initial state, 0 is the initial system time, In is a set of input
channel names, Out is a set of output channels names and →⊆ (Σ ×Time)×
Lab × (Σ ×Time) is a labelled transition relation derived by applying the rules
in Table 1 to some process specification SpecP .

We say that a process specification is well-formed iff at least one guard
evaluates to true in each non-input state. At the SDL source language, this
assumption corresponds to the natural requirement that each conditional con-
struct must cover all cases, for instance by having at least a default branch.
The system should not block because of a non-covered alternative in a decision-
construct [133]. In the sequel, we assume that we work only with well-formed
process specifications.

Channels

In SDL’s asynchronous communication model, a process receives messages via
channels into a single input port associated with the process. Input ports as
well as asynchronous channels are modelled as queues. A channel is represented
explicitly by a separate entity consisting of the channel name together with
a queue modelling the channel. To allow a uniform presentation of parallel
composition below, we use the symbol σ not only for typical element of process
states, but also for states (c, q) of queues. Note that timeout signals may appear

3.2 SDL 41

only in an input queue of a process, but not in a queue modelling a channel.
Only nontimeout signals are transferred via channels, so the set of possible
channel states of channel c is defined as Σ = {(c, q) | q ∈ Seq(M)}.

Definition 3.5. [channel state]
A state σ of a channel c is a pair (c, q), where c is the name of the channel and
q is a FIFO queue.

We require for the input and the output names of a channel that Inc = {co}
and Outc = {ci}. The step semantics of a channel c is given by a labelled tran-
sition relation →⊆ Σ×Labc×Σ defined by the operational rules In and Out of
Table 2. Rule In enables a step co?s(pid , v) that adds a message s(pid , v) to the
channel queue, whereas rule Out makes it possible to take a step ci!s(pid , v)
that removes the message s(pid , v) from the channel queue in order to deliver
it to a destination process or an environment. The set of labels Labc is defined
as {ci!s(pid), co?s(pid , v) | s ∈ Sig , pid ∈ Id, v ∈ D}, so the labels marking
the communication steps of channels differ from those labelling communication
steps of processes.

A channel process may also tick , if it can not do anything else except re-
ceiving messages. This is possible in case the queue modelling the channel is
empty. Otherwise, the channel still can deliver a message to some destination
process or environment. So blocked is true only in state (c, ε).

Definition 3.6. [channel c]
A channel process c is an LTS S = (Σ × Time,Labc,→, (σ0, 0), Inc,Outc),
where σ0 = (c, ε) is an initial state, 0 is the initial system time, and a transition
relation →⊆ (Σ × Time) × Labc × (Σ × Time) that is defined by the rules in
Table 2.

Time in SDL

We use an interpretation of time progression supported by the commercial
SDL design-tools [166, 156]. It regards transitions as instantaneous, i.e., taking
zero-time. Time is allowed to pass when SDL processes are in an idle state

Out
(c, s(pid , v) :: q) →ci !s(pid,v) (c, q)

In
(c, q) →co?s(pid,v) (c, q :: s(pid , v))

blocked(c, q)
TickQ

now →tick now + 1

Table 2. Step semantics for channel c

42 Timer Transformation to Verify SDL Specifications

and waiting for further signals to arrive, i.e., the input ports are empty. Time
proceeds until an active timer expires or a process receives a signal from the
environment, i.e., time progress has least priority. We refer to a time period
between two tick -steps as a time slice. When the system time becomes equal
to a timer value, the timeout transition becomes enabled and can be executed
at any point of the time slice. A time slice starts with firing some enabled
timeout transition or an input from the environment. This action unblocks the
system. In case several timeout transitions become enabled at the same time,
one of them is taken non-deterministically to unblock the system, and the rest
is taken later at any point of the time slice since they have the same priority
as normal transitions. In case none of timeout transition is enabled and there
are no inputs from the environment, the system is still blocked and time can
progress further.

We say that a system is blocked if it can only wait for signals to arrive
from the outside world. We use the predicate blocked to determine whether
the system is in this state. The system time is allowed to pass if all entities of
the system are blocked. This interpretation conforms to the interpretation of
time given by the dynamic semantics of SDL [145, 146]. The dynamic semantics
states that global system time is represented by a function clock whose value
increases monotonically and does not increase as long as a signal is in transit on
a channel. Moreover, it also fits into the interpretation of time given in Section
11.12.1 of SDL standard Z.100 [140, 142].

In SDL, real numbers are used for Time and Duration. So, whenever a
timer is set, its expiration is given by a real number. Every tick increases system
time with a certain amount, so the system time proceeds in a discrete man-
ner. Therefore, we may use a discrete approach to the interpretation of Time

values, i.e., N and Z are used as the interpretations of Time and Duration,
respectively. We assume a global system time represented by a system variable
now that has a value of the type Time. A tick -step, which increases the value
of this variable, is enabled only if the system is blocked.

Though complicated, such a time semantics is suitable for implementation
purposes [133]. It is natural to model a timer as a unit advancing from the
current moment of time derived by the evaluation of the NOW expression to the
time point specified by the expression (NOW + δ), where δ is time left until the
expiration of the timer. Expression NOW always evaluates to the system time,
i.e., [[NOW]] = now.

n-ary parallel composition

A global semantics of an SDL specification is given by an n-ary parallel com-
position of processes and channels defined by the specification.

The semantics of parallel composition of n processes is given by the rules of
Table 3. We call a vector of states of n system entities (processes and channels)
a configuration and write γ, γ1, . . . ∈ Γ for typical elements. We call a sequence

3.2 SDL 43

(σj ,now) →αj (σ̂j ,now) (σk,now) →αk
(σ̂k,now) comm(αj , αk)

Comm
(. . . , σj , . . . , σk, . . . ,now) →τ (. . . , σ̂j , . . . , σ̂k, . . . ,now)

(σi,now) →co?s(env,v) (σ̂i,now)
Interleavein

(. . . , σi, . . . ,now) →co?s(env,v) (. . . , σ̂i, . . . ,now)

(σi,now) →ci!s(pid,v) (σ̂i,now) c ∈ Inenv

Interleaveout

(. . . , σi, . . . ,now) →ci!s(pid,v) (. . . , σ̂i, . . . ,now)

(σi,now) →τ (σ̂i,now)
Interleaveτ

(. . . , σi, . . . ,now) →τ (. . . , σ̂i, . . . ,now)

(σ1,now) →tick (σ1,now + 1) . . . (σn,now) →tick (σn,now + 1)
Tick

(σ1, . . . , σn,now) →tick (σ1, . . . , σn,now + 1)

Table 3. n-ary parallel composition

of configurations γ0 →λ0
γ1 →λ2

. . . starting from an initial configuration a
run.

Communication between two system entities is performed by exchanging
a common signal and a value over a channel name (co or ci). According to
the syntactic restriction on the use of input and output channel names, only
synchronization of communication steps between a process and a queue may
happen. Sending of a message over the channel consists in synchronizing an
output step of the process with an input step that adds the message into the
channel queue, i.e., a co!s(pid , v)-step of the process should be synchronized
with a co?s(pid , v)-step of the channel c. Receiving a message consists in syn-
chronizing an output step that removes the first element from the channel
queue with a receiving step that adds the message into the input queue of the
process, i.e., a ci!s(pid , v)-step of the channel should be synchronized with a
ci?s(pid , v)-step of the destination process. A predicate comm, which is true
when communication steps should be synchronized, is defined as follows:

Definition 3.7.

For two labels α1 and α2, the predicate comm is true iff one of the following
conditions is satisfied for j, k ∈ {1, 2}, j 6= k:

(i) αj = co!s(pid , v), αk = co?s(pid , v)

(ii) αj = ci!s(pid , v), αk = ci?s(pid , v)

44 Timer Transformation to Verify SDL Specifications

Otherwise the predicate is false.

The initial configuration of an n-ary parallel composition is a vector of
initial configurations of n system entities (processes and channels), i.e., γ0 =
(γ1

0 , . . . , γ
n
0). As it is defined by the rule Comm, two common steps are glued

and relabelled to a τ -step by the synchronization. Inputs and outputs from
the environment are interleaved by rules Interleavein and Interleaveout,
respectively. As far as τ -steps are concerned, each system entity can act on its
own according to the rule Interleaveτ .

The rule Tick states that time progresses if the system is blocked. A time
progression step tick increases the system variable now modelling system time.
Expression NOW always evaluates to the system time, i.e., [[NOW]] = now.

Definition 3.8. [parallel composition]
The n-ary parallel composition of n system entities Sk = (Σk, Labk, →

k, Ink,
Outk, σ

k
0) is a LTS S = (Γ,Lab,→, In,Out , γ0), where

– Γ = Σ1 × . . . × Σn × Time is a set of states with an initial state γ0 =
(σ1

0 , . . . , σ
n
0) and projections fk :Γ → Γk, k ∈ {1, . . . , n};

– Lab =
n⋃

k=1

Labk is a finite set of labels;

– In =
n⋃

k=1

Ink is a finite set of input channel names;

– Out =
n⋃

k=1

Outk is a finite set of output channel names;

– →⊆ (Γ ×Time)× Lab × (Γ ×Time) is a labelled transition relation given
by the rules of Table 3.

The following lemma expresses that the blocked predicate is compositional
in the sense that the parallel composition of processes is blocked iff each process
is blocked and there are no messages in transit on channels and no messages in
input queues.

Lemma 3.1.

For a configuration γ, blocked(γ) iff blocked(σ) for all states σ that are a part
of γ.

Proof. If γ is not blocked, it can perform an output step or a τ -step. The
output step must originate from a process, which is not blocked or from a
channel which contains a signal in transit in this case.

The τ -step is either caused by a single process or by a synchronizing action
of a process and a channel; in both cases at least one entity is not blocked.

For the reverse direction, a τ -step of a single process being thus not blocked,
entails that γ is not blocked.

An output step of a single process or a channel causes γ either to do the
same output step or, in case of internal communication, to do a τ -step. In both
cases, γ is not blocked. 2

3.3 Timer Transformation 45

3.3 Timer Transformation

A state of an SDL process is given by its current location, the valuations of
timers and variables, and the content of the input queue. There are several
reasons why the way of modelling timers in SDL is not quite suitable for model
checking purposes. Since NOW gives access to the current system time, executing
SET(NOW+e, t) with different (infinitely growing) values of NOW, we get different
process configurations. Moreover, a timeout transition can add a timer signal
at any point of the time slice. This blows up the state space due to the number
of possible interleaving sequences of events. Furthermore, keeping a timeout
signal in a process queue adds to the length of the state vector. In this section,
we solve this problem by a transformation replacing the SDL concept of timers
with a new one.

The transformation of process specifications is given by the rules of Table 4.
A new syntax is introduced for setting and resetting timer variables. Note
that the transformation rules are developed under the assumption that the
NOW operator appears in the original system specification in the scope of SET
operations only, and all the SET operations are of the form SET(NOW + δ, t). In
the sequel, we consider only systems of this type.

To avoid the state explosion due to the interpretation of timers and the
overhead caused by the management of timeout signals, we substitute the SDL
concept of timeouts as a special kind of signals by a concept of timeouts as
guards. A declaration of a timer t is transformed to the declaration of a timer
variable t. We use off to represent inactive timers. The value of a timer variable
representing an active timer shows the delay left until timer expiration.

l −→?t l̂ ∈ Edg t ∈ T
TInput to Timeout

l −→gt B reset t l̂ ∈ Edg ′

l −→g B SET(NOW+e,t) l̂ ∈ Edg
Set to Set1

l −→[g
V

(e ≥ 0)] B set t:=e l̂ ∈ Edg ′

l −→g B SET(NOW+e,t) l̂ ∈ Edg
Set to Set2

l −→[g
V

(e<0)] B set t:=0 l̂ ∈ Edg ′

l −→g B RESET(t) l̂ ∈ Edg ′

Reset to Reset
l −→g B reset t l̂ ∈ Edg ′

Table 4. Transformation rules

46 Timer Transformation to Verify SDL Specifications

We use the integer domain Z as a natural interpretation of Duration, since
the delay specified by an expression e in a setting action SET(NOW + e, t) may
take positive and negative values. Setting a timer to a time value less than the
actual system time results in an immediate expiration of the timer and adding a
timeout signal to the input queue of the process. In this case, immediate means
that the expiration must take place within the current time slice. Therefore, an
action gB SET(NOW+e, t) on timers is substituted by the choice between setting
timer variable t to the value of the expression e and setting t to zero. The first
action is allowed if the expression has a nonnegative value (rule Set to Set1

of Table 4). Otherwise, the second action is enabled and the timer variable is
set to zero (rule Set to Set2 of Table 4). The RESET(t) action is transformed
into an assignment of the off value to the timer variable t, denoted by reset t
(rule Reset to Reset of Table 4).

In the original system, a timer whose value is larger than or equal to the
current system time may expire. The transformed system should demonstrate
the same behaviour. Since we suppose the value of a transformed timer to be
the delay left until its expiration, only timers whose values are equal to 0 may
expire. Therefore, we replace each input of a timeout signal t by resetting a
timer t that is guarded by the timeout guard gt, namely, (t = on(0)). Resetting
guarantees deactivation of the timer (rule TInput to Timeout of Table 4).
The set of actions of the transformed process coincides with the set of actions of
the original one, except for SET and RESET actions on timers that are substituted
by set and reset actions on timer variables.

Applying the rules of Table 4 to a process specification SpecP , we get the
process specification SpecP ′ . Given SpecP = (pid , In, Out , Var , Timer , Loc,
Act , Edg , l0), we get SpecP ′ = (pid , In, Out , Var ′, Loc, Act ′, Edg ′, l0), where
Var ′ = Var ∪ {t | t ∈ Timer}. Settings, timeouts and resettings of timers are
substituted by settings, timeouts and resettings of timer variables according to
the rules of Table 4. The other actions and edges are left unmodified. Further
we refer to the set of timer variables as TVar .

Table 5 gives the local step semantics of the transformed process speci-
fication. Further, we refer to an LTS derived from some transformed process
specification SpecP ′ by the rules of Table 5 as a transformed process P ′. A state
of a transformed process is given by a location, a valuation of process and timer
variables and a process input queue. A valuation of process and timer variables
is denoted as η. Since timeout signals are not put into an input queue anymore,
we do not distinguish between timeout and non-timeout signals in rule Input.
Setting a timer and resetting a timer do not influence the input queue of a
process (rules Set and Reset). The set Σ ′ of process states is defined by the
Cartesian product Loc × Val × Seq(M).

Definition 3.9. [state of the transformed process]
A state σ′ of a process P ′ is a triple (l, η, q), where l is a location, η is a
valuation of variables and q is a content of the input queue of the process. Σ ′

denotes the set of states of a transformed process.

3.3 Timer Transformation 47

l −→?s(x) l̂ ∈ Edg ′

Input
(l, η, s(pid , v) :: q) →τ (l̂, η[x 7→ v], q)

s′ 6∈ {s | l −→?s(x) l̂ ∈ Edg} l ∈ Loci

Discard
(l, φ, θ, s

′(pid , v) :: q) →τ (l, φ, θ, q)

v ∈ D c ∈ InP

Receive
(l, η, q) →ci?s(pid,v) (l, η, q :: s(pid , v))

l −→g B c!(s,e) l̂ ∈ Edg ′ [[g]]η = true [[e]]η = v
Output

(l, η, q) →co !s(pid,v) (l̂, η, q)

l −→g B x:=e l̂ ∈ Edg ′ [[g]]η = true [[e]]η = v
Assign

(l, η, q) →τ (l̂, η[x 7→ v], q)

l −→g B set t:=e l̂ ∈ Edg ′ [[g]]η = true [[e]]η = v
Set

(l, η, q) →τ (l̂, η[t 7→ on(v)], q)

l −→g B reset t l̂ ∈ Edg ′ [[g]]η = true
Reset

(l, η, q) →τ (l̂, η[t 7→ off], q)

l −→gt B reset t l̂ ∈ Edg ′ [[t]]η = on(0)
Timeout

(l, η, q) →τ (l̂, η[t 7→ off], q)

t′ 6∈ {t | l →gt B reset t l̂ ∈ Edg ′} [[t′]]η = on(0) l ∈ Loci

TDiscard
(l, η, q) →τ (l, η[t′ 7→ off], q)

blocked(σ)
TickP

(l, η, q) →tick (l, ηdec , q)

Table 5. Step semantics of transformed process specification SpecP ′

48 Timer Transformation to Verify SDL Specifications

Tickc

(c, ε) →tick (c, ε)

σj →αj σ̂j σk →αk
σ̂k j 6= k comm(αj , αk)

Comm
(. . . , σj , . . . , σk, . . .) →τ (. . . , σ̂j , . . . , σ̂k, . . .)

σi →co?s(env,v) σ̂i

Interleavein

(. . . , σi, . . .) →co?s(env,v) (. . . , σ̂i, . . .)

σi →ci!s(pid,v) σ̂i c ∈ Inenv

Interleaveout

(. . . , σi, . . .) →ci!s(pid,v) (. . . , σ̂i, . . .)

σi →τ σ̂i

Interleaveτ

(. . . , σi, . . .) →τ (. . . , σ̂i, . . .)

σ1 →tick σ̂1 . . . σn →tick σ̂n

Tick
(σ1, . . . , σn) →tick (σ̂1, . . . , σ̂n)

Table 6. tick-step of a channel and n-ary parallel composition

3.4 Model Equivalence 49

Definition 3.10. [transformed process]
A transformed process P ′ is an LTS (Σ′,Lab′,→′, In,Out , σ′

0) where σ′
0 =

(l0, η0, ε) is the initial state and →′⊆ Σ′ × Lab ′ × Σ′ is a labelled transition
relation derived by applying the rules in Table 5 to some transformed process
specification SpecP ′.

Note that the system time is not present in the transformed system explicitly
— one infinitely growing variable would be enough to cause state explosion.
Instead of increasing the system time, the tick transition (rule TickP of Table
5) decreases the values of timer variables. Like the Tick transition of the
original system, this transition can take place only if the system is blocked,
and “blocked” has exactly the same meaning as before. The dec operation
decreases all the positive values of timer variables by one and leaves the other
variables unchanged. The evaluation obtained by applying the dec operation is
denoted ηdec.

Table 6 defines n-ary parallel composition of channels and transformed pro-
cesses. Here, we need to define a tick -step not only for processes but also for
channels. (Note that In and Out rules for channels in the transformed system
coincide with the same rules in Table 2.) A tick -step of a channel does not
change the state of the channel and becomes enabled only if the channel is
blocked, i.e. it has no message to deliver and it may receive only messages from
the environment (rule Tickc of Table 6). The definition of n-ary parallel com-
position for transformed systems coincides with the one for original systems
except the Tick rule. According to the Tick rule of Table 6, all components of
the transformed system are synchronized on their tick -steps decreasing values
of active timer variables.

3.4 Model Equivalence

The goal of the transformation described in Section 3.3 is to overcome state
explosion caused by the traditional interpretation of timers and time in SDL.
In this section, we will show that the results of the verification of the trans-
formed system are transferable to the original one. Namely, we show that there
is a branching simulation relation (see Def. 2.19) relating the original system
to its transformation. The branching simulation relation guarantees that the
transformed system contains at least the behaviour of the original system. We
also show that there is a weak trace inclusion relation (see Def. 2.17) relating
the transformed system to the original one. We also show that that the origi-
nal system and the transformed one are path equivalent up to stuttering (see
Def. 2.28).

The transformed system does not give a straightforward reflection of the
original system behaviour. While actions that are not related to timers are left
unchanged, sendings of timeout signals are projected out, and consumption
of timeout signals from the process queue are mimicked by the corresponding
Timeout, whose enabling conditions are guaranteed to be true in this case.

50 Timer Transformation to Verify SDL Specifications

Such a projection is not harmful from verification point of view, because not
the presence or absence of a timeout signal but the consumption of it and
the choice of the following actions are important. The same concerns process
queues: by saying that the content of some queue in the transformed system is
the same as the content of the corresponding queue in the original system, we
mean that the projections of the queues on Sig coincide (note that Sig contains
only nontimeout signals). The main requirement imposed on configurations
is that the valuations of variables should be equal. Since the sets of process
variables are disjoint, we may use [[x]]γ to denote the valuation of variable x in
configuration γ. Further, we define a relation ≈ on configurations.

Definition 3.11. [relation ≈]
We write γ ≈ γ′ iff [[x]]γ = [[x]]γ′ for all process variables x.

Since a configuration is defined as a parallel composition of one or more
local states of processes and channels, the definition of ≈ on configurations is
defined analogously.

The transformation ought to preserve timing aspects of the behaviour of the
original system. In order to guarantee this, the timers of the original system
should be related to the timer variables of the transformed one in such a way
that whenever a timeout is possible in the original system, it is also enabled in
the transformed one. It means that if a timer expires in the original system, the
timer variable representing the timer should carry the value zero. Further, we
define a relation ≈?, that relates timing and input/output aspects of system
configurations. The relation connects a configuration of the original system
with a configuration of the transformed one:

– the process variables have the same values;
– both systems have the same input possibilities wrt. nontimeout signals;
– timeouts enabled in the original system are also enabled in the transformed

one;
– the transformed system can establish the same communication steps as

the original one, i.e., the queues representing channels of the transformed
system have the same contents as the corresponding queues of the original
system.

Definition 3.12. [relation ≈? on states]
Let SpecP be a process specification and SpecP ′ be the process specification ob-
tained from SpecP by applying the rules from Table 4. Let P and P ′ be processes
derived from SpecP and SpecP ′ by applying rules of Table 1 and Table 5, respec-
tively. Let σ = (l, φ, θ, q) and σ′ = (l, η, q′) be states of P and P ′, respectively.
Let now be the system time related to process P . We write (σ,now) ≈? σ′ iff
the following conditions are satisfied:

1. σ ≈ σ′;
2. q′ = πT (q), where πT (q) is obtained from q by projecting out the timeout

signals from T;

3.4 Model Equivalence 51

3. for all t ∈ TVar, t ∈ Timer: if [[t]]θ = on(v) and [[t]]η = on(w), then
w + now = max{now, v};

4. for all t ∈ TVar, t ∈ Timer: if [[t]]θ = off and the timeout signal t is not in
q, then [[t]]η = off ;

5. for all t ∈ TVar, t ∈ Timer: if [[t]]θ = off and the timeout signal t is in q,
then [[t]]η = on(0).

Let now be the system time related to channel c. For channel states (c, q)
and (c, q′), we write ((c, q),now) ≈? (c, q′) iff q = q′.

Now consider a specification Spec that consists of n components (channels
and processes) and the specification Spec ′ obtained from Spec by applying the
transformation rules of Table 4. It is straightforward that the specification
Spec′ specifies n components as well. Let S be the LTS derived from Spec
by applying rules from Tables 1, 2, 3, and S ′ be the LTS derived from Spec ′

by applying rules from Tables 5, 6. Suppose γ = (σ1, . . . , σi, . . . , σn) is a
configuration of S consisting of n entities (processes and channels), and let
γ′ = (σ′

1 . . . , σ
′
i, . . . , σ′

n) be a configuration of S ′. Moreover, σi denotes a
state of Pi and σ′

i a state of P ′
i .

Definition 3.13. [relation ≈? on configurations]
We write (γ,now) ≈? γ′ for configuration γ of LTS S and system time now

related to S and configuration γ ′ of S′ iff (σi,now) ≈? σ′
i for all i ∈ {1, . . . , n}.

Lemma 3.2.

Let γ and γ′ be configurations of S and S ′ respectively, (γ,now) ≈? γ′ and e
be a non-timed expression. Then [[e]]γ = v iff [[e]]γ′ = v.

Proof. The process variables have the same values both in γ and γ ′ by Def. 3.11,
and hence the non-timed expression e has the same value v both in γ and in
γ′. 2

Lemma 3.3.

Let γ and γ′ be configurations of S and S ′ respectively, now be the system time
of S and (γ,now) ≈? γ′. Then blocked(γ) iff blocked(γ ′).

Proof.
blocked(γ) =⇒ blocked(γ ′)
If S is blocked in configuration γ, then (i) all queues (modelling both channels
and input ports) are empty, as otherwise communication or input steps might
take place (rules Discard, Input, TDiscard, TInput and Receive of Ta-
ble 1 and rules Out and In of Table 2); (ii) guards of guarded steps are false, as
otherwise there would be a guarded step possible (rules NoneInput, Output,
Assign, Set, Reset of Table 1); (iii) there are no active timers ready to expire
in S, as otherwise an expiration step would be enabled (rule Expiration of
Table 1).

52 Timer Transformation to Verify SDL Specifications

According to Def. 3.12, queues in γ′ are projections of corresponding queues
in γ on timeout signals. Since all queues in γ are empty, the queues in γ ′ are
empty as well and no input or communication step is possible in S ′.

There is no timer in γ that satisfies condition 5 of Def. 3.12 and so there is
no timer variable in γ′ having a zero value, as otherwise, (γ,now) and γ ′ are
not related by ≈?. Therefore, no timeout step is possible in S ′.

According to Lemma 3.2, untimed guards that are false in γ are also false
in γ′. Since all guards in S valuate to false, there is no guarded step enabled
in the configuration γ′ of S′.

Communication, input, discard, timeout, guarded steps are disabled in γ ′,
so the only steps that may happen are inputs from the environment and time
progression. Therefore, blocked(γ ′) is true.

blocked(γ′) =⇒ blocked(γ)
If the transformed system is blocked, then (i) all queues of S ′ are empty, as
otherwise an internal communication step or an input would be enabled (rules
Discard, Input, Receive of Table 5 and rules Out and In of Table 2);
(ii) none of the timer variables of S ′ has the value zero, as otherwise a timeout
or a discard of a timeout would be enabled (rules Timeout and TDiscard of
Table 5); (iii) none of the non-timeout conditions imposed on guarded steps in
S′ is valuated to true, as otherwise one of the guarded steps would be enabled
(rules Output, Assign, Set, Reset of Table 5).

Since all queues in γ′ are empty and none of the time variables has the
value zero, all queues are also empty in γ, according to conditions 2 and 5 of
Def. 3.12. All nontimeout guards that are false in γ ′ are also false in γ by
Lemma 3.2. So all guarded steps possible in γ are disabled.

Since all queues are empty and none of the guarded steps is enabled in γ,
the only steps that may happen are inputs from the environment and time
progression, i.e., blocked(γ) is true. 2

To show that the transformed system shows at least the behaviour of the
original one, we demonstrate that the relation ≈? on their configurations is
a branching simulation relation (Def. 2.19). To prove that ≈? is a branching
simulation relation on the configurations of S and S ′, we first check this relation
on the rules of Table 1 and Table 5 for a process P of the system S and its
counterpart P ′ in the system S′. Then, we proceed similarly by the case analysis
on the rules of Table 2. Finally, we check the relation on rules for n-ary parallel
composition of Table 3.

Lemma 3.4.

Let SpecP be a process specification and SpecP ′ be the process specification ob-
tained from SpecP by applying rules from Table 4. Let P and P ′ be processes
derived from SpecP and SpecP ′ by applying rules of Table 1 and Table 5, respec-
tively. Then there exists a relation R ⊆ (Σ×Time)×Σ ′ such that (σ,now)Rσ′

implies (σ,now) ≈? σ′ and R is a branching simulation.

3.4 Model Equivalence 53

Proof. Let σ0 be the initial configuration of the process P , σ′
0 be the initial

configuration of the process P ′ and now be the system time of P . The trans-
formation rules defined in Table 4 do not change initial locations of system
entities. Application of transformation rules does not modify default valuation
of process variables. Initially, the timers are deactivated and the input queue
is empty in P , thus the queues are empty and the timer variables are off for
P ′. The condition of Def. 3.11 and the conditions of Def. 3.12 are satisfied and
(σ0,now) ≈? σ′

0 holds for the initial states.

Now assume that (σ,now) ≈? σ′ holds for some σ, σ′ and now. To show
that P �br P

′ we proceed with a case analysis on the rules of Table 1.

Case: Input
Let transition (l, φ, θ, s(pid , v) :: q) →τ (l̂, φ[x 7→ v], θ, q) be enabled in P . Let
((l, φ, θ, s(pid , v) :: q), now) ≈? σ′. According to rule Input of Table 1, there

exists an edge l −→?s(x) l̂ ∈ Edg . By the transformation rules of Table 4, there

is an edge l −→?s(x) l̂ ∈ Edg ′.

Since (σ,now) ≈? σ′, the input queue of P ′ is a projection of s(pid , v) :: q
on timeout signals, s(pid , v) is the head element of the queue and transition

(l, η, s(pid , v) :: q′) →τ (l̂, η[x 7→ v], q′) is enabled in P ′ (rule Input of Table 5).

The input of P can be mimicked by the input of P ′. The valuation of variable
x is changed to v in both systems. Timers, timer variables and system time are
not influenced in this case. q′ is the projection of q on Sig . So the conditions of
Def. 3.12 are satisfied and ((l̂, φ[x 7→ v], θ, q),now) ≈? (l̂, η[x 7→ v], q′) holds. Input
steps are labelled by τ in both systems, so condition 1 of Def. 2.19 is satisfied.

Case: Discard
Let transition (l, φ, θ, s(pid , v) :: q) →τ (l, φ, θ, q) be enabled in P . We also as-
sume that ((l, φ, θ, s(pid , v) :: q),now) ≈? σ′.

Rule Discard of Table 1 shows that signal s is not expected by process P in
location l. According to the transformation rules of Table 4, l −→?s(x) l̂ 6∈ Edg ′.
So, the discard in P can be mimicked by a discard in P ′ (rule Discard of
Table 5). Further, this case is analogous to the case Input and (σ̂,now) ≈? σ̂′

for the resulting states. Moreover, the condition 1 of Def. 2.19 is satisfied.

Case: Receive
A receiving step (l, φ, θ, q) →ci?s(pid,v) (l, φ, θ, q :: s(pid , v)) of P (rule Receive
of Table 1) can always be mimicked by the receiving step (l, η, q′) →ci?(s,v)

(l, η, q′ :: s(pid , v)) of P ′ (rule Receive of Table 5). Both the step of the origi-
nal system and the mimicking step of the transformed system add s(pid , v) to
the input queue. So q′ :: s(pid , v) is the projection of q :: s(pid , v) to the timeout
signals. Nothing else is changed by the steps. Therefore, ((l, φ, θ, q :: s(pid , v),
now) ≈? (l, η, q′ :: s(pid , v) holds for the resulting states. Both steps are la-
belled by ci?s(pid , v), so condition 1 of Def. 2.19 holds.

Case: Output
Let (l, φ, θ, q),now) ≈? (l, η, q′). Let (l, φ, θ, q) →co !s(pid,v) (l̂, φ, θ, q) be a step

54 Timer Transformation to Verify SDL Specifications

of P . By rule Output of Table 1, we get l −→g B c!(s,e) l̂ ∈ Edg . According to

the transformation rules of Table 4, l −→g B c!(s,e) l̂ ∈ Edg ′.

The guard g, which valuates to true in σ, also valuates to true in σ′ by
Lemma 3.2. According to the rule Output of Table 5, this edge is mapped to
the step (l, η, q) →co !s(pid,v) (l̂, η, q) of P ′. Both the step of the original system
and the mimicking step of the transformed one change the location of the
process only. Therefore, ((l̂, φ, θ, q),now) ≈? (l̂, η, q) for the resulting states.
Moreover, both steps are labelled by co!s(pid , v), so condition 1 of Def. 2.19 is
satisfied.

Case: Assign
Let (l, φ, θ, q) →τ (l̂, φ[x 7→ v], θ, q) in P and (l, φ, θ, q),now) ≈? (l, η, q′). By rule

Assign, l −→g B x:=e l̂ ∈ Edg . If this edge is present in SpecP , then it is also
available in SpecP ′ by the transformation rules of Table 4.

The guard g, which valuates to true in σ, also valuates to true in σ′ by
Lemma 3.2. An expression e having a value v in σ has the same value in σ′.
So the assignment is mapped to the (l, η, q′) →τ (l̂, η[x 7→ v], q′)-step of P ′ (rule
Assign of Table 5).

The value of the variable x is changed to v both in the original system
and in the transformed one. Neither timers, nor queues, nor system time are
influenced by these steps. Therefore, ((l̂, φ[x 7→ v], θ, q),now) ≈? (l̂, η[x 7→ v], q′)
holds for the resulting states. Both steps are labelled by τ , so condition 1 of
Def. 2.19 is satisfied.

Case: Set
Let (l, φ, θ, q) →τ (l̂, φ, θ[t 7→ on(v)], πt(q)) in P and (l, φ, θ, q),now) ≈? (l, η, q′).

By rule Set of Table 1, we get l −→g B SET(exp,t) l̂ ∈ Edg where exp is an
expression of form (NOW + e).

According to the rules Set to Set1 and Set to Set2 of Table 4, there
are two edges corresponding to the edge in SpecP ′ :

(i) l −→[g
∧

(e ≥ 0)] B set t:=e l̂ ∈ Edg ′ and

(ii) l −→[g
∧

(e<0)] B set t:=0 l̂ ∈ Edg ′.

The guard g, which valuates to true in σ, also valuates to true in σ′ by
Lemma 3.2. An expression e has the same value w both in σ and in σ′.

If w ≥ 0 then the step (l, η, q′) →τ (l̂, η[t 7→ on(w)], q′) is enabled in P ′.

Otherwise, the step (l, η, q′) →τ (l̂, η[t 7→ on(0)], q′) is enabled in P ′ (rule Set
of Table 5). In both cases, condition 3 of Def. 3.12 is satisfied for timer t of
P and timer variable t of P ′. Moreover, q′ is a projection of πt(q) on timeout

signals, so condition 2 of Def. 3.12 holds. So ((l̂, φ, θ[t 7→ on(v)], πt(q)),now) ≈?

(l̂, η[t 7→ on(w)], q′) and ((l̂, φ, θ[t 7→ on(v)], πt(q)),now) ≈? (l̂, η[t 7→ on(0)], q′) hold.

In both cases the step of the original system and the mimicking step are
labelled by τ . Hence, condition 1 of Def. 2.19 is satisfied.

Case: Reset
Assume (l, φ, θ, q), now) ≈? σ′ and (l, φ, θ, q) →τ (l̂, φ, θ[t 7→ off], πt(q)) of P .

3.4 Model Equivalence 55

By rule Reset of Table 1, l −→g B RESET(t) l̂ ∈ Edg . According to the rule

Reset to Reset, l −→g B reset t l̂ ∈ Edg ′.
The guard g, which valuates to true in σ, also valuates to true in σ′ by

Lemma 3.2. So the reset step of P ′ is mapped to (l, η, q′) →τ (l̂, η[t 7→ off], q′)
that resets timer t in P ′ (rule Reset of Table 5). So the resetting step of P
can be mimicked by the resetting step of P ′.

Both the step of the original system and the mimicking step of the trans-
formed one change the value of the timer t (the timer variable t resp.) to
off i.e., condition 4 of Def. 3.12 is satisfied. Moreover, q′ is a projection of
πt(q) on timeout signals. It means that condition 2 of Def. 3.12 holds. So

((l̂, φ, θ[t 7→ off], πt(q)), now) ≈? (l̂, η[t 7→ off], q′). Both steps are labelled by τ ,
hence condition 1 of Def. 2.19 is satisfied.

Case: Expiration
Let (l, φ, θ, q) →τ (l, φ, θ[t 7→ off], q :: t) in P and ((l, φ, θ, q),now) ≈? σ′. By rule
Expiration of Table 1, this step may take place only if now = v and [[t]]σ =
on(v). Since we also have (σ,now) ≈? σ′, ((l, φ, θ[t 7→ off], q :: t),now) ≈? σ′

holds (see conditions 3 and 5 of Def. 3.12). Expiration is a τ -step, so we have
case 2 of Def. 2.19.

Case: TInput
Let (l, φ, θ, t :: q) →τ (l̂, φ, θ, q) in P and ((l, φ, θ, q),now) ≈? (l, η, q′). By rule

TInput of Table 1, l −→?t l̂ ∈ Edg . According to the transformation rule
TInput to Timeout of Table 4, l −→gt B reset t l̂ ∈ Edg ′.

Since (σ,now) ≈? σ′, timer variable t has the value zero in σ′ by condition 5

of Def. 3.12. So (l, η, q′) →τ (l̂, η[t 7→ off], q′) is enabled in P ′ and inputting the
timeout signal in P can be mimicked by the timeout in P ′.

Both the step of the original system and the mimicking step of the trans-
formed one are setting the timer t (the timer variable t resp.) to off , so con-
dition 4 of Def. 3.12 is satisfied. The input queue q′ is the projection of q on
timeout signals, hence condition 2 of Def. 3.12 holds. Therefore,
((l̂, φ, θ, q),now) ≈? (l̂, η[t 7→ off], q′). The input step and the timeout step are
labelled by τ , thus condition 1 of Def. 2.19 is satisfied.

Case: TDiscard
Let (l, φ, θ, t :: q) →τ (l, φ, θ, q) in P , l ∈ Loci and (l, φ, θ, q),now) ≈? (l, η, q′).
By rule TDiscard of Table 1, the timeout signal t is not expected in location
l of the process P .

Since (σ,now) ≈? σ′, timer variable t has the value zero in σ′ wrt. condi-
tion 5 of the Def. 3.12. By TDiscard of Table 5, (l, η, q′) →τ (l, η[t 7→ off], q′) is
enabled in P ′ and discarding the timeout signal in P can be mimicked by the
timeout in P ′. Further, this case coincides with the TInput case above. There-
fore, ((l, φ, θ, q),now) ≈? (l, η[t 7→ off], q′). The discard step and the timeout
step are labelled by τ , so condition 1 of Def. 2.19 is satisfied.

We showed that there exists a relation R ⊆≈? on states of P and P ′ and
that this relation is branching simulation. 2

56 Timer Transformation to Verify SDL Specifications

Checking the rules of Table 1, we have demonstrated that there is R ⊆≈?

that is a branching simulation relation on states of P and P ′. Using the rules
of n-ary parallel composition (Table 3), we show the same for S and S ′.

Theorem 3.1. [branching simulation]
Let Spec be a specification and Spec ′ be the result of the transformation of Spec
wrt. the rules of Table 4. Let S be an LTS derived from Spec by applying rules
of Tables 1, 2, 3 to Spec, and and S ′ be an LTS obtained from Spec ′ by applying
rules of Tables 5, 2, 6. Then there exists a relation R ⊆ (Γ ×Time)× Γ ′ such
that (γ,now)Rγ′ implies (γ,now) ≈? γ′ and R is a branching simulation.

Proof. By Lemma 3.4, for all i ∈ {1, . . . , n}, there exists ≈?
i⊆ (Σi×Time)×Σ′

i

such that (σi0,now) ≈?
i σ

′
i0 where σi0 and σ′

i0 are the initial states of Pi and P ′
i ,

respectively. Let S be the LTS built by applying the n-ary parallel composition
(Table 3) to P1, . . . , Pn. Let S′ be the LTS built by applying the n-ary paral-
lel composition (Table 6) to P ′

1, . . . , P
′
n. Now given ≈?

i for all i ∈ {1, . . . , n},
≈?⊆ (Σ1 × . . .×Σn × Time) × (Σ′

1 × . . .×Σ′
n) is defined by Def. 3.13. It re-

mains to be shown that ≈? is a branching simulation relation. First, we show
that a channel process of the transformed system can simulate a channel pro-
cess of the original one. Finally, we check the relation on the rules for parallel
composition (Table 3).

Case: In, Out
The transformation does not change the semantics of channels except for adding
the Tickc rule. Suppose that ci!s(pid , v) is enabled in state σ = (c, s(pid , v) :: q)
of channel process Pc, and moreover, (σ,now) ≈? σ′, where σ′ is the state of
process channel P ′

c of the transformed system. According to Def. 3.12, the
queue modelling channel c in system S ′ has the same content. Moreover,
σ′ = (c, s(pid , v) :: q). So, the ci!s(pid , v)-step of Pc can be mimicked by the
ci!s(pid , v)-step of P ′

c. In both cases, message (s, v) is removed from the queue
modelling the channel, so (σ̂,now) ≈? σ̂′ and condition 1 of Def. 2.19 is satis-
fied. The Out case is analogous to the In case.

Case: Tick
In this case, we have (σ1, . . . , σn,now) →tick (σ1, . . . , σn,now + 1). By rule
Tick of Table 3, we obtain blocked(σ1, . . . , σn). According to Lemma 3.3,
blocked(σ′

1, . . . , σ
′
n) is true as well. So the tick -step of the original system

can be mimicked by some tick -step of the transformed system (see rule TickP

of Table 5, rules Tickc and Tick of Table 6).
In S, the tick -step increases the system time now; the mimicking step of S ′

decreases all active timers. Suppose that timer t evaluates to on(v) in S. Note
that v > now, as otherwise timer t can expire and S is not blocked. According
to Def. 3.12, timer variable t should evaluate to on(w), where now + w =
max(now, v) and w > 0. After tick -steps condition 3 of Def. 3.12 still holds
because (w − 1) + (now + 1) = max(now, v). Therefore, (γ,now + 1) ≈? γ̂,
where γ̂ is γ with all active timers decreased by 1, is valid and condition 1 of
Def. 2.19 is satisfied.

3.4 Model Equivalence 57

Case: Comm
Assume that (. . . , σi, . . . , σj , . . .) →τ (. . . , σ̂i, . . . , σ̂j , . . .). By rule Comm of
Table 3 we get σi →αi

σ̂i, σj →αj
σ̂j , i 6= j and comm(αi, αj) is true .

By Lemma 3.4, σi →αi
σ̂i and σj →αj

σ̂j can be mimicked by steps with
the same label in P ′

i and P ′
j . So we have σ′

i →αi
σ̂′

i, σ
′
j →αj

σ̂′
j , i 6= j

and comm(αi, αj) is true. By rule Comm, which is valid both for the orig-
inal systems and for the transformed ones, we obtain the following τ -step:
(. . . , σ′

i, . . . , σ
′
j , . . .) →τ (. . . , σ̂′

i, . . . , σ̂
′
j , . . .). So the communication of Pi with

Pj can be mimicked by the communication of P ′
i with P ′

j .
By Lemma 3.4, (σ̂i, now) ≈?

i σ̂′
i and (σ̂j , now) ≈?

j σ̂′
j . So, we obtain

((. . . , σ̂i, . . . , σ̂j , . . .), now) ≈? (. . . , σ̂′
i, . . ., σ̂

′
j , . . .). Moreover, condition 1 of

Def. 2.19 is satisfied.

Case: Interleavein

Here we have (. . . , σi, . . .) →co?s(pid,v) (. . . , σ̂i, . . .). By rule Interleavein of
Table 3, σi →co?s(pid,v) σ̂i and s ∈ Sigext . According to the case In, Out above,
the co!s(pid , v)-step of Pi can be mimicked by a co!s(pid , v)-step of P ′

i . So we
have σ′

i →co?s(pid,v) σ̂
′
i and s ∈ Sigext . Using rule Interleavein of Table 3,

we get (. . . , σ′
i, . . .) →co?s(pid,v) (. . . , σ̂′

i, . . .). According to the case In, Out
above, (σ̂i,now) ≈?

i σ̂
′
i, so ((. . . , σ̂i, . . .),now) ≈? (. . . , σ̂′

i, . . .) and condition 1
of Def. 2.19 is satisfied.

Case: Interleaveout

This case is analogous to the Interleavein case.

Case: Interleaveτ

Assume we have (. . . , σi, . . .) →τ (. . . , σ̂i, . . .) in S. By rule Interleaveτ of
Table 3, σi →τ σ̂i for some Pi in S. If the τ -step corresponds to one of the cases
(Discard, Input NoneInput, Assign, Expiration, Set, Reset) considered
by Lemma 3.4, it can also be mimicked by a τ -step of P ′

i . So we may conclude
that there is a mimicking step (. . . , σ′

i, . . .) →τ (. . . , σ̂′
i, . . .) in S′ and that

((. . . , σ̂i, . . .), now) ≈? (. . . , σ̂′
i, . . .). Moreover, the condition 1 of Def. 2.19 is

satisfied.

We have shown that (γ0, 0) ≈? γ′0 holds for initial configurations of S and
S′. Assumed that the same relation holds for some (γ,now) ≈? γ′, we also
have demonstrated that every step that is possible in S can be mimicked by a
step of S′ so that the conditions of Def 2.19 are satisfied, so S �br S

′. 2

Ideally, we would like ≈?−1 to be a branching simulation relation as well,
and establish by that a branching bisimulation between S and S ′. However,
this is not the case—an attempt to establish a simulation in the reverse direc-
tion fails while considering the Timeout case in the transformed system. In
principle, Timeout should be mimicked by taking Expiration and TInput.
But the Expiration step in the original system cannot be taken earlier than
the decision about Timeout in the transformed system. On the other hand,
when Timeout is taken, it could be already too late to take the Expiration
step, since the process queue of the original system can be non-empty, which

58 Timer Transformation to Verify SDL Specifications

would mean that the timeout signal could not be immediately consumed from
the process queue. However, S ′ �wtr (Def. 2.17).

Later we also show that the original system and the transformed system are
path equivalent up to stuttering (Def. 2.28). To link the “equivalent” traces of
the original and transformed systems, we introduce a relation requiring that
each step of trace χ of the transformed system can be mimicked either by the
same step of trace ζ of the original system or by the same step of ζ preceded
by one or more expiration steps, which do not change the valuation of process
variables.

Definition 3.14.

Let ζ and χ be traces of S and S ′ respectively. We write ζ ≡U χ iff there exists
a relation U ⊆ N × N such that:

1. (i, j) ∈ U implies (ζγ(i),now) ≈? χγ(j).
2. ζ and χ can be partitioned as ζI1ζI2 . . . and χJ1χJ2 . . ., respectively, so that

for all k > 0 Ik = {m, . . . ,m + n}, Jk = {j, j + 1} and the following
conditions are satisfied:
(a) (m, j) and (m+ n, j + 1) are in U , and ζλ(m+ n) = χλ(j + 1);
(b) for all m < i < m+ n: (i, j) ∈ U and ζλ(i) = τ .

We write S′ �U S iff for every trace χ of S ′ there exists a trace ζ in S such
that ζ ≡U χ for some U ⊆ N × N.

Lemma 3.5.

Let ζ and χ be traces of S and S ′ respectively. Let ζ ≡U χ for some U ⊆ N×N.
Then ζ ≡wtr χ.

Proof. Follows directly from Def. 3.14 and Def. 2.16. 2

Let πζ and πχ be paths corresponding to traces ζ and χ respectively, i.e.,
πζ = ζγ(0)ζγ(1) . . . and πχ = χγ(0)χγ(1) . . .

Lemma 3.6.

Let ζ and χ be traces of S and S ′ respectively. Let ζ ≡U χ for some U ⊆ N×N.
Let L, L′ be interpretation functions with the range 2P , where P is the set of
atomic propositions mentioning only process variables. Then πζ ≡st πχ.

Proof. The transformation defined by the rules of Table 4 does not influence
process variables. So Spec and Spec ′ obtained by applying the transformation
to Spec have the same set of process variables.

Since ζ ≡U χ for some U ⊆ N×N, L(ζγ(i)) = L′(χγ(j)) for all (i, j) ∈ U by
condition 1 of Def. 3.14 and condition 1 of Def. 3.12. By condition 2 of Def. 3.14,
each step of trace χ of the transformed system is mimicked either by the same
step of trace ζ of the original system or by the same step of ζ preceded by one
or more τ steps, which do not change the valuation of process variables. Hence,
it is straightforward to show that L(Pr(πζ)(k)) = L′(Pr(πχ)(k)) for all k ≥ 0
(cf. Def. 2.27). 2

3.4 Model Equivalence 59

������������������τ��������������c?a��������������tick ������������������c?b

t
b

aa
b
t b

b a
b

a

a a
b

b b

t
a

	
��
�����

���� ��������

� !"#$ %& '()* +,

tick
?

τc?a c?b

tick ττc?a c?b

t=on(now)
τ τ

ε ε

εε

t=on(now)

ε ε

t=off

21 3 4 5 6
t=0 t=off χ

ρ

654321 7

ζ

t=on(now)

t=on(now)

t=0

Fig. 4. Treatment of timeout

Further, we show that for each trace χ of S ′ there is a trace ζ of S such
that ζ ≡U χ. As we already mentioned, we do not take an expiration step in S
until we meet a timeout in S′, so S cannot mimic each step of S ′. However, we
demonstrate that each time slice (all the steps between two tick -steps) of S ′

can be mimicked by a time slice of S. First, we consider a special treatment for
the Timeout case. We take a trace χ of length n+1 of S ′ which has a timeout
as the (n+ 1)th-step, assume a trace ζ of S that is equivalent to the χ(n), and
show how to transform ζ into a trace ρ of S such that ρ ≡U χ. Since timeout
and expiration are local steps, it is enough if we consider the special treatment
for timeout only for processes P and P ′ given by process specifications SpecP

and SpecP ′ , respectively.

Fig. 4 gives an illustration for the special treatment of Timeout. There
we consider a suffix of some trace χ of P ′ starting with a tick -step. The tick -
step is followed by receive steps c?a and c?b, step τ that inputs signal a from
the input queue and a timeout τ -step for timer variable t. ζ is some trace of
P that is equivalent to the prefix of χ up to the timeout step, and relation
U = {(1, 1,), (2, 2), (3, 3), (4, 4), (5, 5)} (this is showed by the dashed lines in
Fig. 4).

At the state ζγ(5), the input queue of P contains signal b only, so we cannot
mimic the timeout step of χ. We transform trace ζ into trace ρ by inserting an
expiration step for timer t before the step receiving signal b. By definition of
U , timer t may expire at state ργ(3), and thus we can mimic the timeout step
of χ at state ργ(6). Since timer t may expire at any point of the time slice,
trace ρ obtained in the result of the above mentioned transformation is still a

60 Timer Transformation to Verify SDL Specifications

valid trace of P . The step χλ(4) = c?b is mimicked by steps ρλ(4) = τ and
ρλ(5) = c?b, and U is modified to {(1, 1), (2, 2), (3, 3), (4, 3), (5, 4), (6, 5), (7, 6)}.

Lemma 3.7.

Let χ be a trace of P ′ of length (n + 1) and the last step of χ be a timeout of
timer variable t. Let ζ be a trace of P of the length m such that ζ ≡U χ(n).
Then ζ can be transformed into a trace ρ of P such that ρ ≡U χ for some
U ⊆ N × N.

Proof. The (n + 1)th-step of χ is the timeout of timer variable t. Since in P
we cannot take the expiration of t before the timeout is taken in P ′, there is
no timeout signal t at the head of the queue of P in the state ζγ(m) for some
m > 0. Further we consider two cases.

Case: The queue of P is empty at ζγ(m).
Since (ζγ(m), now) ≈? χγ(n), we can take an expiration step for timer t at
ζγ(m). After the expiration step, the step consuming the timeout signal is
enabled in P due to rule TInput to Timeout of Table 4. So we can modify
U and ζ as follows.

1. ρ is ζ extended by the expiration step and the step inputting timeout
signal t, i.e., ργ(i) = ζγ(i), ρλ(j) = ζλ(j) ∀i = 0..m, j = 1..m. Initially, U ′

is defined as U .
2. We add the expiration step, i.e., assuming ζ ′γ(m) = (l, φ, θ, ε), ργ(m+ 1) =

(l, φ, θ[t 7→ off], t), ρλ(m+ 1) = τ , and we add the pair (m+ 1, n) to U ′, i.e.,
U ′ = U ′

⋃
{(m+ 1, n)}. In this case, (ργ(m+ 1),now) ≈? χγ(n).

3. Next, we add the input step, which consumes timeout signal t. Assuming
χγ(n+1) = (l̂, η[t 7→ off], ε), we define ργ(m+2) = (l̂, φ, θ, ε) and ρλ(m+2) =
τ , and we add the pair (m+2, n+1) to U ′, i.e., U ′ = U ′

⋃
{(m+2, n+1)}.

In this case, (ργ(m+ 2),now) ≈? χγ(n+ 1).

Since ζ ≡U χ(n), ζ can be partitioned as ζI1 . . . ζIv and χ(n) can be par-

titioned as χ(n)J1
. . . χ(n)Jv

(see condition 2 of Def. 3.14). Since U is left
unmodified for the prefix of ρ that coincides with ζ, ρ and χ can be partitioned

as ρI1 . . . ρIvρIv+1 and χJ1 . . . χJvχJv+1 , where ρIi = ζIi and χJi = χ(n)Ji
for

all 1 ≥ i ≥ v. The last step of χ forms part χJv+1 . The expiration step to-
gether with the input step consuming the timeout signal form part ρIv+1 . All
the conditions of Def. 3.14 are satisfied and ρ ≡U χ.

Case: The queue of P is not empty at ζγ(m).
Here, we should find a receiving step for an element msg staying at the head
of the queue at ζγ(m), insert the expiration step before the step receiving msg ,
modify relation U with respect to this insertion, and extend ζ by the step
mimicking the timeout. Since the expiration can be taken at any point of the
time slice, the trace that we get as the result of this insertion is a trace of P .
For the sake of readability of the proof we assume that all the messages in the
queue are different. In order to include the expiration step, we modify U and ζ
as follows.

3.4 Model Equivalence 61

– Let ζγ(m) = (l, φ, θ,msg :: q). Going from m to 1, we find the first k along
the trace ζ such that ζλ(k) is labelled by ci?msg (or an expiration step in
case msg is a timeout signal).

– We keep the k-prefix of ζ and the corresponding subset of U . Initially,
U ′ = {(i, j) | (i, j) ∈ U , 0 ≤ i < k}, ∀i = 0..k − 1: ργ(i) = ζγ(i), ∀i =
1..k − 1 : ρλ(i) = ζλ(i).

– We add the expiration step in front of the step receiving msg . Let ργ(k −
1) = (l, φ, θ, q). Since ζ ≡U χ(n), there is (k, w) ∈ U such that ζλ(k),

χλ(w) belong to the parts ζIw , χ(n)Jw
respectively. We define ργ(k) =

(l, φ, θ[t 7→ off], q :: t), ρλ(k) = τ , and we add the pair (k, w) to U ′, i.e., U ′ =
U ′

⋃
{(k, w)}. Moreover, (ργ(k),now) ≈? χγ(l).

– The suffix of ζ starting with the step receiving msg is shifted due to the
inclusion of the expiration step. The shift is done as follows: ∀i = k..m:
ργ(i + 1) = (l, φ, θ, q̂) where ζγ(i) = (l, φ, θ, q̃), q̃ = q1 ::msg :: q2 and
q̂ = q1 :: t ::msg :: q2 (i.e., the queue is modified wrt. the inclusion), and
ρλ(i+ 1) = ζλ(i).
Relation U ′ is modified by inclusion as follows: ∀(i, j) ∈ U s.t. k ≤ i ≤ m:
we add the pair (i+1, j) to U ′, i.e., U ′ = U ′

⋃
{(i+1, j)}. Since condition 2

of Def. 3.12 is still satisfied, (ζγ(i+ 1),now) ≈? χγ(i).

– Let χγ(n + 1) = (l̂, η[t 7→ off], q). Finally, we add the input of the timeout

signal t. Then ργ(m + 2) = (l̂, φ, θ, q′), and ρλ(m + 2) = τ , and we add
the pair (m + 2, n + 1) to U ′, i.e., U ′ = U ′

⋃
{(m + 2, n + 1)}. Moreover,

(ργ(m+ 2),now) ≈? χγ(n+ 1).

Since ζ ≡U χ(n), ζ can be partitioned as ζI1 . . . ζIv and χ(n) can be par-

titioned χ(n)J1
. . . χ(n)Jv

. ρ(k−1) coincides with ζ(k−1), so we can partition

ρ(k−1) so that ρIi = ζIi and χJi = χ(n)Ji
for all 1 ≤ i < w, where ζIw is a part

containing the kth-step of ζ.
The partition Iw of ζ ends with the kth-step. We add the expiration step in

front of the kth-step. The partition ζIw is modified by the inclusion, so that the
part ρIw , which corresponds to the expiration step followed by the kth-step,
still satisfies the conditions of Def. 3.14.

Further, the suffix of ρ starting in state ργ(k+ 1) can be partitioned in the
same way as the corresponding suffix of ζ starting in ζγ(k). The parts ρIj differ
from the parts ζIj only by the presence of the timeout signal in the input queue.

The conditions of Def. 3.14 are satisfied by ρIj and χ(n)Jj
for all w+1 ≤ j ≤ v.

The input step consuming the timeout signal forms part ρIv+1 of the original
system. The corresponding timeout step in χ forms part χJv+1 . The conditions
of Def. 3.14 are satisfied, so ρ ≡U χ.

Concluding, we have shown how to construct ρ such that ρ ≡U χ for some
U ⊆ N × N and ρ is a trace of P . 2

Lemma 3.8.

Let SpecP be a process specification and SpecP ′ be the result of the transforma-
tion of SpecP wrt. the rules of Table 4. Let P and P ′ be the processes derived

62 Timer Transformation to Verify SDL Specifications

from SpecP and SpecP ′ by applying the rules of Table 1 and Table 5, respec-
tively. Then for each trace χ of P ′ there exists a trace ζ of P such that ζ ≡U χ
for some U ⊆ N × N.

Proof. Here we demonstrate that for each trace χ of P ′ there exists a trace ζ
of P , such that ζ ≡U χ for some U ⊆ N × N.

In Lemma 3.4, we have already demonstrated that (γ0, 0) ≈? γ′0 is valid for
the initial states of P and P ′, so U = {(0, 0)} and ζγ(0) = γ0 initially. Further,
trace ζ and relation U are constructed by induction on the length of the trace
χ. Each step of P ′ is mimicked by a step of P , and configurations reached by
the step of the transformed system and the mimicking step of the original one
are related by ≈?. Assume that (i, j) ∈ U . By Def. 3.14, (ζγ(i),now) ≈? χγ(j).
Now we proceed with a case analysis on the rules of Table 5.

Case: Input
In this case we have a step (l, η, s(pid , v) :: q′) →τ (l̂, η[x 7→ v], q′) of P ′, and
(ζγ(i),now) ≈? χγ(j), where χγ(j) = (l, η, s(pid , v) :: q, and χλ(j+ 1) = τ and

χγ(j + 1) = (l̂, η[x 7→ v], q′).

Rule Input of Table 5 gives an edge l −→?s(x) l̂ ∈ Edg ′. Since the transfor-

mation leaves this edge untouched, there is an edge l −→?s(x) l̂ ∈ Edg .
Since (ζγ(i),now) ≈? (l, η, s(pid , v) :: q), ζγ(i) = (l, φ, θ, s(pid , v) :: q) and

the input is enabled in ζγ(i). So the input step of P ′ is mimicked by the following

step: (l, φ, θ, s(pid , v) :: q) →τ (l̂, φ[x 7→ v], θ, q) (rule Input of Table 1).

We define ζλ(i + 1) = τ , ζγ(i + 1) = (l̂, φ[x 7→ v], θ, q) and we add the pair
(i + 1, j + 1) to U , i.e., U = U

⋃
{(i + 1, j + 1)}. Both the step of the trans-

formed system and the mimicking step of the original one form parts satisfying
condition 2 of Def. 3.14. Since both the step of the transformed system and the
mimicking step of the original one remove s(pid , v) from the input queue and
modify the value of x to v, (ζγ(i+1),now) ≈? χγ(j+1). The other conditions
of Def. 3.14 are satisfied as well.

Case: Discard
We have (l, η, s(pid , v) :: q) →τ (l, η, q) of P ′ and (ζγ(i),now) ≈? χγ(j) where
χγ(j) = (l, η, s(pid , v) :: q′), χλ(j + 1) = τ , and χγ(j + 1) = (l, η, q′).

By rule Discard of Table 5, we derive that signal s is not expected by
process P in location l. The transformation rules of Table 4 leave the set of
nontimeout signals expected at location l untouched. Therefore, a signal, which
is not expected in location l of the transformed system, is also not expected
in location l of the original system. Since (ζγ(i),now) ≈? χγ(j), two cases are
possible: (i) signal s is at the head of the input queue of P in ζγ(i), i.e., ζγ(i) =
(l, φ, θ, s(pid , v) :: q); (ii) there are one or more timeout signals in front of s at
the head of the queue of P in ζγ(i), i.e., ζγ(i) = (l, φ, θ, t1 :: . . . tn :: s(pid , v) :: q).

In the first case, the discard step of P ′ can be mimicked by the discard step
of P (rule Discard of Table 1). We define ζλ(i+ 1) = τ , ζγ(i+ 1) = (l, φ, θ, q)
and we add the pair (i + 1, j + 1) to U . Both the step of the transformed
system and the mimicking step of the original one remove s(pid , v) from the

3.4 Model Equivalence 63

input queue, so (ζγ(i+ 1),now) ≈? χγ(j + 1). The conditions of Def. 3.14 are
satisfied.

Since we do not take an expiration step for timer t in P until the timeout
of t is met in P ′, there is no need to consider the second case.

Case: Output
Here we have (l, η, q′) →co !s(pid,v) (l̂, η, q′) in S′

P and (ζγ(i),now) ≈? χγ(j)

where χγ(j) = (l, η, q′), χλ(j + 1) = co!s(pid , v) and χγ(j + 1) = (l̂, η, q′).

By rule Output of Table 5, we get l −→g B c!(s,e) l̂ ∈ Edg ′. The transforma-

tion rules of Table 4 leave output edges unmodified, so l −→g B c!(s,e) l̂ ∈ Edg ′.
Since guard g evaluates to true in χγ(j), it also evaluates to true in ζγ(i) too.
Expression e has the same value in χγ(j) and in ζγ(i) (see Lemma 3.2). So the
output step of P ′ can be mimicked by the output step of P (rule Output of
Table 1).

We define ζλ(i + 1) as co!s(pid , v), ζγ(i + 1) = (l̂, φ, θ, q) and we add the
pair (i + 1, j + 1) to U . Condition 2 of Def. 3.14 is satisfied. Both the step of
the transformed system and the mimicking step of the original one change the
location only, thus (ζγ(i+ 1),now) ≈? χγ(j + 1), and condition 1 of Def. 3.14
is satisfied.

Case: Receive
We have (l, η, q′) →ci?s(pid,v) (l, η, q′ :: s(pid , v)) for some v ∈ D, where c is an
input channel of P ′ (rule Receive of Table 5) and (ζγ(i),now) ≈? χγ(j) where
χγ(j) = (l, η, q′), χλ(j + 1) = ci?s(pid , v), and χγ(j + 1) = (l, η, q :: s(pid , v)).

The transformation rules of Table 4 do not change the structure of the
system, i.e., P ′ and P have the same set of input channels. By rule Receive
of Table 1, the receive step of P ′ can be mimicked by the following receive step
(l, φ, θ, q) →ci?s(pid,v) (l, φ, θ, q :: s(pid , v)) enabled in ζγ(i) of P .

We define ζλ(i+ 1) = ci?s(pid , v), ζγ(i+ 1) = (l, φ, θ, q :: s(pid , v)) and add
the pair (i+ 1, j + 1) to U . Condition 2 of Def. 3.14 is satisfied. Both the step
of the transformed system and the mimicking step add s(pid , v) to the input
queue, thus (ζγ(i + 1),now) ≈? χγ(j + 1), and condition 1 of Def. 3.14 is
satisfied.

Case: Assign
We have (l, η, q′) →τ (l̂, η[x 7→ v], q′) and (ζγ(i),now) ≈? χγ(j) where χγ(j) =

(l, η, q′), χλ(j + 1) = τ , and χγ(j + 1) = (l̂, η[x 7→ v], q′).

By rule Assign of Table 5, l −→g B x:=e l̂ ∈ Edg ′. The transformation rules

of Table 4 leave output edges unmodified, so l −→g B x:=e l̂ ∈ Edg . According
to Lemma 3.2, guard g and expression e have in ζγ(i) the same value as in
χγ(j). Therefore, the assignment in P ′ can be mimicked by assignment step

(l, φ, θ, q) →τ (l̂, φ[x 7→ v], θ, q) of P .

Here ζλ(i+1) = τ , ζγ(i+1) = (l̂, φ[x 7→ v], θ, q) and we add the pair (i+1, j+1)
to U . Condition 2 of Def. 3.14 is satisfied. The value of variable x is changed to
v both by the step of the transformed system and by the mimicking step, thus
(ζγ(i+ 1),now) ≈? χγ(j + 1), and condition 1 of Def. 3.14 is satisfied as well.

64 Timer Transformation to Verify SDL Specifications

Case: Set
Assume (l, η, q′) →τ (l̂, η[t 7→ on(v)], q′) and (ζγ(i),now) ≈? χγ(j) where we have

χγ(j) = (l, η, q′), χλ(j + 1) = τ , and χγ(j + 1) = (l̂, η[t 7→ on(v)], q′).

By rule Set of Table 5, l −→g′ B set t:=e l̂ ∈ Edg ′. According to rules

Set to Set1 and Set to Set2 of Table 4, l −→g B SET(NOW+e,t) l̂ ∈ Edg .

Two cases are possible: (i) g′ is a condition of the form [g
∧

(e ≥ 0)] for some
g in P , and (ii) g′ is a guard of the form [g

∧
(e < 0)].

In both cases, g evaluates to true in ζγ(i) iff g′ is true in χγ(j) by Lemma 3.2,
and the setting of timer variable t in P ′ can be mimicked by setting timer t in
P , i.e., by the step (l, η, q) →τ (l̂, η[t 7→ on(w)], q) where w = [[NOW + e]]ζγ(i) (rule
Set of Table 1).

Here ζλ(i + 1) = τ , ζγ(i + 1) = (l̂, φ, θ[t 7→ on(w)], q) and we add the pair
(i+ 1, j + 1) to U . Condition 2 of Def. 3.14 is satisfied.

If e ≥ 0 is true, then guard [g
∧

(e ≥ 0)] is true in χγ(j), and w = now + v,
i.e., condition 3 of Def. 3.12 is satisfied. Otherwise, guard [g

∧
(e < 0)] is true

in χγ(j) and e has the value zero, so condition 3 of Def. 3.12 is satisfied as well.
Hence, (ζγ(i+ 1),now) ≈? χγ(j + 1), and condition 1 of Def. 3.14 is satisfied.

Case: Reset
Here we have (l, η, q′) →τ (l̂, η[t 7→ off], q′), l 6∈ Loc′i and (ζγ(i),now) ≈? χγ(j)

where χγ(j) = (l, η, q′), χλ(j + 1) = τ , and χγ(j + 1) = (l̂, η[t 7→ off], q′).

By rule Reset of Table 5, l −→g B reset t l̂ ∈ Edg ′ for some l 6∈ Loci. By

transformation rule Reset to Reset of Table 4, l −→g B RESET(t) l̂ ∈ Edg .

Since l 6∈ Loci, guard g is not a timeout guard. By Lemma 3.2, guard
g evaluates to true both in χγ(j) and in ζγ(i), so the reset step of P ′ can be

mimicked by the reset step (l, φ, θ, q) →τ (l̂, φ, θ[t 7→ off], πt(q)) of P (rule Reset
of Table 1).

Here ζλ(i + 1) = τ , ζγ(i + 1) = (l̂, φ, θ[t 7→ off], πt(q)) and we add the pair
(i+ 1, j + 1) to U . Condition 2 of Def. 3.14 is satisfied.

Both the reset step of P ′ and the reset step of P change the value of timer
variable (resp. timer) t to off and the reset step of P removes all timeout signals
of t from the input queue, thus condition 4 of Def. 3.12 is satisfied. Therefore,
(ζγ(i+ 1),now) ≈? χγ(j + 1), and condition 1 of Def. 3.14 is satisfied.

Case: TickP

Here we have (l, η, q′) →tick (l, η[t 7→ dec(t)], q
′) and (ζγ(i),now) ≈? χγ(j) where

χγ(j) = (l, η, q′), χλ(j + 1) = tick , and χγ(j + 1) = (l, η[t 7→ dec(t)], q
′).

The premise of rule TickP of Table 5 says that blocked(χγ(j)) is true. By
Lemma 3.3, blocked(ζγ(i)) also holds. So the tick -step of P ′ can be mimicked
by the tick -step of P that is now →tick now + 1 (rules Tick of Table 3).

In this case, ζλ(i + 1) = tick , ζγ(i + 1) = ζγ(i), ζnow(i + 1) = ζnow(i) + 1
and we add the pair (i+ 1, j + 1) to U . Condition 2 of Def. 3.14 is satisfied.

The tick -step of P ′ decreases values of timer variables and the tick -step of P
increases the system time, i.e. (w − 1) + (now + 1) = v where w is the positive
value of the timer variable and v is the value of the corresponding timer, thus

3.4 Model Equivalence 65

condition 3 of Def. 3.12 is satisfied. Moreover, (ζγ(i+1),now+1) ≈? χγ(j+1),
and condition 1 of Def. 3.14 is satisfied.

Case: Timeout, TDiscard
See Lemma 3.7.

We have shown that for trace χ of P ′ there exists a trace ζ of P such that
ζ ≡U χ. Each construction step preserves the relation ≈? on resulting states.
2

Lemma 3.9.

Let Spec be a specification, Spec ′ be the result of transforming Spec according
to the rules of Table 4. Let S be the LTS derived from Spec by applying rules
of Tables 1, 2, 3 to Spec, and S ′ be the LTS obtained from Spec ′ by applying
rules of Table 5, rules In and Out of Table 2, rules of Table 6. Then for each
trace χ of S′ there exists a trace ζ of S such that ζ ≡U χ for some U ⊆ N×N.

Proof. By Lemma 3.8, we have already shown that P ′ �U P for single pro-
cesses. For systems consisting of n components, it is straightforward to prove
that P ′

i �U Pi for all i ∈ {1, . . . , n} implies S′ �U S, proceeding similarly by
case analysis on the rules of Table 6 and by using Lemma 3.3.

(i, j) ∈ U implies (ζγ(i),now) ≈? χγ(j). Trace ζ of S and relation U are
constructed by induction on the length of trace χ of S ′. Initial configurations
γ0 and γ′0 of S and S′ respectively are related by ≈?, so U is initially (0, 0)
and ζγ(0) = γ0. Assume that (i, j) ∈ U . ζ is a trace of the length i of S and
equivalent to χ(j) of S′. Further we proceed by a case analysis on the rules of
Table 6.

Case: In, Out
Since the transformation does not influence in- and out-behaviour of channels
and (i, j) ∈ U implies (ζγ(i),now) ≈? χγ(j), i.e., channel c has in ζγ(i) the
same contents as in χγ(j). So a co?s(pid , v)-step of channel c in S ′ can always
be mimicked by the same step of channel c in S. Moreover, the configurations
reached by the mimicking step of the original system and the step of the trans-
formed one are related by ≈?. The same is valid for ci!s(pid , v)-steps.

Case: Comm
We have χγ(j) →τ χγ(j+1) and (ζγ(i),now) ≈? χγ(j) where we have χγ(j) =
(χγ(j)1, . . . , χγ(j)n), ζγ(i) = (ζγ(i)1, . . . , ζγ(i)n), χγ(j + 1) = (χγ(j + 1)1, . . . ,
χγ(j + 1)n). By the premises of rule Comm, this implies that there are some
k,m ∈ {1, . . . , n} such that χγ(j)m →αm

χγ(j + 1)m, χγ(j)k →αk
χγ(j + 1)k

and predicate comm(αm, αk) is true.
Due to Lemma 3.8 and case (In, Out) considered above, steps labelled

by αm and αk can be mimicked by steps with the same labelling in Pm and
Pk. So we have ζγ(i)m →αm

ζγ(i + 1)m and ζγ(i)k →αk
ζγ(i + 1)k. More-

over, (ζγ(i+ 1)m,now) ≈? χγ(j + 1)m, (ζγ(i + 1)k,now) ≈? χγ(j + 1)k and
comm(αk, αm) holds. By rule Comm, which is valid both for the original sys-
tem and for the transformed one, we derive for some k,m ∈ {1 . . . n} transi-

66 Timer Transformation to Verify SDL Specifications

tion (ζγ(i)1, . . . , ζγ(i)n) →τ (ζγ(i+ 1)1, . . . , ζγ(i+ 1)n). So the communication
of P ′

m with P ′
k can be mimicked by the communication of Pm with Pk.

In this case, ζλ(i + 1) = τ , ζγ(i + 1) = (ζγ(i + 1)1, . . . , ζγ(i + 1)n) and we
add the pair (i+ 1, j + 1) to U . Condition 2 of Def. 3.14 is satisfied.

Since (ζγ(i+ 1)k,now) ≈? χγ(j + 1)k and (ζγ(i+ 1)k,now) ≈? χγ(j + 1)k

for all k ∈ {1, . . . , n}, (ζγ(i+1),now) ≈? χγ(j+1), and condition 1 of Def. 3.14
is satisfied.

Case: Tick
Here we have χγ(j) →tick χγ(j+1) decreasing values of non-zero timer variables
of S′, and (ζγ(i),now) ≈? χγ(j).

By rule Tick of Table 6, predicate blocked is true in χγ(i). According to
Lemma 3.3, blocked is also true in ζγ(j). So the tick -step of S ′ can be mimicked
by the tick -step of S.

In this case, ζλ(i + 1) is defined as tick , ζγ(i + 1) = ζγ(i), ζnow(i + 1) =
ζnow(i)+1 and we add the pair (i+1, j+1) to U . The condition 2 of Def. 3.14
is satisfied.

The tick -step of S′ decreases values of non-zero timer variables and the tick -
step of S increases system time, i.e., (w − 1) + (now + 1) = v where w is the
value of a non-zero timer variable and v is the value of the corresponding timer.
Condition 3 of Def. 3.12 is satisfied, hence (ζγ(i + 1),now + 1) ≈? χγ(j + 1).
Moreover, condition 1 of Def. 3.14 is satisfied.

Case: Interleavein

Here we have (χγ(j)1, . . . , χγ(j)n) →c!s(pid,v) (χγ(j + 1)1, . . . , χγ(j + 1)n), and
(ζγ(i),now) ≈? χγ(j) where χγ(j) = (χγ(j)1, . . . , χγ(j)n), ζγ(i) = (ζγ(i)1,
. . . , ζγ(i)n), and χγ(j + 1) = (χγ(j + 1)1, . . . , χγ(j + 1)n). By the premises of
rule Interleavein, χγ(j)k →c?s(pid,v) χγ(j + 1)k for some k ∈ {1, . . . , n} and
s ∈ Sigext .

The set of external signals for S coincides with the set of external signals
for S′, thus there is a step ζγ(i)k →c!s(pid,v) ζγ(i+ 1)k. By rule Interleavein,
ζλ(i + 1) = c!s(pid , v), ζγ(i + 1) = (. . . , ζγ(i + 1)k, . . .) and we add the pair
(i+ 1, j + 1) to U . Condition 2 of Def. 3.14 is satisfied.

Since (ζγ(i)m,now) ≈? χγ(j)m for all m ∈ {1, . . . , n}, (ζγ(i + 1),now) ≈?

χγ(j + 1), i.e., condition 1 of Def. 3.14 is satisfied.

Case: Interleaveout

The proof of this case is analogous to the proof of the Interleavein case.

Case: Interleaveτ

Assume that χλ(j + 1) is a τ -step and that χγ(j) = (χγ(j)1, . . . , χγ(j)n). Let
χγ(j)k →τ χγ(j+1)k for some k ∈ {1, . . . , n}. The τ -step corresponds to one of
the cases Discard, NoneInput, Assign, Expiration, Set, Reset of Table 5
or the case Comm considered above. As we already showed, it can be simulated
by a τ -step of Pk in all the cases.

The configurations reached by the τ -step in S ′ and the mimicking τ -step of
S are related by ≈? for all cases. Therefore, we add the pair (i+ 1, j + 1) to U

3.4 Model Equivalence 67

and define ζλ(i+ 1) = τ , ζγ(j + 1) = γ where γ is the configuration reached in
S by the mimicking τ -step.

By the construction mechanism described above, we have shown that for
each trace χ of S′ there is a trace ζ of S such that ζ ≡U χ for some U ⊆ N×N.
2

Lemma 3.10. [weak trace equivalence]
Let Spec be a specification and Spec ′ be the result of transforming Spec according
to the rules of Table 4. Let S be the LTS derived from Spec by applying the rules
of Tables 1, 2, 3 to Spec, and S ′ be the LTS obtained from Spec ′ by applying the
rules of Table 5, rules In and Out of Table 2, rules of Table 6. Then S ≡wtr S

′.

Proof. Case: S �wtr S
′

Follows from Theorem 3.1.

Case: S′ �wtr S
Follows from Lemma 3.9 and Lemma 3.5. 2

Lemma 3.11.

Let Spec be a specification and Spec ′ be the result of transforming Spec according
to the rules of Table 4. Let S be the LTS derived from Spec by applying the rules
of Tables 1, 2, 3 to Spec, and S ′ be the LTS obtained from Spec ′ by applying
the rules of Table 5, rules In and Out of Table 2, rules of Table 6. Let L and
L′ be interpretation functions for the set of atomic proposition P mentioning
only process variables. Then (S,L) ≡st (S′,L′).

Proof. Both (S,L) and (S ′,L′) are doubly LTSs (Def. 2.25). Here we assume
that neither system S nor system S ′ contains deadlocks, because even if the
system cannot proceed, time can progress. So all the traces of S and S ′ are
infinite.

Case: (S,L) �st (S′,L′)
Follows from Def. 3.12 and Theorem 3.1.

Case: (S′,L′) �st (S,L)
The expiration steps present in S and absent in S ′ do not change the valuation
of process variables. By Lemma 3.9 and Lemma 3.6, it is straightforward to
show that (S′,L′) �st (S,L) wrt. formulas mentioning process variables only.
(S,L) �st (S′,L′) and (S′,L′) �st (S,L) imply (S,L) ≡st (S′,L′). 2

Theorem 3.2.

For all formulas ϕ from LTL−X mentioning only process variables, S |= ϕ iff
S′ |= ϕ.

Proof. Straightforward from Lemma 3.11 and Theorem 2.2. 2

68 Timer Transformation to Verify SDL Specifications

3.5 Conclusion

The transformation proposed in this chapter alleviates state explosion caused
by the traditional SDL interpretation of time and timers. In the transformed
model, timeouts are not placed into input queues but modelled by timeout
guards, so we will have fewer possible combinations of messages in the input
queues. Treating timers as variables is simpler than treating them as signals.
There is no global time in the transformed system, thus the factor leading to
infinite state space is eliminated.

The transformation preserves both negative and positive results of verifica-
tion. A branching simulation relation R (cf. Theorem 3.1) guarantees that any
LTL−X -formula satisfied by the transformed model is satisfied by the original
one. Path equivalence up to stuttering (cf. Lemma 3.11) allows us to find a
trace of the original system equivalent to a counterexample trace found in the
transformed system. The proof of path equivalence up to stuttering also con-
nects the presented subset of SDL with DTPromela that can be considered
as an implementation of the “timers as variables” idea. The semantics of the
transformed model will also be used in Chapter 5 to present an approach to
automatic closing of SDL specifications.

4

Using Fairness to Make Abstractions Work

The state explosion remains a stumbling block of model check-
ing. Abstraction techniques help to solve this problem replacing
one model by an abstract smaller one. Here we propose a timer
abstraction and argue its correctness.

Abstractions often introduce infinite traces that have no cor-
responding traces at the concrete level and can lead to the fail-
ure of the verification. We show how one can exclude them by
imposing a strong fairness constraint on the abstract model.

By employing the fact that the timer abstraction introduces a
self-loop, we render the strong fairness constraint into a weak
fairness constraint and embed it into the verification algorithm.

The chapter is based on [26].

70 Using Fairness to Make Abstractions Work

4.1 Introduction

Currently, most model checkers provide facilities to (automatically) reduce
a state space, like partial-order reduction techniques. These techniques deal
mainly with the control flow of a model. However, data (values stored and
transmitted in a system), whose domain is often infinite or very large, are not
handled by them; it is a task of a user to present data in a verification model
in a finite form of reasonable size.

Abstraction techniques are widely used to make the verification of com-
plex/parameterised/infinite systems feasible. Abstraction intuitively means re-
placing a semantical model by an abstract, in general simpler one. Depending
on the property to be verified, the actual values of data may sometimes be ig-
nored or replaced by some abstract values. In an abstract model, the operations
on data are mimicked by new ones on the abstract data. The main requirement
for an abstraction is that the abstract system behaviour should correctly re-
flect the behaviour of the original system with respect to a verification task
in the sense that (1) an abstraction should capture all essential points in the
system behaviour, i.e., be not “too abstract”, and (2) an abstraction should
be safe, which means that every property checked to be true on the abstract
model, holds for the concrete one as well. This allows the transfer of positive
verification results from the abstract model to the concrete one.

The concept of safe abstraction is well-developed within the Abstract In-
terpretation framework [46, 47, 51]. The relation between the concrete model
and its safe abstraction is formalized there as a requirement on the relation
between the data operations of the concrete system and their abstract coun-
terparts. Every value of the concrete state space is mapped by the abstraction
function α into an abstract value that “describes” the concrete value. As an
example consider the abstraction of integers into their signs in which e.g. −3 is
mapped by α into neg. For every operation (function) f on the concrete level,
an abstraction fα needs to be defined which “mimics” f . In general, the ab-
straction can be nondeterministic. For example, addition (+) over the integers
is abstracted into an operation (+α) such that pos +α neg may yield pos or
neg nondeterministically. This is formally captured by letting fα be a function
into the powerset over the domain of abstract values.

Working within the Abstract Interpretation framework guarantees the pre-
servation (in the direction from the abstract to the concrete model) of the truth
of formulas of temporal logics without existential quantification over paths, e.g.
2Lµ (cf. Theorem 2.5). Counterexamples can be spurious. In case a counter-
example is found, the abstraction should be refined and the refined model is
then model-checked. Such a sequence of refinements can happen to be infinite;
in this case one needs different techniques to prove or disprove the property.

The systems we consider are specified as parallel compositions of communi-
cating processes. A process consists of a number of locations, variables and tran-
sitions connecting the locations and changing the valuations of variables. Pro-
cesses can communicate by rendezvous/buffered message passing and through

4.1 Introduction 71

2 + 1 0 −1
tick tick tick tick

Fig. 5. Abstracted timer

shared memory. There are explicit timing constraints in the specification im-
posed by timer operations.

We assume that the properties are given in the universal fragment of the
µ-calculus, 2Lµ, consisting of formulas in positive normal form, where the
negations are applied only to atomic propositions. Since every Lµ formula has
an equivalent in positive normal form (see [112]), this is not a significant loss
of generality. The verification methodology we propose works for any formula
of the universal fragment without negation 2L+

µ and, under certain conditions
that occur relatively often in practice (for instance, if the formula does not refer
to abstracted variables), for the whole 2Lµ.

In this chapter, we consider a simple abstraction for (discrete) timers similar
to the one from [49]. This abstraction is often used to prove that a property
holds for all instantiations of timer settings that are greater than or equal to
some value k. It leaves all values below k unchanged and maps all other values
to the abstract value k+. Being a deterministic operation on the concrete model,
the time progress operation tick becomes nondeterministic on the abstract one
(see Fig. 5). That introduces infinite traces with k+ →tick k+ being chosen
whenever tick is enabled. As a result the timer never expires, which in general
does not correspond to any trace of the concrete model. For instance, properties
of the form 2(φ → 3ψ) get disproved on the abstract model whenever they
depend on the fact that the timer in question eventually expires after being
set. Refining the model by taking a greater value knew, we still keep the loop
at k+

new. So refinement gives no solution to this problem.

To exclude the infinite loop k+ →tick k
+ that causes spurious counterexam-

ples, we impose a strong fairness condition Φα on the abstract model, which we
call t-fairness : “For any trace where k+ →tick (k−1) is enabled infinitely often,
k+ →tick (k − 1) is taken infinitely often or t is set to a new value infinitely
often”. We show that the concrete property Φ that corresponds to the t-fairness
condition Φα trivially holds on the concrete model. Therefore, in order to prove
a formula φ on the concrete system, we check validity of the formula Φα → φα

on the abstract one, where φα is the corresponding abstract version of φ. If
Φα → φα holds, we conclude that φ holds on the concrete system.

By exploiting some specifics of the class of systems we are working with,
we show that the strong fairness criterion can be reformulated into a weak
fairness criterion. When one deals with explicit model checking, this is often
a significant advantage, because algorithmically it could be easier to deal with
the latter.

72 Using Fairness to Make Abstractions Work

Moreover, when one stays in the realm of explicit-state model checking, it
is much more efficient to build the t-fairness check into the model checking
algorithm, than to express it as a formula. In this case, one can check for
the validity of φ on the abstract model, assuming a built-in t-fairness check.
The t-fairness check algorithm we propose here is inspired by Choueka’s flag
algorithm [36], and it is a version of the algorithm for weak process fairness
which is implemented in Spin.

We implemented our algorithm in DTSpin [24] (a discrete-time version of
the Spin model checker [93]) and tested the prototype implementation on some
examples from the literature with encouraging results.

Related work. Counter abstractions similar to the timer abstraction we use
are quite standard and they can be traced to [123]. Such abstractions are often
applied to abstract (discrete) timers for the verification of safety properties (see
e.g. [49]). We study here the verification of liveness properties, which gives rise
to the use of fairness requirements on the abstract model.

There are several papers that deal with the problem of eliminating spuri-
ous execution sequences caused by abstraction. Closest to our approach is the
theory of linear abstraction from [108] (also described in [109]). The general
method of data abstraction presented there can also suffer from the problem of
spurious execution sequences. To eliminate those, it is suggested to augment the
system under consideration by an auxiliary monitoring module (executed syn-
chronously with the system) and then to abstract the system obtained by such
a composition. In one of the examples, [108] features a three-valued counter
abstraction ({0, 1, 2+}, using our notation). Thus, one could apply the idea of
a monitoring process to eliminate extra sequences introduced by self-loops to
abstract states. However, this would lead to a solution based on strong fairness
on the transition level. The monitor labels the “critical” transitions with −1 or
+1. The (strong) fairness criterion requires that if a −1 transition is executed
infinitely often then also a +1 transition is executed infinitely often. This en-
sures leaving the artificial self-loops in the abstract state space introduced by
the abstraction.

As it was already emphasized, we show that in the context of timer abstrac-
tion, such a straightforward strong fairness can be transformed into a weak
one, which is a significant advantage in the context of explicit model checking.

In [138] the authors present a three-valued counter abstraction in the con-
text of the verification of parameterized systems, i.e., networks of N identical
concurrent processes, whereN is an arbitrary finite number. The counters count
the number of processes at a particular control (program) location. The solu-
tion to the problem of spurious execution sequences in this case also boils down
to strong fairness. To this end two new variables from and to are introduced.
The unwanted self-looping sequences are eliminated by the natural requirement
that for each process location l if the processes enter l infinitely many times,
then they must also leave it infinitely many times.

4.2 Timer Abstraction 73

The problem of parameterized networks of processes is also treated in [14],
with a solution for the spurious sequences which resembles both of the above
given approaches. The role of the monitors from [108] is played by “rank-
ing functions”, similar to the ones used to ensure termination of sequential
programs. The ranking functions count how many processes have executed a
particular transition in the concrete system. By abstracting a ranking function
value, similarly to [138], one obtains a separation of the “critical” transitions
into “negative” and “positive” ones. The “marking algorithm” which solves
the problem of spurious sequences is based on strong fairness. The efficiency
remarks in favor of our solution in the context of explicit model checking would
also apply to [14] and [138].

α-Spin [69] is an extension of Spin with abstraction. The abstraction frame-
work of α-Spin is based on the Abstract Interpretation theory and in that
regard it is similar to our approach. However, to the best of our knowledge,
there is no work that deals with spurious executions in the context of α-Spin.
Another approach to use abstractions in combination with Spin can be found
in [93].

The chapter is organized as follows: In Section 4.2 we describe the timer
abstraction and prove that it is safe. In Section 4.3 we introduce the notion of
t-fairness. In Section 4.4 we present the verification algorithm. In Section 4.5 we
describe our implementation of t-fairness in DTSpin. In Section 4.6 we discuss
some experimental results. Finally, we give some conclusions in Section 4.7.

4.2 Timer Abstraction

Abstraction of Temporal Formulas

Given a system specification M whose semantics is given by transition system
T = (S,R), a system property is usually formulated as a formula φ of temporal
logic and the main question of model checking is formulated as T |= φ. Given
a description relation ρ ⊆ S × αS that gives for concrete states in S their
“descriptions” in αS, we can derive a transition system αT = (αS, αR) such
that it is an abstraction of T (Def. 2.36). Data abstraction can influence system
variables mentioned in the temporal formula. Further, we consider how an
abstract temporal formula φα can be built from a concrete formula φ so that

αT |= φα implies T |= φ.

First we define how to construct abstract versions of atomic propositions.
Let P be the set of atomic propositions of φ. Since αT is an abstraction of
T , there exists a Galois connection (α, γ) from 2S to 2αS (see Def. 2.36 and
Lemma 2.3). We define pα to be the proposition that corresponds to the subset
α(I(p)) − α(I(p)) of the abstract state space αS, obtained under the Galois
connection (α, γ). We say that pα is the contracting abstraction of p under α.
The notion of contracting abstraction is similar to one given in [107].

74 Using Fairness to Make Abstractions Work

−2

pI()

−1 1 20

neg
I(pα

α)
pos

I(pα
α)

I(p)

Fig. 6. Contracting abstraction

Definition 4.1. [contracting abstraction]
Let p be a proposition from P, (α, γ) be a Galois connection, and I : P → 2S

and αI : P → 2αS be two interpretation functions for transition systems T =
(S,R) and αT = (αS, αR) respectively. pα is the contracting abstraction of p
under α iff αI(pα) = α(I(p)) − α(I(p)).

The contracting abstraction of a formula φ is φα that is obtained by replacing
each atomic proposition p in φ with its contracting abstraction pα.

Fig. 6 gives an example of a contracting abstraction. There concrete states
{−2,−1, 0} are mapped to abstract state {neg}, and concrete states {0, 1, 2} are
mapped to {pos}. We want to build a contracting abstraction for the atomic
proposition (x ≥ 0). It is satisfied on concrete states {0, 1, 2} and not satis-
fied on concrete states {−2,−1}, i.e. I(p) = {0, 1, 2} and I(p) = {−2,−1}.
By abstracting {0, 1, 2}, we get {neg , pos}. We remove neg , because it can
be mapped back to −2 or −1, where the concrete proposition is not satis-
fied, i.e. αI(pα) = {pos}. The contracting abstraction of the concrete propo-
sition (x ≥ 0) is the proposition corresponding to the set of abstract states

αI(pα) = {pos}. Note that for all s ∈ S, sα
∈ Sα such that sα

∈ α({s}), s |= p
if sα |= pα when pα is contracting. The contracting abstraction pα of (x ≥ 0) is
not satisfied in abstract state neg . However, abstract state neg can be mapped
back to concrete state 0, where the concrete proposition (x ≥ 0) is satisfied.
sα 6|= pα does not imply s 6|= p.

To be able to transfer not only positive results but also negative results
from the abstract system to the original one, we define the notion of consistent
abstraction. Abstraction function α is called consistent with interpretation I
(Def. 2.37), if the images by α of the interpretations of p and ¬p are disjoint.

Definition 4.2. [consistent abstraction]
Let α be consistent with interpretation I and pα be the contracting abstraction
of p under α. We call the proposition pα the consistent abstraction of p under
α.

The consistent abstraction of a formula φ is φα that is obtained by replacing
each atomic proposition p in φ with its consistent abstraction pα.

4.2 Timer Abstraction 75

−2

pI()

−1 1 20

I(pα
α)

pos
I(pα

α)
zero

I(p)

neg

Fig. 7. Consistent abstraction

Fig.7 gives an example of a consistent abstraction. Concrete states {−2,−1}
are abstracted to {neg}, Concrete states {1, 2} are mapped to {pos}, and
{0} is mapped to {zero}. We want to build a consistent abstraction of an
atomic proposition (x ≥ 0). The concrete proposition is satisfied on {0, 1, 2}
and not satisfied on {−2,−1}. By abstracting concrete states {0, 1, 2}, we get
{zero, pos}. The contracting abstraction of the proposition is the proposition
corresponding to the set of abstract states αI(pα) = {zero, pos}. The consis-
tent abstraction pα is not satisfied on neg . Abstract state neg is concretized
to {−2,−1}, where ¬p is satisfied. Note that for all s ∈ S, sα ∈ Sα such that
sα ∈ α({s}), s |= p iff sα |= pα, when pα is consistent.

Lemma 4.1.

Let (α, γ) be a Galois connection and α be surjective and consistent with I.
Then γ̃ is consistent with αI defined as in Def. 4.1.

Proof. First, we have to show that if α is consistent with I : P → 2S , then
∀p ∈ P , γ̃(α(I(p))) = I(p).

By the definition of γ̃, γ̃(α(I(p))) = γ(α(I(p))). Since α is consistent and

surjective, γ(α(I(p))) = γ(α(I(p))). By Lemma 2.5, γ(α(I(p))) = I(p) = I(p).

Further, we have to show that if α is consistent with I : P → 2S , then γ̃
is consistent with αI : αP → 2αS . According to Def. 4.1, αI(pα) = α(I(p)) −
α(I(p)). γ̃ is consistent with αI iff

γ̃(αI(pα)) ∩ γ̃(αI(pα)) = ∅.

By the definition of αI(p), we can rewrite the left part of this equality as

γ̃[α(I(p)) − α(I(p))] ∩ γ̃[α(I(p)) − α(I(p))].

Since α is consistent with I, α(I(p)) ∩ α(I(p)) = ∅, and hence, α(I(p)) −
α(I(p)) = α(I(p)). Therefore, we rewrite the expression further to

γ̃[α(I(p))] ∩ γ̃[α(I(p))].

76 Using Fairness to Make Abstractions Work

Now we only have to show that α(I(p)) = α(I(p)). Since α is consistent,
α(I(p))∩α(I(p)) = ∅. Since α is surjective, α(I(p))∪α(I(p)) = αS. Therefore,
α(I(p)) = α(I(p)). By Lemma 2.5, we have

γ̃(α(I(p))) ∩ γ̃(α(I(p)) = I(p) ∩ I(p) = ∅.

2

Theorem 4.1.

Let T = (S,R) and αT = (αS , αR) be two transition systems with interpre-
tation functions I, αI defined as in Def. 4.1. Let T v(α,γ) αT. Given a 2L+

µ

(respectively 2Lµ) formula φ, let φα be a contracting (respectively consistent
with I) abstraction of φ. Then αT |= φα implies T |= φ.

Proof. By Lemma 4.1, the consistency of α with I implies the consistency of
γ̃ with αI. The theorem is a corollary of Theorem 2.5. ut

Often it is more convenient to apply abstractions directly on system speci-
fication M than on its transition system T . Such an abstraction on the level of
M is well-developed within the Abstract Interpretation framework [46, 47, 51].
The requirement that Abstract Interpretation imposes on the relation between
the concrete model T and its safe abstraction T α can be formalized as a re-
quirement on the relation between the data and the operations of the concrete
system and their abstract counterparts as follows: Each value of the concrete
domain Σ is mapped by a description function ρd to a value from the abstract
domain αΣ. The abstract value “describes” the concrete value. We assume an
ordering � on the abstract domain αΣ according to the “precision” of abstract
values: given a concrete value x and its abstract description xα = ρd(x), we say
that any yα ∈ αΣ such that xα � yα is a less precise description of x.

For every operation (function) f on the concrete data domain, an abstract
function fα is defined, which “mimics” f . (For simplicity, we assume f to be a
unary operation.) In general, the abstraction can be nondeterministic. This is
formally captured by letting fα be a function into the powerset over the domain
of abstract values. The requirement of mimicking is then formally phrased with
the following safety statement :

∀x ∈ Σ ∃y ∈ fα(ρd(x)) : ρd(f(x)) � y. (1)

Definition 4.3. safe abstraction
Let Mα be obtained by replacing each constant c and function f of M with
their abstract versions. We say that Mα is a safe abstraction of M iff the
safety statement is satisfied for all the abstract versions of the functions.

A state s can be seen as a valuation vector 〈v0, v1, . . . , vn−1〉 and, thus,
S = Σ0× . . .×Σn−1, with Σ0, . . . ,Σn−1 being the corresponding data domains.
We relate S and αS via the description relation, which in our case is the function
ρs : S → αS defined as ρs = 〈ρd0(v0), . . . , ρdn−1(vn−1)〉, where ρ0d, . . . , ρdn−1

4.2 Timer Abstraction 77

M α

αT Tα

M

T

Fig. 8. Two approaches to abstraction

are description functions for the corresponding variables and the set of abstract
states αS = αΣ0 × . . . × αΣn−1. We assume a trivial (identity) mapping as
description function for unabstracted variables.

Figure 8 illustrates two approaches to abstraction. In the first case, transi-
tion system T = (S,R) giving the semantics of specification M is abstracted
to transition system αT = (αS, αR) by a description relation on the states of
T and αT . In the second case, Mα is obtained by replacing each constant c
and function f of M by their abstract versions. Let Mα be a safe abstrac-
tion of M , and the semantics of Mα be given by Tα = (Sα,Rα). Obviously
Sα = αΣ0 × . . . × αΣn−1 = αS . Moreover, for “usual” modelling languages,
like Promela, Rα ⊇ αR, which follows from Lemma 4.4.1.1 of [47]. This
trivially implies αT vid Tα, where id is the identity function. Given a 2L+

µ

(respectively 2Lµ) formula φ, we can find φα that is a contracting (respec-
tively consistent with I) abstraction of φ. By Theorem 4.1, we obtain that
Tα, αI |= ϕα ⇒ αT, αI |= ϕα ⇒ T, I |= ϕ.

Timer Abstraction

The timer abstraction proposed here is similar to abstractions given in [49] and
in [25]. The abstraction from [25] is based on a natural idea of allowing timers to
expire at an arbitrary moment after they are set. This means that the timer can
expire immediately after setting. A typical problem arising when one starts to
apply this abstraction in practice is the introduction of zero-time cycles (cycles
without time progression) which are not present in the concrete model. A usual
pattern for SDL-specifications is that a timer schedules some periodical activity;
after a timeout signal is consumed by a process, some actions are taken, the
timer is set again, and the process returns to the same control state where
it was before consumption of the timer signal. Since the abstraction allows a
timer to expire at any arbitrary moment after its setting (also immediately
after it has been set), undesirable cyclic behaviour can be introduced. The
“timeout input – timer setting – timer expiration” chain of transitions can be
executed infinitely many times and all the other behavioural branches may be
ignored forever. Therefore, the properties which hold for the concrete model
and which are expected to hold independently of the timer settings, fail to
hold for the abstract model, since “independently” means in this case that the

78 Using Fairness to Make Abstractions Work

property holds for the concrete model whatever positive delay is assigned to a
timer. Another problem arises in case a timer serves as a guard to prevent from
taking a transition too early. By abstracting time, this timer guard is broken.

We propose an abstraction for timers that keeps this guard delaying the
timer expiration. Moreover, we prove that the abstraction is safe. The concept
of timers was defined in Section 3.3. The system semantics we use here is similar
to one defined in Section 3.3. The only difference is that we do not require tick
to have the least priority and leave the semantics of time partially open here,
since our approach does not depend on it.

For a timer t, the concrete domain of timer values Σ = N ∪ {−1}, where
−1 represents a deactivated timer, is replaced with the abstract domain αΣt =
{−1, 0, . . . , kt − 1, k+

t }, where the value kt is a positive value defined by the
user, assuming that the property we want to verify still holds even if we do
not distinguish between the values of the timer greater than or equal to kt.
We overload the notation by using c (−1 ≤ c < kt) as an abstract value
representing the single concrete value c, while c+ describes the set of concrete
values {c, c+ 1, c+ 2, . . .}. We do not consider 0+ abstraction here.

The description function ρt is defined as ρt(c) = c if c < kt and ρt(c) = k+
t

otherwise. Abstract operations on timers are defined in an intuitive way: setting
a timer to value x becomes setting it to value ρt(x); the timeout guard gα

t is
true iff [[t]] = 0; and tickα is a nondeterministic operation that changes the
value of a timer from a to b according to the following rules: (1) if a = −1 then
b = −1, (2) if 0 ≤ a < kt then b = a− 1 (where “−” works on abstract values
as on integers), (3) if a = x+ then b ∈ {x+, x− 1}.

Varying kt, we can change the refinement degree of the abstraction. Taking
k equal to 0, we get the most abstract version of it, which is an abstraction
from [25] where not just timers but time is abstracted. Taking k equal to the
lower boundary of the timer delays in the system, we get the most refined
abstraction that can be obtained with this abstraction schema.

Lemma 4.2.

System Mα built from system M according to the rules given above is a safe
abstraction of M .

Proof. Let Mα be obtained by replacing each constant c and function f of
M with their abstract versions, and Tα = (Sα,Rα) be the transition system
that corresponds to Mα. Now we check whether the safety statement holds for
all functions on timers. For the timer abstraction, we reformulate the safety
statement as: ∀x ∈ Σ ∃y ∈ fα(ρd(x)) : ρd(f(x)) = y.

Abstract setting of a timer obviously satisfies this safety statement. Since
zero value of a timer is always mapped by the description function to zero, gα

t

also satisfies the statement.

For tickα we consider three cases: Let x be the value of the timer t and
(i) x < kt, (ii) x = kt or (iii) x > kt.

4.3 Fair Timer Abstraction 79

In the first case, tick decreases the value of the timer to (x−1). Since x < kt,
(x−1) is mapped to (x−1) by ρd. If we apply tickα to the value of the abstract
timer, it becomes (x− 1) as well, hence the safety statement is satisfied.

In the second case, tick decreases the value of the timer to (x − 1). Since
x = kt, (x − 1) is mapped to (x − 1) by ρd. Abstract function tickα chooses
nondeterministically one of the values from {k+

t , (x−1)}. The safety statement
is satisfied.

In the last case, ρd(x−1) = k+
t . If we apply tickα to the value of the abstract

timer, tickα chooses nondeterministically one of the values from {k+
t , (kt −1)}.

Therefore, the safety statement is satisfied as well. ut

4.3 Fair Timer Abstraction

From now on we assume that systems under consideration have neither dead-
locks nor infinite zero-time cycles (infinite traces with a finite number of tick ’s).
Note that if system contains a zero-time cycle, there is an infinite trace of the
system where time never progresses. Such a trace is absolutely unrealistic for
a real system. If Mα is a safe abstraction of M , the absence of zero-time cy-
cles can be checked on the abstract model by verifying the property 23tickα,
which is a consistent abstraction of 23tick. (tick is a formula that encodes
an occurrence of a tick-step in the original system. tickα is the consistent ab-
straction of tick.) The absence of deadlocks follows straightforwardly from the
fact that time can progress even when no other action is possible in the system,
and thus the tick action is still possible.

An abstracted system contains more behaviour than the original one. There-
fore, positive verification results can be transferred from the abstract to the
concrete system, while counterexamples can be spurious. Abstraction refine-
ment is a common technique used in case spurious counterexamples are found
(see e.g. [40]), though just a change of the granularity level does not always
help—the sequence of refinements can turn out to be infinite.

Suppose we use the timer abstraction described in the previous section to
prove that some property holds for all timer settings greater than or equal to
some kt. Due to the nondeterminism introduced with the abstract version of
tick , it becomes possible that the timer once set will never expire. This means
that the states that are always reachable in the concrete system are not reached
in the abstract system if the k+

t →tick k
+
t step is always chosen. Such a trace

gives a spurious counterexample: In the concrete system the timer expires after
a finite number of time slices. The only possible refinement is taking the same
abstraction with a greater value of k. But the same trace where the timer
never expires is still possible, so a counterexample would be produced again.
Therefore, we need a different technique to cope with this problem.

Imposing a strong fairness condition that requires that for any trace where
the transition k+

t →tick (kt − 1) is infinitely often enabled it is infinitely often
taken, gives incorrect results: One can easily build a (concrete) model where

80 Using Fairness to Make Abstractions Work

a timer t is infinitely often set to a new value (before it expires), so it can
be seen every time as a new variable in the one-assignment framework. This
observation leads us to the following definition of t-fairness :

Definition 4.4.

Given an LTS T of a system with a set of abstract timers TVarα. We say that a
trace of T is t-fair iff for any t ∈ TVarα the following holds: k+

t →tick (kt−1) is
infinitely often enabled implies that k+

t →tick (kt−1) is infinitely often executed
or set(t, x), x ∈ αΣt, is infinitely often executed.

This definition has a strong fairness pattern. Interestingly, due to the fact
that the loop introduced on a timer with the abstraction is a self-loop, this
requirement can be reformulated as a condition with a weak fairness pattern:

Lemma 4.3.

A trace ξ of T is t-fair iff for any t ∈ TVarα the following holds: if there
exists an infinite suffix σ of ξ such that [[t]]sj

= k+
t for every state of σ, then

set(t, k+
t) is infinitely often executed along the trace.

Proof. Let p, q, and r denote the following propositions (from Def. 4.4):
“k+

t →tick (kt − 1) is enabled”, “k+
t →tick (kt − 1) is executed”, and “set(t, x),

x ∈ αΣt, is executed”, respectively. Then the t-fairness condition from Def. 4.4
can be expressed as the following LTL formula:

23p→ (23q ∨ 23r). (2)

We can split the proposition r into a disjunction of two propositions r1
and r2: “set(t, k+

t) is executed” and “set(t, x), where x 6= k+
t , is executed”,

respectively. After straightforward transformations, (2) becomes

¬(23p ∧ 32(¬q ∧ ¬r1)) ∨ 23r2. (3)

We will show that 23p ∧ 32(¬q ∧ ¬r1) (*), is semantically equivalent to
32p′, where p′ denotes the proposition “the value of t is k+

t ”.
The conjunct 23p says that k+

t →tick (kt − 1) is infinitely often enabled.
Since we assume the absence of zero-time cycles, by the timer abstraction defi-
nition, this implies the proposition “timer t has value k+

t infinitely often”. The
conjunct 32(¬q ∧ ¬r1) says that after some point in the execution sequence
neither k+

t →tick (kt − 1) nor set(t, x), with x 6= k+
t , are executed. As these

transitions are the only ones that can change the value of t from k+
t to a value

different than k+
t , we can conclude that from some point on the value of t will

remain k+
t forever.

For the other direction, we first observe that if t has value k+
t from some

point on, then k+
t →tick (kt−1) is enabled infinitely many times. (Again, we use

the absence of zero-time cycles, i.e., a tick transition is executed infinitely often
along any execution sequence.) Also, the other conjunct of (*) follows immedi-
ately: As k+

t →tick (kt−1) and set(t, x), where x 6= k+
t , are the only statements

4.3 Fair Timer Abstraction 81

which can change the value of the abstract timer t to a value different from k+
t ,

they also cannot be executed after some point on.

Thus, we can replace (*) with the equivalent proposition 32p′ and rewrite
(3) as 32p′ → 23r2, which is the (weak t-fairness) condition of Lemma 4.3.

ut

Thus we can express the t-fairness criterion by the following LTL formula
Φα =

∧
t∈TVarα(32p→ 23q), where p and q are propositions corresponding to

the terms “[[t]]sj
= k+

t ” and “set(t, k+
t)” from Lemma 4.3, respectively. Though

this property is formulated on states and transitions, it can be easily encoded
as a property defined on the states of the system. (To express the fact that
some transition q is taken infinitely often, one can e.g. extend the model with
introducing a boolean variable bq that is negated every time the transition is
taken and replace 23q with 23bq ∧ 23¬bq.) One can see the analogy be-
tween Φα and the definition of weak fairness for processes, where a timer set
to k+

t corresponds to an enabled process and an execution of the set operation
corresponds to an execution of an action by the process.

Further, one can show that the t-fairness criterion Φα is a consistent (al-
so contracting) abstraction of the LTL formula Φ =

∧
t∈TVar (32p′ → 2 3q′),

where p′, q′ are defined as “[[t]]sj
≥ kt” and “set(t, x), where x ≥ kt”, respec-

tively. This can be done by a simple check that p and q are consistent abstrac-
tions of p′ and q′, respectively. Indeed, let sα ∈ α({s}). Timer t has the value
k+

t in the abstract state sα iff t has a value greater than or equal to kt in s.
Similarly, t is set to some x which is greater than or equal to kt by a transition
which has s as the target state iff it is set by a transition in the abstract state
which ends up in the state sα with [[t]]sα = k+

t .

Suppose we want to verify that T |= φ for some 2L+
µ (resp. 2Lµ) formula

φ and a concrete system T without infinite zero-time traces. The “concrete”
version of the abstract t-fairness condition, Φ, holds on any trace of T : If from
some point on the value of timer t remains greater than or equal to kt, then
the timer must be infinitely often set to some value greater than kt. Otherwise,
since tick happens infinitely often, the value of t will eventually become less
than kt. Thus, T |= φ iff T |= (Φ→ φ).

By Theorem 4.1 we know that instead of verifying T |= (Φ → φ) on the
concrete system, we can verify its contracting (resp. consistent) abstraction
(Φ → φ)α on the abstract system. By definition of contracting (consistent)
abstraction, the last formula is equivalent to Φα → φα. In case φ does not
refer to variables (timers) that are abstracted, the abstraction α is trivially a
consistent abstraction for all atomic propositions in φ and we have φα = φ. If φ
does mention abstracted timers, one has to derive the contracting abstraction
φα of φ.

Finally, by Theorem 4.1, Tα |= (Φα → φα) implies T |= (Φ → φ) and thus
also T |= φ.

82 Using Fairness to Make Abstractions Work

So, by imposing the t-fairness condition on the abstract model, we eliminate
spurious counterexamples caused by unfair nondeterministic choices made by
abstract functions.

4.4 Incorporating t-Fairness into the Verifica-

tion Algorithm

To express the formula Φα as an LTL formula defined on the states of the
system, one needs to introduce additional variables (see Section 4.3). There-
fore, it is computationally expensive to verify the formula Φα → φα and it is
more convenient to incorporate the t-fairness requirement into the verification
algorithm that verifies φα by considering t-fair traces only. In this section we
describe how to embed the t-fairness check into a model-checking algorithm for
LTL.

Since there is a strong analogy between t-fairness and weak process fairness,
one can easily adapt any algorithm for model checking under weak process fair-
ness. The algorithm we propose here is inspired by the weak process fairness
algorithm used in Spin [93, 22], which is a combination of the Nested Depth
First Search (ndfs) algorithm (see Algorithm 2.3) and Choueka’s flag algo-
rithm [36]. In the automata-theoretic approach (see Section 2.4), the negation
of the formula is translated into a Büchi automaton and satisfaction of the LTL
formula is proven by detecting acceptance cycles in the synchronous product of
the Büchi automaton for the negation and a Büchi automaton representing the
system. A Büchi automaton can also be seen as an LTS with a predefined set
of accepting states, so the satisfaction of an LTL formula can also be proven by
detecting acceptance cycles in an extended LTS that is the synchronous product
of an L2TS representing the system and the Buchi automaton for the formula
(see [95]). Further we assume that we work directly with an extended LTS
that is defined as follows:

Definition 4.5. extended LTS [95]
Let D = (P,Lab,→, p0,L) be an L2TS and B = (Q, δ, q0, F) be a Büchi au-
tomaton over the alphabet 2P .

The extended LTS E is given by a tuple (P × Q,Lab,→′, (p0, q0), P × F)
where labelled transition relation →′⊆ (P ×Q) × Lab × (P ×Q) is defined as
follows: ((p, q), α, (p′, q′)) ∈→′ iff (p, α, p′) ∈→, (q, a, q′) ∈ δ and L(s) = a.

Given an extended LTS E = (S,Lab,−→, sinit, F), which is the synchronous
product of the L2TS of a given abstract system with the Büchi automaton that
represents the negation of a property to be verified, our goal is to construct
an extension of E that contains an acceptance cycle iff there exists a t-fair
acceptance cycle in E . (We say that a cycle s0

a0−−→ ...sn
an−−−→ s0 is t-fair iff

∀t ∈ TVarα there exists i (0 ≤ i ≤ n) such that [[t]]si
6= k+

t or ai = set(t, k+
t).)

Therefore, we will define this extension in such a way that any acceptance cycle
would be t-fair by construction.

4.4 Incorporating t-Fairness into the Verification Algorithm 83

Let the abstract system have N abstract timers. Then we construct the
extended LTS E ′ = (S′,Lab′,−→′, s′init, F

′) in the following way: The set of
states of the extended system is a set of pairs (s, c), where s ∈ S and 0 ≤ c ≤ N .
We call (s, c) a c-replica of s. (Note that not every replica (s, c) of a reachable
state s of E will be reachable in E ′.) 0-replicas are the basic replicas of the
states, while replicas 1, . . . , N allow to track the behaviour of abstract timers
t1, . . . , tN , respectively. The accepting states and the initial state of E ′ are
0-replicas of the accepting states and the initial state of E , respectively. All
transitions from accepting states of E ′ lead to 1-replicas only. Transitions from
a c-replica (s, c), related to timer tc, lead either to c-replicas, or, when they
guarantee t-fair behaviour wrt. timer tc, to the ((c + 1)mod(N + 1))-replica.
Since all the acceptance states of E ′ are 0-replicas, any acceptance cycle contains
for every abstract timer at least one transition that either sets timer t to k+

t

or results in a value of t different from k+
t . So every acceptance cycle of E ′ is

t-fair.
The verification algorithm starts the construction of E ′ from the initial state

(sinit, 0) and proceeds by adding the 0-replicas in accordance with the tran-
sition function −→ until an accepting state is met. If an accepting state s is
encountered, the algorithm adds a dummy τ -step that connects the 0-replica of
s with the 1-replica of the same state. A move from a c-replica with 1 ≤ c ≤ N
to the ((c + 1) mod (N + 1))-replica happens when a state is encountered in
which tc has a value different from k+

t or a step setting timer tc is taken, i.e.
when the t-fairness condition for tc is fulfilled. (A move from a 0-replica to a
1-replica is possible only by τ -steps connecting the replicas of the same accept-
ing state.) For the rest, the algorithm adds transitions following the transition
function −→.

Theorem 4.2.

Given an extended LTS E = (S,Lab,−→, sinit, F) and abstract timers t1, . . . ,
tN , a t-fair extension of E is an extended LTS E ′ = (S′,Lab′,−→′, s′init, F

′)
that satisfies the following conditions:

1. Lab ′ = Lab ∪ {τ};
2. s′init = (sinit, 0);

3. (s, 0) a−→
′
(s′, 0) if (s, 0) ∈ S′ and s a−→ s′ and s 6∈ F ;

4. (s, 0) τ−−→
′
(s, 1) if (s, 0) ∈ S′ and s ∈ F ;

5. (s, c) a−→
′

(s′, c′) if (s, c) ∈ S′ and c > 0 and s a−→ s′ with c′ =((c + 1)
mod (N + 1)) if ([[tc]]s 6= k+

tc
or a = set(tc, k

+
tc

)), and c′ = c otherwise;
6. F ′ = {(s, 0) | s ∈ F}.

Then the following statements hold:

1. (S,Lab,−→, sinit) and (S′,Lab′,−→′, s′init) are branching bisimilar.

2. E contains a reachable t-fair acceptance cycle iff E ′ contains a reachable
acceptance cycle.

84 Using Fairness to Make Abstractions Work

Proof. 1. Consider relation Q ⊆ S × S ′ where (s, s′) ∈ Q iff s′ = (s, c) where
0 ≤ c ≤ N . It is straightforward to check by case analysis that Q is a branching
bisimulation (Def. 2.20).

2. First we show that all acceptance cycles of the extended state space are t-fair
by construction. An acceptance cycle contains at least one accepting state; this
state is a 0-replica and has outgoing transitions to 1-replicas only. As transitions
from a c-replica lead either to c-replicas, or to ((c+ 1) mod (N + 1))-replicas
(0 ≤ c ≤ N), for any c, the cycle includes a c-replica. Every move from a
c-replica to its neighbour satisfies the t-fairness condition for timer tc, so for
every abstract timer there is a transition in the cycle satisfying the t-fairness
condition and thus the cycle is t-fair.

Due to the branching bisimulation result, any acceptance cycle of E ′ (which
is always t-fair) has a corresponding t-fair acceptance cycle in E .

In the opposite direction: Assume that there is a trace sinit
a0−−→ s1

a1−−→ . . . of
E that contains a fair acceptance cycle. Then there are si, sj such that si = sj

with j > i. The path π from si to sj contains at most m = (j − i) distinct
states. Trace σ = sinit

a−→ ...si....si...si going through the cycle N + 1 times
is also a trace of E . Due to the branching bisimulation result, there is a trace
σ′ in E ′ that mimics σ. The suffix ξ′ of σ′ that mimics passing through the
cycle N + 1 times contains at least m(N + 1) transitions, so it visits at least
m(N + 1) + 1 states. The states of ξ′ are replicas of the states of π, therefore
at most m(N + 1) of them are distinct. Thus, there is at least one state that is
present in ξ′ twice, and ξ′ is a cycle.

Now we shall show that ξ′ is an acceptance cycle. We denote the suffix of
σ corresponding to ξ′ as ξ and pick an arbitrary state s of ξ. Then ξ′ contains
some state (s, c), 0 ≤ c ≤ N . Assume that c > 0 (for else we are done). Since ξ
is a t-fair cycle, there are some states q1, q2 reachable from s such that q1

a−→E q2
and ([[tc]]q1

6= k+
t or a = set(tc, k

+
t)). Hence, there exists a transition from the

c-replica q1 to the ((c+1) mod N)-replica q2 in ξ′. Proceeding in the same way,
we will obtain transitions leading to some ((c + 2) mod N)-replica, etc., and
eventually we arrive at a 0-replica. Thus, we conclude that ξ ′ contains at least
one 0-replica of some state. In E ′, transitions from 0-replicas of non-accepting
states lead to 0-replicas. Since ξ contains an accepting state and ξ ′ is a cycle, ξ′

contains an accepting state as well and thus it is an acceptance cycle of E ′. ut

We call the extension E ′ a t-fair extension of E . An algorithm that generates
the extended state space is given in Fig. 9. The algorithm is based on the depth
first search (dfs) algorithm ([45]). It is straightforward to prove the following
claim:

Lemma 4.4.

Given an extended LTS E, let E ′ be an extended LTS produced from E by
applying Procedure 4.3. Then E ′ is a t-fair extension of E.

To detect acceptance cycles, dfs is extended with a cycle-check procedure
(Fig. 10). Whenever Procedure 4.4 detects an accepting state, it starts Proce-

4.4 Incorporating t-Fairness into the Verification Algorithm 85

Procedure 4.3 (dfs(s, c))
add (s, c) to S′ add a pair to the state space
if c = 0 and s ∈ F 0-replica and state s is accepting
then if (s, 1) 6∈ S′ then dfs(s, 1); τ -step from 0-replica to 1-replica
else

for all s
a−→ s′ do for all transitions enabled in s

if c > 0 and (a = set(tc, k
+
tc

) or [[tc]]s 6= k+
tc

) t-fairness condition
then c′ = (c + 1) mod N the next replica number
else c′ = c; the same replica number
if (s′, c′) 6∈ S′ then dfs(s′, c′); recursive call

od;

Fig. 9. Generating t-fair extension of S

dure 4.5, which is again a dfs, that reports an accepting state if the seed state
is matched within the cycle-check. Here we omit a detailed description of the
ndfs algorithm and refer the interested reader to [45].

The correctness of the algorithm is given by the following claim:

Theorem 4.6.

Given an extended LTS E, Procedure 4.4 called with (sinit, 0) reports an accep-
tance cycle iff there exists a reachable t-fair acceptance cycle in E.

Proof. Follows from the correctness of the ndfs algorithm from Lemma 2.1 by
observing that the algorithm is actually ndfs from [45] applied on the extended
state space E ′. ut

The last result completes the series of claims that guarantee soundness of
the verification approach proposed in this chapter. If no acceptance cycle is
detected then the verified property holds for t-fair traces of the abstract system
and therefore also for the concrete system.

Time complexity of the ndfs Algorithm in Fig. 10 is O(N · |E|), where N is
the number of timers, while |E| is the size (states and transitions) of the abstract
system state space. Memory space needed to save E ′ is virtually the same as
the one for E . Instead of keeping each of the N replicas (s, i), (1 ≤ i ≤ N) one
can save only the “useful” part s plus additional 2(N + 1) bits, like it is done
for process fairness in Spin([93, 23]). The first N + 1 bits correspond to the
replicas in the main depth first search of the ndfs algorithm, while the second
group of (N + 1) bits corresponds to the nested dfs. If bit i of the first group
is set then this means that the state (s, i) has been visited by the algorithm.
Similarly for the second group. As the description of s is usually much greater
than 2(N + 1) bits, the bookkeeping overhead is negligible [23].

86 Using Fairness to Make Abstractions Work

Procedure 4.4 (ndfs1(s, c))
add (s, c, 0) to S′ add a pair to the state space
if c = 0 and s ∈ F 0-replica, and state s is accepting
then if (s, 1, 0) 6∈ S′ then ndfs1(s, 1); τ -step from 0-replica to 1-replica
else

for all s
a−→E s1 do for all transitions enabled in s

if c > 0 and (a = set(tc, k
+
tc

) or [[tc]]s 6= k+
tc

) t-fairness condition
then c′ = (c + 1) mod N the next replica number
else c′ = c; the same replica number
if (s′, c′, 0) 6∈ S′ then ndfs1(s

′, c′); recursive call
od;

if c = 0 and s ∈ F then seed := (s, 0, 1); ndfs2(s, 0); set the seed and start ndfs2

Procedure 4.5 (ndfs2(s, c))
add (s, c, 1) to S′ add a pair to the state space
if c = 0 and s ∈ F 0-replica, and state s is accepting
then if (s, 1, 1) 6∈ S′ then ndfs2(s, 1); τ -step from 0-replica to 1-replica
else

for all s
a−→E s′ do for all transitions enabled in s

if c > 0 and (a = set(tc, k
+
tc

) or [[tc]]s 6= k+
tc

) t-fairness condition
then c′ = (c + 1) mod N the next replica number
else c′ = c; the same replica number
if seed = (s, c′, 1) then REPORT CYCLE! seed is matched, report the cycle
else if (s′, c′, 1) 6∈ S′ then ndfs2(s

′, c′); recursive call
od;

Fig. 10. ndfs version of Procedure 4.3

4.5 T -fairness in DTSpin

DTSpin [24] is a discrete-time extension of Spin [93] that has all verification
features of Spin. It was successfully applied for debugging and verification of
timed models of industrial size protocols (see e.g. [25, 103]). DTSpin is designed
for the verification of systems where delays are significantly larger than the
duration of the events within the system. Therefore, system transitions are
assumed to be instantaneous. DTSpin employs the concept of timers to express
time aspects of a system. In DTPromela, the input language of DTSpin,
timers are modelled by variables of a predefined type timer. The data domain
and the operations on timers are defined as in Section 4.2.

Since the system transitions are assumed to be instantaneous, time progress
has the least priority in the system and may take place only when the system
is blocked. A special process Timer ticks all the active timers down in case the
system is blocked. DTSpin employs Promela’s statement timeout to check

4.6 Experimental Results 87

whether the system is blocked. To ensure that time progression has the least
priority, the usage of timeout is reserved for the implementation of time progres-
sion and forbidden in DTPromela specifications. Note that by the definition
of tick , all DTPromela models are deadlock-free.

To implement the timer abstraction defined in Section 4.2, we extend DT-
Promela with a new data type timerα for abstract timers and define the
operations on them as macros. The abstract version of tick , tickα, decreases
values of active abstract timers if they are different from k+

t . If a timer has
the k+

t value, a nondeterministic choice is made between decreasing the value
of the timer to (kt − 1) and leaving it unmodified. Our fairness algorithm
from Section 4.4 is implemented by means of a pan2tfpan Java program that
transforms the pan verifier generated by Spin ([93, 154]) for the verification of
a property without t-fairness into a new one that checks the property under t-
fairness. The transformation is automatic and does not require any interaction
with the user. The prototype implementation pan2tfpan can be downloaded
at www.cwi.nl/~ ustin/tfair.html.

The user thus applies the following verification scheme : (1) Choose timers
of a concrete model that should be abstracted and define a kt value for each of
those timers. (2) Redefine the type of the chosen times to timerα and redefine
the set operations according to the kt values. (3) Check whether the abstract
system is free from zero-time cycles, i.e. check whether tick happens infinitely
often. This is done by checking LTL formula 23timeout. In DTSpin, time
progresses if the statement timeout of Promela is true. Since this statement
is forbidden to use in DTPromela specifications, 23timeout expresses the
absence of zero-time cycles. (4) Formulate the abstract version of the property
to check and generate the pan verifier for this property. (5) Transform the pan
verifier with pan2tfpan to the new pan verifier, which checks the property
under the t-fairness condition. Positive verification results imply that the prop-
erty holds for the concrete system as well. If the property gets violated on the
abstract system, a counterexample is generated, and the user checks whether
the counterexample is spurious or not.

4.6 Experimental Results

In this section we describe some experimental results that show the efficiency of
our approach. Our test cases are the positive acknowledgment retransmission
protocol (PAR) [155] and Fischers mutual exclusion protocol [118]. We compare
the results obtained when we specify t-fairness as LTL formulas according to
strong fairness and weak fairness patterns (we will refer to this as verifying with
strong/weak fairness respectively) with the results obtained with our prototype
implementation of the algorithm from Section 4.4 in DTSpin, which we refer
to as built-in t-fairness. Our prime goal here is to compare the performance of
the three methods rather than to verify the protocols.

88 Using Fairness to Make Abstractions Work

ENV_SENDER ENV_RECEIVER

RECEIVER

msg msg msg msg

ackack

T_SENDER

T_MSG_CHAN

T_ACK_CHAN

SENDER

ACK_CHAN

MSG_CHAN

Fig. 11. PAR

The strong fairness pattern for a timer t states that if the transition k+
t →tick

(kt − 1) is infinitely often enabled, then either this transition is infinitely often
taken, or the timer is infinitely often set to a new value. To reformulate this
property as a state property, we introduce two boolean variables for each ab-
stract timer. The first variable, xt, is used to specify the fact that the timer is
infinitely often set to a new value, and the second one, yt, is employed to ex-
press enabledness of the k+

t →tick (kt − 1) transition. The model of the system
is extended so that yt gets negated every time the tick-step is enabled while
timer t is in the k+-state; xt is negated every time t is set to a new value.

To check whether transition k+
t →tick (kt − 1) is taken infinitely often, we

also should introduce a new variable. However, we can avoid this since transition
k+

t →tick (kt − 1) changes the value of timer t to a value different from k+.
Instead of checking whether transition k+

t →tick (kt − 1) is taken infinitely
often, we check whether timer t takes values different from k+ infinitely often.
So, the strong pattern of t-fairness is expressed by the LTL formula:

∧

t∈TV ar

(
(23yt ∧ 23¬yt) → (23(t 6= k+

t) ∨ (23xt ∧ 23¬xt))
)

The weak fairness pattern requires that if eventually the value of timer t
stays k+

t , then timer t is infinitely often set to a new value. To specify this
pattern as a state formula, we introduce a boolean variable xt for each abstract
timer and extend the model so that the variable is negated each time timer t
is set. The formula for the weak fairness pattern looks then as follows:

∧

t∈TV ar

(
32(t = k+

t) → (23xt ∧ 23¬xt)
)
.

4.6 Experimental Results 89

Experiments with PAR

PAR [155] is a classical example of a communication protocol where time is-
sues are essential for the correct functionality of the protocol. PAR involves a
sender, a receiver, a message channel and an acknowledgment channel (Fig. 11).
The sender receives a frame from the upper layer, sends it to the receiver via
the message channel and waits for a positive acknowledgment from the receiver
via the acknowledgment channel. When the receiver delivers the message to
the upper layer, it sends the acknowledgment to the sender. After the positive
acknowledgment is received, the sender becomes ready to send the next mes-
sage. The channels delay the delivery of messages. Moreover, they can lose or
corrupt messages. Therefore, the sender handles lost frames by timing out. If
the sender times out, it re-sends the message.

The following is an example of a possible erroneous scenario. The sender
times out while the acknowledgment is still on the way. The sender sends a
duplicate, then receives the acknowledgment and believes that this is the ac-
knowledgment for the duplicate. The sender sends the next frame, which gets
lost. The sender, however, receives the acknowledgment for the duplicate, which
it believes to be the acknowledgment for the last frame. Thus, the sender does
not retransmit the lost message and the protocol fails. To avoid this erroneous
behaviour, the timeout interval must be long enough to prevent a premature
timeout, which means that the timeout interval should be larger than the sum
of delays on the message channel, acknowledgment channel and receiver, i.e.
T SENDER > T MSG CHAN + T ACK CHAN.

We specified PAR in DTPromela using concrete timers to represent delays
on the channels and the sender timeout. Our goal was to check that if the
channels do not lose messages continuously, no message reordering occurs and
no message gets lost, for any timeout of the sender that is greater than the
sum of the (given) delays on the channels. The system is open, i.e. both the
sender and the receiver communicate with upper layers, hence we have closed
the system by two environment processes: one provides frames for the sender,
another receives frames delivered by the receiver.

To prove the property for an arbitrary message sequence we used a well-
known canonical abstraction [75, 171]. The data domain is abstracted to {a, b,
x} where a and b represent two data elements that we differentiate and x rep-
resents the rest. An environment for a sender that sends frames with any data

A

!x

B

!x

C

!x

D
skip!a !b

Fig. 12. Environment

90 Using Fairness to Make Abstractions Work

Table 7. PAR

pattern states transitions memory(Mb) time

strong fairness 825761 5.10962e+06 52.286 0:21.00

weak fairness 227569 1.49527e+06 15.320 0:05.98

built-in t-fairness 100275 390012 6.693 0:01.56

chaotically is abstracted into the environment whose behaviour is illustrated
by an automaton on Fig. 12. The environment for the receiver behaves anal-
ogously but it receives messages instead of sending them. Then we abstracted
the sender’s timer to check the property for all values greater than the sum of
the channels’ delays.

Without t-fairness, the property gets violated, since there exists a trace
where the abstract timer of the sender never expires, staying in the loop
k+

t →tick k+
t (we obtained a t-unfair trace as counterexample). Under the

t-fairness condition, we proved that the property holds. Table 7 contains infor-
mation on the time and memory consumption for the verification with DTSpin
of the property formulated with the strong and weak fairness patterns and for
the verifier with built-in t-fairness.

Fischer’s mutual exclusion protocol

Our second test example is Fischer’s mutual exclusion protocol. The protocol
uses time constraints and a shared variable to ensure mutual exclusion in a
system that consists of N processes running in parallel and competing for a
critical section. We assume that each process has a unique id from 1 to N . The
initial value of the shared variable x is 0. When a process observes that x is 0,
it waits for at most δ1 time units and then writes its id to x. After that, it waits
for at least δ2 time units, and if x still equals the process id, the process enters
the critical section. The process stays in the critical section for some time and
then leaves it.

We have specified Fischer’s mutual exclusion protocol in DTPromela using
concrete timers to represent delays not larger than δ1 and abstract timers to
represent delays which are at least δ2. As known, mutual exclusion is ensured
provided that δ1 < δ2. We have checked the property that if there comes a
request of access to the critical section, one of the processes will get it. Using
timer abstraction, we checked that the property is satisfied for all delays δ2
greater than δ1. The main goal of the experiment was to check whether t-
fairness approach works well if we have more than one timer abstracted.

Table 8 contains results for strong, weak and built-in t-fairness for the case
of two, three and four processes. Note that the number of abstracted timers in
this example is equal to the number of processes. In case of four abstract timers,

4.7 Conclusion 91

the pan verifier for the property with t-fairness which was expressed as an LTL
formula according to the strong fairness pattern was not able to generate the
state space. The pan for the property with t-fairness expressed as an LTL for-
mula according to the weak fairness pattern has generated the state space much
larger than the state space generated by the pan verifier for the same property
with built-in t-fairness. The experiments were done on AMD Athlon(TM) XP
2400+ with 1Gb of memory. In all experiments, the verification with built-in
t-fairness took significantly less time and memory than the verification with
strong and weak fairness patterns expressed as LTL formulas. The prototype
implementation pan2tfpan and the models for PAR and Fischer’s mutual ex-
clusion protocol are available at www.cwi.nl/~ ustin/tfair.html.

4.7 Conclusion

In this chapter, we considered a timer abstraction that introduces a cyclic be-
haviour on abstract timers that is not present at the concrete level. This could
lead to spurious counterexamples for liveness properties. We showed how one
can eliminate those by imposing a strong fairness constraint on the traces of the
abstract model. Using the fact that the loop on the abstract timer is a self-loop
for this abstract timer (though there is possibly no self-loop on the correspond-
ing LTS), we transformed the strong fairness constraint into a constraint which
has a weak fairness pattern, and embedded it into the verification algorithm.
Our experiments with the prototype implementation of the algorithm were en-
couraging. We conjecture that the ideas in this chapter can also be used for
other data abstractions that introduce self-loops on the abstracted data.

92 Using Fairness to Make Abstractions Work

Table 8. Fischer’s mutual exclusion

fairness num. of proc. states transitions memory(Mb) time

strong 2 41384 171586 4.363 0:00.46

weak 2 4705 13053 2.724 0:00.08

built-in 2 1236 4181 1.573 0:00.01

strong 3 3.28599e+06 2.01406e+07 190.539 1:01.79

weak 3 115874 362068 8.561 0:01.22

built-in 3 21592 110332 2.700 0:00.26

strong 4 out of memory

weak 4 2.60665e+06 9.2549e+06 151.729 0:38.34

built-in 4 346903 2.45733e+06 20.927 0:05.69

5

Closing and Flow Analysis for Model Checking

Reactive Systems

Standard model checkers cannot handle open systems directly
and closing is commonly done by adding an environment process,
which in the simplest case behaves chaotically. However, for model
checking, the way of closing should be well-considered to alle-
viate the state explosion problem.

In this chapter we propose an automatic transformation yield-
ing a closed system. By embedding the outside chaos into the sys-
tem, we avoid the state-space penalty caused by asynchronous
communication with the environment. To capture the chaotic tim-
ing behaviour of the environment, we introduce a non-standard 3-
valued timer abstraction. The transformation is based on data-flow
analysis that detects instances of chaotic variables and timers.

The chapter is based on [102–104].

94 Closing and Flow Analysis for Model Checking Reactive Systems

5.1 Introduction

Despite all algorithmic advances in model checking techniques and progress in
raw computing power, the state explosion problem limits the applicability of
model-checking [41, 139, 38] and thus partial-order reduction [74, 163], decom-
position and abstraction [122, 41, 50] are indispensable when confronted with
checking large designs. Following a compositional approach and after singling
out a subcomponent to check in isolation, the next step is often to close the
subcomponent with an environment since most model checkers (e.g. Spin [93])
cannot handle open systems.

Closing is commonly done by adding an environment process that, in order
to be able to infer properties for the concrete system, must exhibit at least
all the behaviour of the real environment. The simplest safe abstraction of the
environment thus behaves chaotically , i.e. it sends and receives all possible mes-
sages in an arbitrary order. When done manually, this closing, as simple as it is,
is tiresome and error-prone for large systems, already due to the sheer amount
of signals. Moreover, for model checking, the way of closing should be well-
considered to counter the state explosion problem. This is especially true in
the context of model checking SDL-specifications (Specification and Descrip-
tion Language) [140] with its asynchronous message-passing communication
model. Sending arbitrary message streams to the unbounded input queues will
immediately lead to an infinite state space, unless some assumptions restricting
the environment behaviour are incorporated in the closing process. Even so, ex-
ternal chaos results in a combinatorial explosion caused by all combinations of
messages in the input queues. This way of closing is even more wasteful, since
most of the messages are dropped by the receiver due to the discard-feature of
SDL-92.

Another problem the closing must address is that the data carried with the
messages coming from the environment are usually drawn from some infinite
data domain. Since furthermore we are dealing with the discrete-time semantics
[94, 25] of SDL, special care must be taken to ensure that the chaos also shows
more behaviour wrt. timing issues such as timeouts and time progress.

In [151] a program transformation based on static analysis which takes the
most abstract, i.e., chaotic environment, and “embeds” it into the component
was formalized. Embedding the external chaos eliminates the need to explore
the combinatorial state space of the external queues. Part of the approach is
the abstraction of environmental data, where, assuming a chaotic environment,
a single abstract value is used. Interested in a fully-automatic approach, [151]
stressed efficiency over precision of abstraction, and used a static data-flow
analysis to mark all instances of variables potentially influenced from outside
as chaotic, and to transform the program according to this reckoning. The
transformation gets rid of all the data potentially influenced by the environ-
ment. A 3-valued timer abstraction is proposed to capture the chaotic timing
behaviour.

5.1 Introduction 95

We improve on this abstraction and generalize the approach in the follow-
ing way. We combine may-analysis (that is reminiscent to the one presented
in [103]) marking all the variables potentially influenced by chaotic environ-
ment with must-analysis that marks data definitely influenced from outside.
The combination of may and must analysis allows to differentiate data defi-
nitely influenced from outside, and data definitely not influenced from outside,
i.e., reliable data; then the rest forms a “don’t know” intermediate value for
instances at those process locations where both chaotic and non-chaotic values
can occur, depending on the system run leading to this instance.

We propose a transformation based on the results of the combined analysis.
It gets rid of all the data that are definitely influenced by the environment
and yields a closed system S] that treats the remaining data dynamically,
which gives a more precise approximation and hence less false negatives in the
verification. The transformation yields a closed system S] which shows more
behaviour in terms of traces than the original one. For formulas of next-free
LTL [137, 120], we thus get the desired property preservation: if S] |= ϕ then
S |= ϕ.

Typical practical applications we are interested in are protocol specifica-
tions in SDL [140] and Promela [93]. More concretely, the developed meth-
ods for closing open asynchronous systems are used to automate the model
checking of translations of SDL-specifications into DTPromela, the input
language of the discrete-time Spin, model checker DTSpin. The approach is
implemented as a tool which automatically closes DTPromela translations of
SDL-specifications by embedding the timed chaotic environment into the sys-
tem. To corroborate the usefulness of our approach, we compare the state space
of models closed by embedding chaos with the state space of the same models
closed with chaos as external environment process on some simple models and
on a case study from a wireless ATM medium-access protocol.

Related work

Closing open (sub)systems is common for software testing. In this field, a work
close to ours in spirit and techniques is the one of [44]. It describes a dataflow
algorithm to close program fragments given in the C-language with the most
general environment and at the same time eliminating the external interface.
The algorithm is incorporated into the VeriSoft tool. Similar to the work pre-
sented here, they assume an asynchronous communication model, but do not
consider timed systems and their abstraction. Similarly, [58] consider partial
(i.e., open) systems which are transformed into closed ones. To enhance the
precision of the abstraction, their approach allows to close the system by an
external environment more specific than the most general, chaotic one, where
the closing environment can be built to conform to given assumptions, which
they call filtering [59]. As in our work, they use LTL as temporal logic and
Spin as model checker, but the environment is modelled separately and is not
embedded into the system.

96 Closing and Flow Analysis for Model Checking Reactive Systems

A more fundamental approach to model checking open systems, also called
reactive modules [4], is known as module checking [116][115]. Instead of trans-
forming the system into a closed one, the underlying computational model is
generalized to distinguish between transitions under control of the module and
those driven by the environment. Mocha [6] is a model checker for reactive
modules, which uses alternating-time temporal logic [5] as specification lan-
guage.

Slicing, a well-known program analysis technique, resembles the analysis de-
scribed in this paper, in that it is a data-flow analysis computing — in forward
or backward direction — parts of the program that may depend on certain
points of interest (cf. for a survey [159]). The analysis of Section 5.3 computes
in a forward manner the cone of influence of all points of the system influ-
enced from the outside. The usefulness of slicing for model checking is explored
in [128], where slicing is used to speed up model checking and simulation for
programs in Promela, Spin’s input language. However, the program transforma-
tion in [128] is not intended to preserve program properties in general. Likewise
in the context of LTL model checking, [57] use slicing to cut away irrelevant
program fragments but the transformation yields a safe, property-preserving
abstraction and potentially a smaller state space.

The chapter is organized as follows: Section 5.2 gives a semantics that is a
simplification of the semantics given in Section 3.3 and argues the correctness
of the simplification. Section 5.3 describes data-flow analysis. In Section 5.4,
we describe our approach to closing and present some preservation results. Sec-
tion 5.5 describes an implementation of the approach, provides some examples
motivating the necessity of embedding and presents a case study from a wireless
ATM medium-access protocol.

5.2 Semantics

The transformation described in Section 3.3 substitutes the SDL concept of
timeouts as a special kind of signals that are kept in input queues of the pro-
cesses by the concept of timeouts as guards. After the transformation, no time-
out signal is placed into the input queue of the process, so the input queue
becomes just an extra buffer between a channel and a process. In this chap-
ter, we use the semantics that is a simplification of one in Section 3.3. Here,
processes take messages directly from input channels without putting them first
into an input queue. In this section, we show that the systems with input queues
considered in Section 3.3 and the systems without input queues used in this
chapter are path-equivalent up to stuttering (see Def. 2.28).

The semantics of a process specification is the LTS defined by the rules
of Table 9. The semantics coincides with the semantics given by the rules of
Tables 5 and 6 except for rules Receive, Input and Discard of Table 5 and
the definition of a process state. Here, a state of a process is given by a location
and a valuation of process and timer variables. A valuation is denoted as η.

5.2 Semantics 97

Definition 5.1. state of a process
A state σ of a process P is a pair (l, η), where l is a location and η is a valuation
of variables. Σ denotes the set of states of the process.

Definition 5.2. process P
A process P is an LTS S = (Σ,LabP ,→λ, σ0, In,Out) where σ0 = (l0, η0) is an
initial state, In is a set of input channel names, Out is a set of output channels
names and →⊆ Σ×Lab×Σ is a labelled transition relation derived by applying
the rules of Table 9 to some process specification SpecP .

Rules Output, Assign, Set, Reset, TickP , Timeout, TDiscard of
Table 9 coincide with the same rules of Table 5. Rules Receive, Input and
Discard of Table 5 are substituted by rules Input and Discard of Table 9.
The semantics for channels and n-ary composition that allows to put n entities
into communication is given by the rules In and Out of Table 2 and the rules
of Table 6.

Further, we consider a system specification Spec that consists of n compo-
nents (channels and processes), LTS S ′ obtained from Spec by applying the
rules of Tables 5 and 6, and LTS S obtained from Spec by applying rules of
Tables 9 and 6. Suppose γ = (σ1, . . . , σi, . . . , σn) is a configuration of S con-
sisting of n entities (processes and channels), and let γ ′ = (σ′

1 . . . , σ
′
i, . . . , σ

′
n)

be a configuration of S ′. Moreover, σi denotes a state of the ith-entity in the
original system and σ′

i denotes a state of this entity in the transformed system.
In S′, each process has an input queue, and in S there are no input queues.

The following lemma expresses that the blocked predicate is compositional
in the sense that the n-ary composition of entities (processes and channels) is
blocked iff each entity is blocked (rule Tick of Table 6).

Lemma 5.1.

For a state γ = (σ1, . . . , σn) of a system S, blocked(γ) iff blocked(σi) for all σi.

Proof. If γ is not blocked, it can perform a τ -step or an output-step. The
output-step must originate from a process, which thus is not blocked. The τ -
step is either caused by a single process or by a synchronizing action of a sender
and a receiver; in both cases at least one process is not blocked.

For the reverse direction, a τ -step of a single process being thus not blocked,
entails that γ is not blocked. An output-step of a single process causes γ either
to do the same output-step or, in case of internal communication, to do a τ -
step. In both cases, γ is not blocked. ut

Lemma 5.2.

Let S be a system and γ ∈ Γ one of its states.

1. If γ →tick γ̂, then [[t]]γ 6= on(0), for all timers t.

2. If γ →tick γ̂, then for all channel states (c, q), q = ε.

98 Closing and Flow Analysis for Model Checking Reactive Systems

l −→c?s(x) l̂ ∈ Edg
Input

(l, η) →ci?s(pid,v) (l̂, η[x 7→ v])

s′ 6∈ {s | l −→c?s(x) l̂ ∈ Edg} l ∈ Loci

Discard
(l, η) →ci?s′(pid,v) (l, η)

l −→g B c!(s,e) l̂ ∈ Edg [[g]]η = true [[e]]η = v
Output

(l, η) →co !s(pid,v) (l̂, η)

l −→g B x:=e l̂ ∈ Edg [[g]]η = true [[e]]η = v
Assign

(l, η) →τ (l̂, η[x 7→ v])

l −→g B set t:=e l̂ ∈ Edg [[g]]η = true [[e]]η = v
Set

(l, η) →τ (l̂, η[t 7→ on(v)])

l −→g B reset t l̂ ∈ Edg [[g]]η = true
Reset

(l, η) →τ (l̂, η[t 7→ off])

blocked(l, η)
TickP

(l, η) →tick (l, ηdec)

l −→gt B reset t l̂ ∈ Edg [[t]]η = on(0)
Timeout

(l, η) →τ (l̂, η[t 7→ off])

t′ 6∈ {t | l →gt B reset t l̂ ∈ Edg ′} [[t′]]η = on(0) l ∈ Loci

TDiscard
(l, η) →τ (l, η[t′ 7→ off])

Table 9. Step semantics for process specification SpecP

5.2 Semantics 99

Proof. For part (1), if [[t]]η = on(0) for a timer t in a process P , then a τ -step
is allowed due to either rule Timeout or rule TDiscard of Table 9. Hence,
the system is not blocked and therefore cannot do a tick -step.

Part (2) follows from the fact that a channel can perform a tick -step only
when it is empty (rule Tickc of Table 6). ut

We want to be sure that the absence of the input queues does not influence
verification results, i.e. S ′ |= φ iff S |= φ for all formulas φ of LTL−X . Namely,
we show that there is a branching simulation relation (see Def. 2.19) relating
system S′ to system S. In the other direction, there is a weak trace inclusion
relation (see Def. 2.17) between S and S ′. This implies that the system with
input queues and the system without them are weakly trace equivalent (see
Def. 2.18). We also show that they are path-equivalent up to stuttering (see
Def. 2.28).

Let P ′ be the LTS obtained by applying the rules of Table 5 to some pro-
cess specification SpecP , and let P be the LTS obtained by applying the rules
of Table 9 to SpecP . The absence/presence of input queues influences only
communication between a process and its input channels. Therefore, we first
consider LTSs E and E′ that are the compositions of P and P ′, respectively,
with the LTSs of its input channels according to the rules of Table 6.

For E′ and E, we define a relation Q ⊆ Γ ′ × Γ on configurations of E ′

and E respectively. Here the typical element of Γ ′ is a configuration γ′ =
((l, η, q), (c1, q1), . . . , (cn, qn)) and the typical element of Γ is γ = ((l, η), (c1, q̃1),
. . . , (cn, q̃n)), where c1, . . . , cn are input channel names of P and P ′, qi and q̃i
are queues modelling the channels and q is the input queue of process P ′. We
assume that all the messages kept in the input queue and in the queues mod-
elling channels are different. The first requirement imposed on configurations is
that the valuations of variables should be equal. The second one requires that
the contents of the channel queues of E should allow process P to consume
messages in the same order in which they can be consumed by P ′ from its in-
put queue. π(q)Msg−Msg q̃i

denotes the projection of q on all the messages that
are not an element of q̃i.

Definition 5.3. input queue approximation relation
We call Q ⊆ Γ ′ × Γ an input queue approximation relation iff for all γ ′Qγ:
γ′ = ((l, η, q), (c1, q1), . . . , (cn, qn)) and γ = ((l, η), (c1, q̃1), . . . , (cn, q̃n)), and
the following conditions hold:

– for all i = 1..n, π(q)Msg−Msg q̃i
:: qi = q̃i;

– for all messages msg in q, msg is an element of q̃i for some i = 1..n.

Further, we prove that there is a Q that is an input queue approximation
relation and a branching simulation on E ′ and E (Def. 2.19).

Lemma 5.3.

Let SpecP be a process specification and P ′ be the LTS obtained by applying the
rules of Table 5 to SpecP . Let P be the LTS obtained by applying the rules of

100 Closing and Flow Analysis for Model Checking Reactive Systems

Table 9 to the same process specification. Let E be the composition of P with
the LTSs of its input channels, and let E ′ be the composition of P ′ with the
LTSs of its input channels according to the rules of Table 6. Then there exists
Q ⊆ Γ ′ × Γ that is an input queue approximation relation and a branching
simulation between E ′ and E.

Proof. Let γ′0 be the initial configuration of E ′ and γ0 be the initial configura-
tion of E. Since all queues (modelling channels and the input queue of P ′) are
initially empty, γ′0Qγ0. Assume that γ′Qγ holds for some states γ′ and γ of E′

and E respectively. To show that E ′ �br E, we proceed with a case analysis
on the rules in Table 5 and rule Comm of Table 6. Note that here we consider
rule Comm only for the case of receiving a message by a process that involves
the use of input queues.

Case: Comm
Assume that γ′ = ((l, η, q), . . . , (ci,msg :: qi), . . .) and that E′ makes step
((l, η, q), . . . , (ci,msg :: qi), . . .) →τ ((l, η, q ::msg), . . . , (ci, qi), . . .). Since γ′Qγ,
γ = ((l, η), . . . , (ci,msg :: q̃i), . . .).

After the τ -step of E′, where γ̂′ = ((l, η, q ::msg), . . . , (ci, qi), . . .). More-
over, γ̂′Q γ still holds. Condition 2 of Def. 2.19 is satisfied.

Case: Input
Assume that γ′ = ((l, η, s(pid , v) :: q), . . . , (cn, qn)) and that E′ makes step

((l, η, s(pid , v) :: q), . . . , (cn, qn)) →τ ((l̂, η[x 7→ v], q), . . . , (cn, qn)).

By rule Input of Table 5, l −→cj?s(x) l̂ ∈ Edg . Since γ′Qγ, the mimicking

step ((l, η), . . . , (cj , s(pid , v) :: q̃j), . . .) →τ ((l̂, η[x 7→ v]), . . . , (cj , q̃j), . . .) is
possible in E by rule Input of Table 9 and rule Comm of Table 6. For γ̂ ′ =
((l̂, η[x 7→ v], q), . . . , (cn, qn)) and γ̂ = ((l̂, η[x 7→ v]), . . . , (cj , q̃j), . . .), γ̂

′Q γ̂.
Moreover, condition 1 of Def. 2.19 is satisfied.

Case: Discard
Analogous to the case Input.

Rules Output, Assign, Set, Reset, TickP , Timeout, TDiscard of
Table 9 coincide with the rules of Table 5. The channels have the same semantics
in both cases. It is straightforward to show that condition 1 of Def. 2.19 is
satisfied for Output, Assign, Set, Reset, TickP , Timeout and TDiscard
cases, and so E′ �br E. 2

Proposition 5.1. branching simulation
Let Spec be a system specification, S ′ be the LTS obtained by applying the rules
of Tables 5 and 6 to Spec, and S be the LTS obtained by applying the rules of
Tables 9 and 6 to Spec. Then there exists Q ⊆ Γ ′ × Γ that is an input queue
approximation relation and a branching simulation between S ′ and S.

Proof. For each channel, there is only one process reading from the channel (see
Def. 3.2). Relation Q as given in Def. 5.3 can be easily lifted to the definition of
Q on configurations of S′ and S. S′ and S are the LTSs obtained using the same
rules for n-ary composition that allows to put n processes into communication.

5.2 Semantics 101

c 1

c 2

P
E

a

b

c 1

c 2

P
E

a b

’
’

Fig. 13. Input queue

By Lemma 5.3 and by a case analysis on rules of Table 6, it is straightforward
to show that S′ �br S. 2

Intuitively, we would like Q−1 to be a branching simulation. An attempt to
establish a simulation in the reverse direction fails. In Fig. 13, the configurations
((l, η, a :: b), (c1, ε), (c2, ε)) and ((l, η), (c1, a), (c2, b)) of system E′ and E are
related by Q. In E′, first message a can be consumed and then message b. E
still has a choice, i.e. the messages can be consumed in any order, hence, Q is
not a branching bisimulation (Def. 2.20). However, it is possible to show that
for each trace of S there exists a trace of S ′ having the same stuttering-free
projection (cf. Def. 2.26). Further, we show that S ′ and S are path equivalent
up to stuttering (Def. 2.28).

(l , η)

(c, s(pid,v)::q)

(l’, η [x−>v])

�� ��

(c, q)

τ
ζ

(l , η , ε)

(c, s(pid,v)::q)

(l’, η [x−>v], ε)(l , η , s(pid, v))

����

(c, q)(c, q)

τ τ
χ

�	

i i+1

j j+1 j+2

Fig. 14. Mimicking a reception τ -step

Definition 5.4.

Let ζ and χ be traces of S and S ′, respectively. We write ζ ≡V χ iff there exists
V ⊆ N × N such that

102 Closing and Flow Analysis for Model Checking Reactive Systems

1. (i, j) ∈ V implies χγ(j)Qζγ(i).

2. ζ and χ can be partitioned as ζI1ζI2 . . . and χJ1χJ2 . . ., respectively, so that
for all k > 0, Ik = {i, i + 1}, Jk = {j, . . . , j + m}, 1 ≤ m ≤ 2 and the
following conditions are satisfied:

– (i, j), (i + 1, j + m) ∈ V, ζλ(i + 1) = χλ(j + m), and all input queues
are empty at χγ(j) and at χγ(j +m);

– χλ(j + 1) = τ and (i, j + 1) ∈ V if m = 2.

We write S �V S
′ iff for every trace ζ of S there exists a trace χ in S ′ such

that ζ ≡V χ for some V ⊆ N × N.

Further, we show that for each trace ζ of E there is trace χ of E ′ such that
χ has the same stuttering-free projection as ζ. Roughly speaking, each step of
ζ is mimicked by the same step of χ except τ -steps that take a message from a
queue modelling an input channel and consume it. For an example on Fig. 14,
assume that ζ(i) ≡V χ(j) for some V ⊆ N × N and that the (i+ 1)th-step of ζ
is the τ -step that takes message s(pid , v) from the queue modelling channel c
and consumes the message. To be able to mimic such a step in E ′, we postpone
moving messages from queues modelling channels into the input queue of the
process as long as possible.

Since ζ(i) ≡V χ(j), χγ(j)Qζγ(i) by condition 1 of Def. 5.4. Therefore, we
take a τ -step that removes signal s(pid , v) from the queue modelling channel c
and adds it to the empty input queue of process P ′ (cf. rule Comm of Table 6).
For the configuration χγ(j + 1) reached by the τ -step, χγ(j + 1)Qζγ(i) holds,
and we add (i, j + 1) to V .

According to the rule Input of Table 5, we can make a τ -step that con-
sumes the message s(pid , v) from the input queue of process P ′ and leads to
configuration χγ(j + 2) such that χγ(j + 2)Qζγ(i+ 1). We add (i+ 1, j + 2) to
V , and thus we obtain ζ(i+1) ≡V χ

(j+2) for the extended V .

Lemma 5.4.

Let ζ and χ be traces of S and S ′ respectively. Let ζ ≡V χ for some V ⊆ N×N.
Then ζ ≡wtr χ.

Proof. Traces χ and ζ that satisfy condition 2 of Def. 5.4 also satisfy conditions
of Def. 2.16. 2

Let πζ and πχ be paths corresponding to traces ζ and χ respectively, i.e.
πζ = ζγ(0)ζγ(1) . . . and πχ = χγ(0)χγ(1)

Lemma 5.5.

Let ζ and χ be traces of S and S ′ respectively. Let ζ ≡V χ for some V ⊆ N×N.
Let L : Γ → 2P and L′ : Γ ′ → 2P be interpretation functions, P be the set
of atomic propositions, and Γ and Γ ′ be sets of configurations of S and S ′

respectively. Then πζ ≡st πχ.

5.2 Semantics 103

Proof. Both S and S′ are obtained from some specification Spec, so they have
the same set of variables. Since ζ ≡V χ for some V ⊆ N × N, L(ζγ(i)) =
L′(χγ(j)) for all (i, j) ∈ V by condition 1 of Def. 5.4.

By condition 2 of Def. 3.14, each step of trace ζ is mimicked either by the
same step of trace χ or by by the same step of χ preceded by one τ -step that
does not change the valuation of variables. Further, it is straightforward to
show that L(Pr(πζ)(k)) = L′(Pr(πχ)(k)) for all k ≥ 0 (cf. Def. 2.27). 2

Lemma 5.6.

Let SpecP be a process specification, P ′ be the LTS obtained by applying the
rules of Table 5 to SpecP , and P be the LTS obtained by applying the rules of
Table 9 to SpecP . Let E be the composition of P with the LTSs modelling its
input channels and let E ′ be the composition of P ′ with the LTSs modelling its
input channels according to the rules of Table 6. For each trace ζ of E there is
a trace χ of E′ such that ζ ≡V χ for some V ⊆ N × N.

Proof. In Lemma 5.3, we have already demonstrated that γ ′0Qγ0 is valid for the
initial configurations of E ′ and E; thus, V = {(0, 0)} and ζγ(0) = γ0 initially.
Further, we construct a trace χ and a relation V by induction on the length
of the trace ζ. Each step of ζ is mimicked by a step of E ′, and configurations
reached by a step of ζ and the mimicking step are related by Q. Now we proceed
with a case analysis on the rules of Table 9 and rule Comm of Table 6. Note
that here we consider rule Comm only for the case when a process receives
a message from a channel. Assume that (i, j) ∈ V and that all input queues
are empty in χγ(j). By Def. 5.4, traces ζ(i) and χ(j) can be partitioned as

ζ(i)I1
. . . ζ(i)Ii

. . . and χ(j)J1
. . . χ(j)Ji

.

Case: Comm
Let the (i+ 1)th-step of ζ be

((l, η), . . . , (ck, s(pid , v) :: q̃k), . . .) →τ ((l̂, η[x 7→ v]), . . . , (cj , q̃j), . . .)

By rule Comm of Table 6 and rule Input of Table 9, l −→cj?s(x) l̂ ∈ Edg .
By Def. 5.4, (i, j) ∈ V implies that χγ(j)Qζγ(i) and the input queue of P ′

is empty at χγ(j). To mimic the τ -step of ζ, we extend χ(j) by two steps. By
rule Comm of Table 6, we first add the τ -step:

((l, η, ε), . . . , (cj , s(pid , v) :: qj), . . .) →τ ((l, η, s(pid , v)), . . . , (cj , qj), . . .)

that removes message s(pid , v) from the head of the queue modelling channel
cj and adds it to the input queue of process P ′. We add (i, j + 1) to V and
define χγ(j+1) = ((l, η, s(pid , v)), . . . , (ci, qi), . . .), χλ(j+1) = τ . For this step,
χγ(j + 1)Qζγ(i).

By rule Input of Table 5, we add the τ -step:

((l, η, s(pid , v)), . . . , (cn, qn)) →τ ((l̂, η[x 7→ v], ε), . . . , (cn, qn))

104 Closing and Flow Analysis for Model Checking Reactive Systems

consuming s(pid , v) from the input queue of P ′. We add (i + 1, j + 2) to V

and define χγ(j + 2) = ((l̂, η[x 7→ v], ε), . . . , (cn, qn)), χλ(j + 2) = τ . Moreover,
χγ(j + 2)Qζγ(i+ 1) and the input queue of P ′ is empty at χγ(j + 2).

The (i+1)th-step of ζ(i+1) forms partition Ii+1. The (j+1)th-step together
with (j+2)th-step forms partition Ji+1 of χ(j+2). All conditions of Def. 5.4 are
satisfied, and ζ(i+1) ≡V χ

(j+2).
It is straightforward to show that we can mimic the (i + 1)th-step of ζ by

the (j + 1)th-step of E ′ so that ζ(i+1) ≡V χ
(j+1) for cases Discard, Output,

Assign, Set, Reset, TickP , Timeout and TDiscard of Table 9.
Here we showed that for each finite prefix ζ(i+1) of trace ζ of E, we can

construct a finite prefix χ(j+m) of trace χ of E′ such that ζ(i+1) ≡V χ
(j+m). It

means that for each trace ζ of E there is a trace χ of E ′ such that ζ ≡V χ for
some V . 2

Proposition 5.2.

Let Spec be a system specification, S ′ be the LTS obtained by applying the rules
of Tables 5, rules In and Out of Table 2 and the rules of Table 6 to Spec, and
S be the LTS obtained by applying the rules of Tables 9, rules In and Out of
Table 2 and the rules of Table 6 to Spec. For each trace ζ of S there is a trace
χ of S′ such that ζ ≡V χ for some V ⊆ N × N.

Proof. For each channel c there is only one process that takes messages from
the channel (see Def. 3.2). Relation Q as given by Def. 5.3 can be easily lifted
to a definition of Q on configurations of S ′ and S. S and S′ are the LTSs
obtained using the same rules of n-ary composition. By Lemma 5.6 and by a
case analysis on the rules of Table 6, it is straightforward to show that for each
trace ζ of S there is a trace χ of S ′ such that ζ ≡V χ for some V . 2

Proposition 5.3. weak trace equivalence
Let Spec be a system specification, S ′ be the LTS obtained by applying the rules
of Tables 5, rules In and Out of Table 2 and the rules of Table 6 to Spec, and
S be the LTS obtained by applying the rules of Tables 9, rules In and Out of
Table 2 and the rules of Table 6 to Spec. Then S ≡wtr S

′.

Proof. Case: S′ �wtr S
Follows from Proposition 5.1.

Case: S �wrt S
′

Follows from Proposition 5.2 and Lemma 5.4. 2

Proposition 5.4. path inclusion up to stuttering
Let Spec be a system specification, S ′ be the LTS obtained by applying the rules
of Tables 5, rules In and Out of Table 2 and the rules of Table 6 to Spec, and
S be the LTS obtained by applying the rules of Tables 9, rules In and Out of
Table 2 and the rules of Table 6 to Spec. Further, let L and L′ be interpretation
functions for the set of atomic propositions P. Then (S,L) ≡st (S′,L′).

5.3 Marking Chaotically-influenced Variables 105

Proof. Both (S,L) and (S ′,L′) are L2TSs (Def. 2.25). Here we assume that
neither system S nor system S ′ contains deadlocks, because even if the system
cannot proceed, time can progress. So all traces of S and S ′ are infinite.

Case: (S′,L′) �st (S,L)
Follows from Def. 5.3 and Proposition 5.1.

Case: (S,L) �st (S′,L′)
Follows from Proposition 5.2 and Lemma 5.5.

(S,L) �st (S′,L′) and (S′,L′) �st (S,L) imply (S,L) ≡st (S′,L′). 2

Theorem 5.1.

For all formulas ϕ of LTL−X mentioning process variables and timer variables
of Spec, S |= ϕ iff S′ |= ϕ.

Proof. Straightforward from Proposition 5.4 and Theorem 2.2. 2

5.3 Marking Chaotically-influenced Variables

Originating from an unknown or underspecified environment, signals from out-
side can carry any value, which often leads to infinite state space. Assuming
nothing about the data means one can conceptually abstract values from out-
side into one abstract “chaotic” value, which basically means to ignore these
data and focus on the control structure. Data not coming from outside is left
untouched, though chaotic data from the environment influence internal data
of the system. In this section, we present a straightforward data-flow analysis
marking variable and timer instances that may be influenced by the environ-
ment, namely we establish for each process- and timer-variable in each location
whether

1. the variable is guaranteed to be not influenced by the outside, or
2. the variable is guaranteed to be influenced by the outside, or
3. whether its status depends on the actual run.

The analysis is a combination of the ones from [151] and [103].

5.3.1 Data-Flow Analysis

The analysis works on a simple flow graph representation of the system; each
process is represented by a single flow graph, whose nodes n ∈ nodes are associ-
ated with the process’ actions and the flow relation captures the intra-process
data dependencies. Since the structure of the language we consider is rather
simple, the flow graph can be easily obtained by standard techniques.

We use an abstract representation of the data values, where > is inter-
preted as a value chaotically influenced by the environment and ⊥ stands for a
non-chaotic value. We write ηα, ηα

1 , . . . for abstract valuations, i.e., for typical
elements from Valα = Var → {>,⊥}. The abstract values are ordered ⊥ ≤ >,

106 Closing and Flow Analysis for Model Checking Reactive Systems

and the order is lifted pointwise to valuations. With this ordering, the set of
valuations forms a complete lattice, where we write η⊥ for the least element,
given as η⊥(x) = ⊥ for all x ∈ Var , and we denote the least upper bound of
ηα
1 , . . . , η

α
n by

∨n
i=1 η

α
i (or by ηα

1 ∨ ηα
2 in the binary case). By slight abuse of

notation, we will use the same symbol ηα for the valuation per node, i.e., for
functions of type node → Valα.

Depending on whether we are interested in an answer to point (1) or point
(2) from above, > is interpreted as a variable influenced from outside, and,
dually for the second case, > stands for variables guaranteed to be influenced
from outside. We present may and must analysis for the first and the second
case respectively.

May Analysis

First we consider may analysis that marks variables potentially influenced by
data from outside. Each node n of the flow graph has associated with it an
abstract transfer function fn : Valα → Valα, describing the change of the
abstract valuations depending on the kind of action at the node. The functions
are given in Table 10. The equations are mostly straightforward; the only case
deserving mention is the one for c?s(x), whose equation captures the inter-
process data-flow from a sending to a receiving action. If s is an external signal
then variable x is potentially influenced from outside. A process within the
system can also send a message parameterized by data influenced from outside.
That is captured by

∨
{[[e]]ηα | n′ = gB c!s(e)}. It allows to mark a variable

by > if at least one process sends signal s with data influenced from outside.
Sending a signal c!s(e) does not change the valuation of variables, hence it does
not influence abstract valuation as well.

Assignment gBx := e changes the valuation of x depending on the valuation
of expression e. The abstract valuation [[e]]ηα for an expression e equals ⊥ iff
all variables in e are evaluated to ⊥, [[e]]ηα is > iff the abstract valuation of at
least one of the variables in e is >. Setting a timer is similar to an assignment.
Reset and timeout set a timer to the reliable value off . It is easy to see that
the transfer functions are monotonic.

Upon the start of the analysis, the variables’ values at each node are assumed
to be defined; the initial valuation is the least one: ηα

init (n) = η⊥. This choice
rests on the assumption that all local variables of each process are properly
initialized. We are interested in the least solution to the data-flow problem
given by the following constraint set:

ηα
post (n) ≥ fn(ηα

pre(n))

ηα
pre(n) ≥

∨
{ηα

post (n
′) | (n′, n) in flow relation}

(4)

For each node n of the flow graph, the data-flow problem is specified by
two inequations or constraints. The first one relates the abstract valuation ηα

pre

before entering the node with the valuation ηα
post afterwards via the abstract

5.3 Marking Chaotically-influenced Variables 107

f(c?s(x))ηα =

8

>

<

>

:

ηα
[x 7→>]

ηα
[x 7→

W

{[[e]]ηα |n′=g B c!s(e)}]

s ∈ Sigext

s 6∈ Sigext

f(g B c!s(e))ηα = ηα

f(g B x := e)ηα = ηα
[x 7→[[e]]ηα]

f(g B set t := e)ηα = ηα
[t 7→ on([[e]]ηα)]

f(g B reset t)ηα = ηα
[t 7→ off]

f(gt B reset t)ηα = ηα
[t 7→ off]

Table 10. May analysis: transfer functions/abstract effect for process P

input : the flow graph of the program
output: ηα

pre , η
α
post ;

ηα(n) = ηα
init(n);

WL = {n | αn =?s(x), s ∈ Sigext};

repeat
pick n ∈ WL;
if n = g B c!s(e) then

let S′ = {n′ | n′ = c?s(x) and [[e]]ηα(n) 6≤ [[x]]ηα(n′)}
in

for all n′
∈ S′: ηα(n′) := fn′(ηα(n′));

let S = {n′′
∈ succ(n) | fn(ηα(n)) 6≤ ηα(n′′)}

in
for all n′′

∈ S: ηα(n′′) := fn(ηα(n));
WL := WL\{n} ∪ S ∪ S′;

until WL = ∅;

ηα
pre(n) = ηα(n);

ηα
post (n) = fn(ηα(n))

Fig. 15. May analysis: worklist algorithm

108 Closing and Flow Analysis for Model Checking Reactive Systems

effects of Table 10. The least fixpoint of the constraint set can be found itera-
tively in a fairly standard way by a worklist algorithm (see e.g., [111, 85, 131]),
where the worklist steers the iterative loop until the least fixpoint is reached
(cf. Figure 15).

The worklist data-structure WL used in the algorithm is a set of elements,
more specifically a set of nodes from the flow graph, where we denote by succ(n)
the set of successor nodes of n in the flow graph in forward direction. It supports
as operation to randomly pick one element from the set (without removing it),
and we write WL\{n} for the worklist without the node n and ∪ for set-union on
the elements of the worklist. The algorithm starts with the least valuation on all
nodes and an initial worklist containing nodes with input from the environment.
It enlarges the valuation within the given lattice step by step until it stabilizes,
i.e., until the worklist is empty. If adding the abstract effect of one node to the
current state enlarges the valuation, i.e., the set S is non-empty, those successor
nodes from S are (re-)entered into the list of unfinished ones. The special case
for output nodes c!s(e) captures interprocess communication. Since the set of
variables in the system is finite, and thus the lattice of abstract valuations,
termination of the algorithm is immediate.

With the worklist as a set-like data-structure, the algorithm is free to work
off the list in any order. In practice, more deterministic data-structures and
traversal strategies are appropriate, for instance traversing the graph in a
breadth-first manner (see [131] for a broader discussion or various traversal
strategies).

After termination the algorithm yields two mappings ηα
pre : Node → Valα

and ηα
post : Node → Valα. On a location l, the result of the analysis is given by

ηα(l) =
∨
{ηα

post (ñ) | ñ = l̃ −→a l} (where a is an action), also written as ηα
l .

Lemma 5.7. correctness (may)
The algorithm in Fig. 15 terminates. Upon termination, the algorithm gives
back the least solution to the constraint set as given by the equations (4), where
the transfer function is defined by Table 10.

Proof. The set of variables is finite and the lattice of abstract valuations is
complete (Def. 2.2). Transfer functions are monotonic. Using Theorem 2.1, it
is straightforward to show that an abstract valuation reached upon the termi-
nation of the algorithm on Fig. 15 is the least solution to the constraint set as
given by the equations (4). 2

Must Analysis

The must analysis is almost dual to the may analysis. The must analysis marks
the variables that are guaranteed to be influenced by data from outside. The
transfer function that describes the change of the abstract valuation depending
on the action at the node is defined in Table 11. For inputs c?s(x), the transfer
function assigns ⊥ to x if the signal is sent to P with reliable data only. This

5.3 Marking Chaotically-influenced Variables 109

f(c?s(x))ηα =

8

>

<

>

:

ηα
[x 7→>]

ηα
[x 7→

V

{[[e]]ηα |n′=g B c!s(e)}]

s 6∈ Sig int

s ∈ Sig int

f(g B c!s(e))ηα = ηα

f(g B x := e)ηα = ηα
[x 7→[[e]]ηα]

f(g B set t := e)ηα = ηα
[t 7→ on([[e]]ηα)]

f(g B reset t)ηα = ηα
[t 7→ off]

f(gt B reset t)ηα = ηα
[t 7→ off]

Table 11. Must analysis: transfer functions/abstract effect for process P

input: the flow graph of the program
output: ηα

pre , η
α
post ;

ηα(n) = ηα
init(n);

WL = {n | αn = g B x := e};

repeat
pick n ∈ WL;
if n = g B c!s(e) then

let S′ = {n′ | n′ = c?s(x) and [[e]]ηα(n) � [[x]]ηα(n′)}
in

for all n′
∈ S′: ηα(n′) := fn′(ηα(n′));

let S = {n′′
∈ succ(n) | fn(ηα(n)) � ηα(n′′)}

in
for all n′′

∈ S: ηα(n′′) := fn(ηα(n));
WL := WL\{n} ∪ S ∪ S′;

until WL = ∅;

ηα
pre(n) = ηα(n);

ηα
post (n) = fn(ηα(n))

Fig. 16. Must analysis: worklist algorithm

110 Closing and Flow Analysis for Model Checking Reactive Systems

means the values after reception correspond to the greatest lower bound over
all expressions which can occur in a matching send-action.

Similar to the may analysis, the data-flow problem is specified for each
node n of the flow graph by two inequations (5) (see Table 11). Analogously,
the greatest fixpoint of the constraint set can be found iteratively by a worklist
algorithm (cf. Figure 16). Upon the start of the analysis, at each node the
variables’ values are assumed to be defined, i.e., the initial valuation is the
greatest one: ηα

init (n) = η>.

ηα
post (n) ≤ fn(ηα

pre(n))

ηα
pre(n) ≤

∧
{ηα

post (n
′) | (n′, n) in flow relation}

(5)

As in the case of may analysis, termination of the algorithm follows from
the finiteness of the set of variables. After termination the algorithm yields two
mappings ηα

pre , η
α
post : Node → Valα. On a location l, the result of the analysis

is given by ηα(l) =
∧
{ηα

post (ñ) | ñ = l̃ −→a l}, also written as ηα
l .

Lemma 5.8. Correctness (must)
The algorithm in Fig. 16 terminates. Upon termination, the algorithm gives
back the greatest solution to the constraint set as given by equations (5), where
the transfer function is defined by Table 11.

5.4 Program Transformation

For model checking, we cannot live with the infinity of data injected from out-
side by the chaotic environment. Therefore, we abstract this infinity into one
single abstract value >>. For chaotically influenced timers, we should differen-
tiate among deactivated timers, timers that are ready to expire immediately
and timers that are active but not ready to expire in the current time slice.
The timer abstraction introduced in Sec. 4.2 cannot be used for this purpose,
because k+ abstraction is suitable only to represent an active timer that can-
not expire immediately. Therefore, we will need a more refined abstraction.
Since the abstract system is still open, we close it by embedding the chaotic
environment into the system. Special care is taken to properly embed chaotic
behaviour wrt. timed behaviour.

Based on the result of the analysis, we transform a given specification Spec
into a closed one denoted by Spec], where communication with the environment
is embedded into the system, all the data exchanged with it is abstracted.

The intention is to use the information collected in the analysis about the
influence of the environment to reduce the state space. Depending on whether
one relies on the may-analysis alone (which variable occurrences may be in-
fluenced from the outside) or takes into account the results of both analyses
(additional information which variable occurrences are definitely chaotic) the
precision of the abstraction varies. Using only the may-information overapprox-
imates the system (further) but in general leads to a smaller state space. The

5.4 Program Transformation 111

second option, on the other hand, gives a more precise abstraction and thus
less false negatives.

Here we describe only the transformation based on a combination of may
and must analyses, since the alternative transformation using the results of the
may analysis is simpler. The transformation not only closes the system but
also optimises it by removing unnecessary instances of variables or expressions
which are guaranteed to be >. The transformation is defined by the rules in
Table 12.

Overloading the symbols > and ⊥ we mean for the rest of the paper: the
value of > for a variable at a location refers to the result of the must analysis,
i.e., the definite knowledge that the data is chaotic for all runs. Dually, ⊥
stands for the definite knowledge of the may analysis, i.e., for data which is
never influenced from outside. Additionally, we write ⊥> in case neither analysis
gives a definite answer. The set of variables whose value is ⊥> in at least one
location is denoted further as Var⊥>. The strict lifting of a valuation ηα to
expressions is denoted by [[.]]ηα .

We extend each data domain by the additional value >>, representing un-
known, chaotic, data, i.e., we assume now domains such as N>> = N ∪̇ {>>},
Bool>> = Bool ∪̇ {>>}, . . . , D>> = D ∪̇ {>>} where we do not distinguish nota-
tionally the various types of chaotic values. These values >> are considered as
the largest values, i.e., we introduce ≤ as the smallest reflexive relation with
v ≤ >> for all elements v (separately for each domain). The strict lifting of a
valuation η] (η] : Var → D>>) to expressions is denoted by [[.]]η] .

The transformation of untimed guards is straightforward: guards influenced
by the environment are taken non-deterministically, i.e., a guard g at a location
l is replaced by true, if [[g]]ηα

l
= >. A guard g whose value at a location l is

⊥> is treated dynamically on the extended data domain, i.e. it is replaced by
((g = true) ∨ (g = >>)). The guards whose value at a location is ⊥ are left
unmodified. Further, the transformed guards are denoted as g].

For assignments, we distinguish between the variables that carry the value
⊥> in at least one location and the rest. Assignments of >> to variables that
take ⊥> at no location are omitted (rule T-Assign1 of Table 12). Assignments
of concrete values are left untouched and assignments to variables that are
marked by ⊥> in at least one location are performed on the extended data
domain. If an assigned expression e is guaranteed to be influenced from the
outside, i.e., [[e]]ηα

l
= >, we get rid of the expression and assign >> directly (rule

T-Assign2 of Table 12).
The interpretation of timer variables on the extended domain requires spe-

cial attention. Chaos can influence timers only via the set-operation by setting
it to a chaotic value in the on-state. Therefore, the domain of timer values con-
tains the additional chaotic value on(>>). Since we need the transformed system
to show at least the behaviour of the original one, we must provide proper treat-
ment of the rules involving on(>>), i.e., the Timeout-, the TDiscard-, and
the Tick-rule of Table 9. As on(>>) stands for any value of active timers, it
must cover the cases where timeouts and timer discards are enabled (because

112 Closing and Flow Analysis for Model Checking Reactive Systems

l −→g B x:=e l̂ ∈ Edg x 6∈ Var⊥> [[e]]ηα
l

= >
T-Assign1

l −→g] B skip l̂ ∈ Edg]

l −→g B x:=e l̂ ∈ Edg x ∈ Var⊥> [[e]]ηα
l

= >
T-Assign2

l −→g] B x:=>> l̂ ∈ Edg]

l ∈ Loci

T-NoTimeout
l−→t=on(>>) B set t:=>>+ l ∈ Edg]

l −→g B set t:=e l̂ ∈ Edg [[e]]ηα
l

= >
T-Set

l −→g] B set t:=>> l̂ ∈ Edg]

l −→g B c!(s,e) l̂ ∈ Edg c ∈ Inenv

T-Outputext

l →g] B skip l̂ ∈ Edg]

l −→g B c!(s,e) l̂ ∈ Edg c 6∈ inenv [[e]]ηα
l

= >
T-Outputint

l −→g] B c!(s,>>) l̂ ∈ Edg]

l −→c?s(x) l̂ ∈ Edg s ∈ Sigext x ∈ Var⊥>
T-Input1

ext

l −→gtP
B x:=>> l̂ ∈ Edg]

l −→c?s(x) l̂ ∈ Edg s ∈ Sigext x 6∈ Var⊥>
T-Input2

ext

l −→gtP
B skip l̂ ∈ Edg]

l ∈ Loci

T-NoInput
l −→gtP

B set tP :=1 l ∈ Edg]

l −→c?s(x) l̂ ∈ Edg s ∈ Sig int x 6∈ Var⊥> [[x]]ηα
l

= >
T-Inputint

l −→c?s() l̂ ∈ Edg]

Table 12. Transformation

5.4 Program Transformation 113

||on()

||on(+)off

τ

tick

τ

Fig. 17. Timer abstraction

of the concrete value on(0)) as well as disabled (because of on(n) with n ≥ 1).
The second one is necessary, since the enabledness of the tick steps depends on
the disabledness of timeouts and timer discards via the blocked-condition.

To distinguish the two cases, we introduce a refined abstract value on(>>+)
for chaotic timers, representing all on-settings larger than or equal to 1 (see
Fig. 17). The order on the domain of timer values is given as the smallest re-
flexive order relation such that on(0) ≤ on(>>) and on(n) ≤ on(>>+) ≤ on(>>),
for all n ≥ 1. To treat the case where the abstract timer value on(>>) denotes
absence of immediate timeout, we add edges l −→t=on(>>) B set t:=>>+ l ∈ Edg]

which set back the timer value to >>+ representing a non-zero delay (rule
T-NoTimeout of Table 12). Rule T-Set of Table 12 transforms setting a
timer to a value given by expression e into setting the timer to >> if e is always
influenced by the environment. The decreasing operation needed in the TickP -
rule of Table 9 is defined in extension to the definition on values from on(N) on
>>+ by on(>>+) − 1 = on(>>). Note that the operation is left undefined on >>.
Timeout guards gt are transformed into ((t = on(0)) ∨ (t = on(>>))) denoted

further g]
t .

Lemma 5.9.

Let S] be LTSs obtained by applying the rules of Table 9 and Table 6 to Spec].
Let (l, η]) be a configuration of S]. If (l, η]) →tick , then [[t]]η] 6∈ {on(0), on(>>)},
for all timers.

Proof. If at least one timer has a value from {on(0), on(>>)} then either timeout
(rule Timeout Table 9), or discard of timeout (rule TDiscard Table 9), or
setting the timer to on(>>+) possible by the rule T-NoTimeout is enabled.
Since there is an enabled step, the system is not blocked and no tick -step is
possible. 2

We have abstracted from data coming from outside, but so far, the sys-
tem is still open. The rules T-Input1

ext, T-Input2
ext, T-NoInput, T-Inputint

T-Outputext of Table 12 embed the chaotic environment’s behaviour into the
system. Embedding concerns only communication statements. For communi-
cation statements, we distinguish between signals going to or coming from the
environment and those exchanged within the system. Outputs to the outside
are skipped (rule T-Outputext). Outputs within the system are basically left

114 Closing and Flow Analysis for Model Checking Reactive Systems

unmodified. If an expression e is guaranteed to be influenced from the out-
side, i.e., [[e]]ηα

l
= >, we get rid of the expression and send >> directly (rule

T-Outputint of Table 12).
Inputs from the outside are treated similarly. However we cannot just replace

an input from the environment by an unconditionally enabled assignment of
>> to the variable influenced by the input. It would render potential tick -steps
impossible by ignoring the situation when the chaotic environment does not
send any message. The core of the problem is that with the timed semantics,
the chaotic environment not just sends streams of messages but ”chaotically
timed” message streams, i.e. with tick ’s interspersed at arbitrary points.

We embed the chaotic nature of the environment by adding to each process
specification SpecP a new timer variable tP , used to guard the input from
outside. These timers behave in the same manner as the “chaotic” timers,
except that we do not allow the new tP timers to become deactivated. The
expiration of timer tP is expressed by the time guard (tP = on(0)) denoted by
gtP

. When guard gtP
is true, a non-deterministic choice is made between the

assignment of an abstract value >> to variable x (rule T-Input1
ext of Table 12)

and the setting of timer tP that postpones inputs from the environment till the
next time slice (rule T-NoInput of Table 12). The transformation gets rid of
all expressions where at least one variable is guaranteed to be influenced from
the outside. Therefore, we skip the assignment of >> to x, if the variable x is
not a ⊥> variable (rule T-Input2

ext of Table 12).
Since communication statements using the external signals and environment

input channels are replaced by skip in case of output and by assignment or skip
in case of input, the embedding yields a closed system specification which we
denote by Spec].

5.4.1 Preservation Result

Further, let Spec be a specification of the original system and Spec] be the
specification obtained as the result of the transformation of Spec according to
the rules of Table 12. Let S and S] be LTSs obtained by applying the rules
of Table 9 and Table 6 to Spec and Spec], respectively. Note that the rules of
Table 9 are lifted to data domains with >> values. The relationship between the
original and the closed systems will be based on path inclusion up to stuttering
(Def. 2.28), i.e. S |= φ if S] |= φ for any next-free LTL formula φ mentioning
only variables never influenced by the environment. It will take the rest of this
section to establish this claim.

The set of variables Var] for S] equals the original Var , except that for
each process P of the system, a fresh timer-variable tP is added to its local
variables, i.e., Var] = Var ∪̇ {tP1

, . . . , tPn
}. Based on the data-flow analysis,

the transformation considers certain variable instances as chaotic and unreli-
able. Hence to compare the configurations of S and S], we have to take ηα into
account. Variable instances that are not influenced by the environment should
have the same values in S and S]. Variable instances whose value depends on

5.4 Program Transformation 115

the system run should have the same value when they are reliable and >> when
they are unreliable. By the transformation, we get rid of variable instances that
are guaranteed to be influenced from outside. In this case, we cannot relate a
value of the variable in S to its value in S]. Therefore, we require [[x]]ηα = > for
such variable instances. Relative to a given analysis ηα, we define the relation
≤ on valuations as follows.

Definition 5.5. relation ≤ on valuations
Given ηα, η ≤ η] iff the following conditions hold:

– for all process variables x ∈ Var: either [[x]]η = [[x]]η] , or [[x]]η] = >>, or
[[x]]ηα = >;

– for all timer variables t ∈ Var: [[t]]η ≤ [[t]]η] .

Introducing the additional >>-value renders a system less deterministic. Be-
fore proving the corresponding branching simulation lemmas, the next lemmas
state monotonicity of the semantics of expressions, monotonicity of updating a
valuation, and preservation of the ≤-relation by the count-down operation on
timers.

Lemma 5.10.

Let e be an arbitrary expression and η and η] two valuations Var → D and
Var → D>>. Then η ≤ η] implies [[e]]η ≤ [[e]]η] .

Proof. Straightforward. ut

Lemma 5.11.

If η ≤ η] and v ≤ v>>, then η[x 7→ v] ≤ η]
[x 7→ v>>].

Proof. Straightforward. ut

Lemma 5.12.

Assume η ≤ η] with [[t]]η 6= on(0) and [[t]]η] /∈ {on(0), on(>>)} for all timers
t ∈ Var. Then η[t 7→ (t−1)] ≤ η]

[t 7→ (t−1)].

Proof. The ≤-relation on valuations is defined by pointwise lifting of the cor-
responding relation on the values. The preservation results for single timer
variables follow directly from the definition of ≤ on the domain {off , on(n) |
n ∈ N>> ∪̇ {>>+}} and the definition of the decreasing operation “−” on this
domain. ut

Before relating traces of the original system to traces of the closed one,
we define order relations on configurations. To relate states from Loc × Val
with those from Loc] ×Val], we define the relation ≤ on states as the smallest
relation such that (l, η) ≤ (l, η]) if η ≤ η].

116 Closing and Flow Analysis for Model Checking Reactive Systems

Definition 5.6. relation ≤ on process states
Let SpecP be a process specification, and SpecP] be the process specification
obtained by transforming SpecP according to the rules of Table 12. Let P and P]

be LTSs built by applying the rules of Table 9 to SpecP and SpecP] , respectively.
Let σ = (l, η) and σ] = (l, η]) be states of P and P] respectively. We write
σ ≤ σ] iff η ≤ η].

Definition 5.7. relation ≤ on messages
Messages from M = Sig × Id×D>> are related by ≤ as follows:
s(pid , v) ≤ s(pid , v>>) if v ≤ v>>.

Comparing queues modelling channels, external messages are ignored. The
internal messages must coincide wrt. signals. The values parameterizing the
internal messages must be related by the ≤-relation, i.e. queues q and q] are
related by ≤ iff q] is q with all messages from the environment projected out.

Definition 5.8. relation ≤ on queues
We define ≤ on queues inductively as follows:

– ε ≤ ε,
– s(env , v) :: q ≤ q] iff q ≤ q],
– s(pid , v) :: q ≤ s(pid , v>>) :: q] iff v ≤ v>>, q ≤ q] and pid 6= env.

Since the transformation skips all the outputs to the environment, queues
modelling input channels of the environment are always empty in the closed
system. We could remove those queues from the closed system, as it is done in
the implementation (see Sec. 5.5) of our approach. For the sake of readability,
we keep them here.

Definition 5.9. relation ≤ on channel states
Relation ≤ on channel states is defined as follows:

– (c, q) ≤ (c, q]) if q ≤ q] and c 6∈ Inenv ;
– (c, q) ≤ (c, ε) if c ∈ Inenv .

The definitions ≤ are extended to configurations in the obvious manner.

Definition 5.10. relation ≤ on configurations
Let Spec be a specification, and Spec] be the specification obtained by trans-
forming Spec according to the rules of Table 12. Let S and S] be LTSs built
by applying the rules of Table 9, rules In and Out of Table 2 and the rules
of Table 6 to Spec and Spec] respectively. We write γ ≤ γ] for configurations
γ = (γ1, . . . , γn) and γ] = (γ]

1, . . . , γ
]
n) of S and S], respectively, iff γi ≤ γ]

i for
all i = 1..n.

Lemma 5.13.

Let Spec be a specification, and Spec] be the process specification obtained by
transforming Spec according to the rules of Table 12. Let η ≤ η] be two evalu-
ations.

5.4 Program Transformation 117

1. Let g be a guard of an edge in Spec originating in location l and g] its
analogue in Spec]. If [[g]]η = true, then [[g]]]η] = true.

2. Let t be a timer in Spec. If [[t]]η = on(0), then [[t]]η] ∈ {on(0), on(>>)}.

Proof. Follows directly from Def. 5.10 and the transformation of guards.

Note that we are interested in preservation of properties that can be ex-
pressed by LTL−X formulas. Formulas of LTL−X are interpreted over Kripke
structures (see Sec. 2.3), thus the ≤-relation on configurations could be enough
to establish our claim about preservation. To keep the proofs of this section
more intuitive, we also define the observable effect and the ≤-relation on labels.
The observable effect renames to τ the labels concerning communication with
the environment.

Definition 5.11. observable effect
The observable effect p·q : Lab → Lab on labels of system S is given as the
following equations:

pc?s(pid , v)q =




τ if pid = env or c ∈ inenv

c?s(pid , v) otherwise

pc!s(pid , v)q =




τ if pid = env or c ∈ inenv

c!s(pid , v) otherwise

pτq = τ

ptickq = tick

The observable effect p·q : Lab → Lab on labels of system S] is given by an
identity function.

Definition 5.12. relation ≤ on labels
Relation ≤ on labels is the smallest relation ≤⊆ Lab × Lab such that

– τ ≤ τ ,
– tick ≤ tick , and
– c?s(pid , v) ≤ c?s(pid , v>>) as well as c!s(pid , v) ≤ c!s(pid , v>>) iff v ≤ v>>.

Further, we show that for each trace ζ of S there is a trace χ of S] having the
same stuttering-free projection as ζ. It guarantees that we may transfer positive
verification results from the closed system to the original one for properties that
can be expressed by LTL−X -formulas mentioning only variables not influenced
by the environment. First, we define a trace equivalence relating traces of S to
traces of S].

Definition 5.13.

Let ζ be a trace of S and χ be a trace of S]. We write ζ ≡R χ iff there is
R ⊆ N × N such that (0, 0) ∈ R and

118 Closing and Flow Analysis for Model Checking Reactive Systems

– (i, j) ∈ R implies that ζγ(i) ≤ χγ(j) and that one of the following conditions
holds:
1. ζλ(i+ 1) ∈ { ci!s(pid , v), co?s(env , v) | ci ∈ inenv},

ζγ(i+ 1) ≤ χγ(j) and (i+ 1, j) ∈ R;
2. ζλ(i+ 1) 6∈ { ci!s(pid , v), co?s(env , v) | ci ∈ inenv},

pζλ(i+ 1)q ≤ pχλ(j + 1)q, ζγ(i+ 1) ≤ χγ(j + 1) and (i+ 1, j + 1) ∈ R;
3. ζλ(i+ 1) = tick , χλ(j +m) = tick , ζγ(i+ 1) ≤ χγ(j +m),

(i+1, j+m) ∈ R, and for all 1 ≤ k < m: χλ(j+k) = τ , ζγ(i) ≤ χγ(j+k)
and (i, j + k) ∈ R.

We write S �R S] iff for each trace ζ of S there is a trace χ of S] such
that ζ ≡R χ for some R ⊆ N × N.

We illustrate conditions 1, 2 and 3 of Def. 5.13 by Fig. 18, 19 and 20 respec-
tively. For all three examples, we assume that ζ(i) ≡R χ(j) for some R ⊆ N×N.
By Def. 5.13, (i, j) ∈ R, and thus ζγ(i) ≤ χγ(j).

(c, q #)

���� ��

i

j

ζ

χ

i+1

(c, q) (c, q::s(env, v))

c?s(env, v)

����

Fig. 18. Skipping communication with the environment

In Fig. 18, we assume that the (i+1)th-step of ζ is step co?s(env , v) receiving
message s(env , v) from the environment. Closing embeds effects of consuming
messages from the environment into the system and skips external communica-
tion. Condition 1 of Def. 5.13 reflects it. The co?s(env , v)-step does not change
the values of the variables and so the configuration ζγ(i + 1) reached by the
step is in the ≤-relation with χγ(j). We add (i + 1, j) to R, and thus obtain
ζ(i+1) ≡R χ(j) for the extended R.

Each step of S that is not a tick -step and not communication with the
environment is mimicked by the same step of S] having the effect related by
the ≤-relation. In Fig. 19, we assume that the (i + 1)th-step of ζ is step τ
consuming message s(env , v) from the queue modelling channel c, and that
value v is influenced by environment, i.e. it is abstracted to >> in S].

5.4 Program Transformation 119

(l , η)
(c, s(pid,v)::q)

(l , η #)

(l’, η [x−>v])

(c, q #)
||

||

�� ��

�� ��

,

τ

i

j

τ
ζ

χ

i+1

(c, q)

j+1

(l’ η #[x−>])
)::q #)(c, s(pid,

Fig. 19. Mimicking τ steps

Since ζγ(i) ≤ χγ(j), consuming message s(pid , v) in S can be mimicked by
consuming message s(pid ,>>) in S]. The (i+1)th-step of ζ leads to a change of
location and valuation of the variable x to v. The mimicking (j+1)th-step of χ
changes location in the same way and modifies the valuation of x to >>, and so
ζγ(i+1) ≤ χγ(j+1). We add (i+1, j+1) to R, and thus get ζ(i+1) ≡R χ(j+1)

the extended R.

t P =on(0) t P =on(1)t P t P

|||| |||| �	
�

�
��

����

j

i

t=on(5) t=on(4)

i+1

ζ

χ

tick

tickτ τ

j+1 j+2 j+3

t=on()t=on(
=on(0)

t=on(

=on(0)
t=on(+ +)))

Fig. 20. Mimicking a tick -step

120 Closing and Flow Analysis for Model Checking Reactive Systems

In Fig. 20, we assume that ζ(i) ≡R χ(j) for some R ⊆ N × N, and that the
(i+1)th-step of ζ is step tick . We also assume that timer t is influenced by the
environment.

System S is blocked in ζγ(i), however, blocked(χγ(j)) is not necessarily true.
In the closed system, timer t can be in state on(>>), and special timer tP added
by the transformation is on(0) in χγ(j). To be able to mimic the tick -step,
we should reach a configuration where S] is blocked as well. Timers having
value on(>>) should be set to on(>>+) (see rule T-NoTimeout in Table 13).
Special timers tP added by the transformation should be set to on(1) (see
rule T-NoInput in Table 13).

First we take a τ -step suspending a timeout of timer t, i.e. setting t to
on(>>+). The configuration χγ(j+1) reached by this step is in relation ≤ with
ζγ(i). We add (i, j + 1) to R.

In system S], we do not take step setting special process timers tP to on(1)
until we have to mimic a tick -step of S. By a τ -step, we set timer tP to on(1).
The configuration χγ(j + 2) reached by this step is in relation ≤ with ζγ(i).
We add (i, j + 2) to R.

Now system S] is blocked, and we may take a tick -step in S]. The config-
uration χγ(j + 3) reached by this step is in relation ≤ with ζγ(i+ 1). We add
(i+ 1, j + 3) to R, and thus obtain ζ(i+1) ≡R χ(j+3) for some R ⊆ N × N.

Let πζ and πχ be paths corresponding to traces ζ and χ respectively, i.e.
πζ = ζγ(0)ζγ(1) . . . and πχ = χγ(0)χγ(1) Next, we show that ζ ≡R χ for
some R ⊆ N × N implies πζ ≡st πχ.

Lemma 5.14.

Let ζ and χ be traces of S and S] respectively. Let ζ ≡R χ for some relation
R ⊆ N×N. Let L : Γ → 2P and L] : Γ] → 2P be interpretation functions, P be
the set of atomic propositions that mention only variables never influenced by
the environment, Γ and Γ] be sets of configurations of S and S] respectively.
Then πζ ≡st πχ.

Proof. Since ζ ≡R χ for some R ⊆ N×N, (0, 0) ∈ R by Def. 5.13. By Def. 5.13,
L(Pr(πζ)(0)) = L](Pr(πχ)(0)).

Assume that ζ(i) ≡R χ(j), and prefixes ζ(i) and χ(j) have the same stut-
tering-free projection. That means |Pr(πζ(i))| = |Pr(πχ(j))| and that for all

0 ≤ k ≤ |Pr(πζ(i))|, L(Pr(πζ(i))(k)) = L](Pr(πχ(j))(k)) (cf. Def. 2.27). Since

ζ ≡R χ, ζ(i+1) ≡R χ(j+m) for some m ≥ 0 (cf. Def. 5.13).

Further, we show that for each prefix ζ(i+1) there is a prefix χ(j+m) for
some m such that ζ(i+1) ≡R χ(j+m), and ζ(i+1) and χ(j+m) have the same
stuttering-free projection. We proceed by a case analysis on conditions 1, 2
and 3 of Def. 5.13.

Case: condition 1
Assume that the (i+ 1)th-step of ζ is a communication with the environment,
i.e. ζλ(i + 1) ∈ { ci!s(pid , v), co?s(env , v) | ci ∈ inenv}. The (i + 1)th-step of ζ

5.4 Program Transformation 121

does not change the valuation of the variables not influenced by the environ-
ment. It only adds (removes) messages from queues modelling channels. There-
fore, we may conclude that |Pr(πζ(i+1))| = |Pr(πχ(j))| and L(Pr(πζ(i+1))(k)) =

L](Pr(πχ(j))(k)) for all 0 ≤ k ≤ |Pr(πζ(i+1))| (cf. Def. 2.26 and Def. 2.27).

Case: condition 2
Assume that the (i + 1)th-step of ζ is neither a communication with the en-
vironment nor a tick -step, i.e. ζλ(i + 1) 6∈ { tick , ci!s(pid , v), co?s(env , v) |
ci ∈ inenv}. By Def. 5.13, both ζγ(i) ≤ χγ(j) and ζγ(i + 1) ≤ χγ(j + 1).
Thus L(ζγ(i)) = L](χγ(j)) and L(ζγ(i + 1)) = L](χγ(j + 1)). Therefore,
|Pr(πζ(i+1))| = |Pr(πχ(j+1))| and L(Pr(πζ(i+1))(k)) = L](Pr(πχ(j+1))(k)) for
all 0 ≤ k ≤ |Pr(πζ(i+1))| (cf. Def. 2.26 and Def. 2.27).

Case: condition 3
Assume that the (i+1)th-step of ζ is a tick -step. By Def. 5.13, for all 0 ≤ n < m,
ζγ(i) ≤ χγ(j+n) and ζγ(i+1) ≤ χγ(j+m). Thus, for all 0 ≤ n < m, L(ζγ(i)) =
L](χγ(j + n)) and L(ζγ(i+ 1)) = L](χγ(j +m)). Therefore, we may conclude
that |Pr(πζ(i+1))| = |Pr(πχ(j+m))| and L(Pr(πζ(i+1))(k)) = L](Pr(πχ(j+m))(k))
for all 0 ≤ k ≤ |Pr(πζ(i+1))| (cf. Def. 2.27).

We demonstrated that for each prefix ζ(i+1) there is a prefix χ(j+m) for
some m such that ζ(i+1) ≡R χ(j+m), and ζ(i+1) and χ(j+m) have the same
stuttering-free projection. ζ and χ are infinite, and thus we may conclude that
they have the same stuttering-free projections. 2

Lemma 5.15.

Let SpecP be a process specification, and SpecP] be the process specification
obtained by transforming SpecP according to the rules of Table 12. Let P and P]

be LTSs built by applying the rules of Table 9 to SpecP and SpecP] , respectively.
Let σ = (l, η) and σ] = (l, η]) be configurations of P and P], respectively, such

that σ ≤ σ]. If blocked(σ), then there exists σ] = σ]
0 →τ σ]

1 →τ . . . →τ σ]
n

for some configurations σ]
i and some n ≥ 0 such that σ ≤ σ]

i for all i, and
blocked(σ]

n).

Proof. Let σ = (l, η) and blocked(σ). By Lemma 5.2, none of the timers in P
has the value on(0). Since σ ≤ σ], it can be the case that some timers of P]

have value on(>>) in σ] (cf. Def. 5.5). Moreover, timer tP can have the value
on(0) in σ]. It means that P] is not blocked in σ].

We consider only well-formed specifications, hence, S can be blocked only
in input locations. Since l is an input location, nothing except an input step
or a τ -step mimicking an input from the environment or a timeout may take
place in σ]. According to rule T-NoTimeout of Table 12, there is an edge
l−→t=on(>>) B set t:=>>+ l ∈ Edg] for each timer t in each location. By rule Set

of Table 9, we take a step (l, η]) →τ (l, η]
[t 7→ on(>>+)]) for each timer t having

value on(>>) in σ]. The states γ]
i reachable by these steps are still in relation

≤ with σ (cf. Def. 5.5).
After all timers that were in state on(>>) are set to on(>>+), we also need

to set tP to on(1). According to the rule T-NoInput of Table 12, there is an

122 Closing and Flow Analysis for Model Checking Reactive Systems

edge l−→t=on(>>) B set t:=>>+ l ∈ Edg]. By rule Set of Table 9, we set timer tP to

on(1) by the τ -step (l, η]) →τ (l, η]
[tP 7→ on(1)]). State σ]

n of P] is still in relation
≤ with σ. All the timers of P] have either a nonzero value or value on(>>+)
and there are no other enabled transitions, and so blocked(σ]

n). 2

Lemma 5.16.

Let SpecP be a process specification, and SpecP] be the process specification
obtained by transforming SpecP according to the rules of Table 12. Let P and P]

be LTSs built by applying the rules of Table 9 to SpecP and SpecP] , respectively.
Then for each trace ζ of P there is a trace χ of P] such that ζ ≡R χ for some
R ⊆ N × N.

Proof. Here, we show that for any trace ζ of P , we can build a trace χ of
P] such that ζ ≡R χ for some R ⊆ N × N. Initially, all variables have the
same initial values and all the timers are deactivated both in P and in P],
hence σ0 ≤ σ]

0 for initial configurations σ0 and σ]
0 of P and P], respectively.

Therefore, R is initialized as {(0, 0)}. Further, we proceed by induction on the
length of ζ. Each step of P is mimicked by a step of P] so that conditions of
Def. 5.13 are satisfied, and configurations reached by the original step and the
mimicking step are related by ≤.

Assume that (i, j) ∈ R. Now we proceed with a case analysis on the rules
of Table 9.

Case: Input
Here we have to consider two cases: (i) process P receives a message from
another process within the system; (ii) process P receives a message from the
environment.

Subcase: s(pid , v), pid 6= env

Let the (i + 1)th-step of ζ be (l, η) →ci?s(pid,v) (l̂, η[x 7→ v]). Let ζγ(i) = (l, η),

ζλ(i+ 1) = ci?s(pid , v), and ζγ(i+ 1) = (l̂, η[x 7→ v]). By rule Input of Table 9,

we have l −→c?s(x) l̂ ∈ Edg .

If x 6∈ Var⊥> and [[x]]ηα
l

= >, we get l −→c?s() l̂ ∈ Edg] by rule T-Inputint

of Table 12. By rule Input of Table 9, we obtain the following mimicking
step (l, η]) →ci?s(pid,v>>) (l̂, η]) and define χγ(j + 1) = (l̂, η]) and χλ(j + 1) =

ci?s(pid , v
>>), where v ≤ v>>, and add (i + 1, j + 1) to R. [[x]]ηα

l
= > and

ζγ(i) ≤ χγ(j), hence ζγ(i+ 1) ≤ χγ(j + 1) and the conditions of Def. 5.13 are
satisfied.

Otherwise, the input edge is left unmodified and it is straightforward to
show that we can mimic the (i + 1)th-step of ζ by the (j + 1)th-step of χ, so
that the conditions of Def. 5.13 are satisfied.

Subcase: s(env , v)

Assume that the (i+ 1)th-step of ζ is (l, η) →ci?s(env ,v) (l̂, η[x 7→ v]), i.e. ζγ(i) =

(l, η), ζλ(i + 1) = ci?s(env , v), and ζγ(i + 1) = (l̂, η[x 7→ v]). By rule Input of

Table 9, we have l −→c?s(x) l̂ ∈ Edg .

5.4 Program Transformation 123

If x ∈ Var⊥>, we get l −→gtP
B x:=>> l̂ ∈ Edg] by rule T-Input1

ext of Table 12.

By rule Input of Table 9, we obtain the mimicking step (l, η]) →τ (l̂, η]
[x 7→>>]).

We define χλ(j+1) = τ , χγ(j+1) = (l̂, η]
[x 7→>>]). Here pζλ(i+ 1)q ≤ pχλ(j + 1)q.

Since ζγ(i) ≤ χγ(j) and the mimicking step assigns >> to x, ζγ(i+1) ≤ χγ(j+1).
We add (i+ 1, j + 1) to R. The conditions of Def. 5.13 are satisfied.

If x 6∈ Var⊥>, we get l −→gtP
B skip l̂ ∈ Edg] by rule T-Input2

ext of Table 12.

Since skip changes the location only, we obtain the mimicking step (l, η]) →τ

(l̂, η]). We define χλ(j+1) = τ , χγ(j+1) = (l̂, η]), so pζλ(i+ 1)q ≤ pχλ(j + 1)q.
Moreover, [[x]]ηα

l̂
= >, because x 6∈ Var⊥> and s ∈ Sigext (see the must-analysis

in Section 5.3). Therefore, ζγ(i+ 1) ≤ χγ(j + 1). We also add (i+ 1, j + 1) to
R. The conditions of Def. 5.13 are satisfied.

Case: Discard
Analogous to the case Input above.

Case: Output
Assume that the (i+ 1)th-step of ζ is (l, η) →co !s(pid,v) (l̂, η), i.e. ζγ(i) = (l, η),

ζλ(i+ 1) = co!s(pid , v), and ζγ(i+ 1) = (l̂, η). By rule Output of Table 9, we

have l −→g B c!(s,e) l̂ ∈ Edg . Here we have to consider two sub-cases: (i) process
P sends a message to some process within the system; (ii) process P sends a
message to the environment.

Subcase: c 6∈ Inenv

Process P sends a message to some process within the system.
If [[e]]ηα

l
= > and s 6∈ Sigext , we obtain l −→g] B c!(s,>>) l̂ ∈ Edg] by rule

T-Outputint of Table 12. Since ζγ(i) ≤ χγ(j), [[g]]]η] = true by Lemma 5.13.

By rule Output of Table 9, we get (l, η]) →co !s(pid,>>) (l̂, η]), i.e. the output

in P is mimicked by the output in P]. We define χλ(j + 1) = co!s(pid ,>>) and

χγ(j+1) = (l̂, η]). Since v ≤ >>, pζλ(i+ 1)q ≤ pχλ(j + 1)q holds for labels. Since
ζγ(i) ≤ χγ(j) and the output step of the original system and the mimicking
step of the closed one change only the location, ζγ(i+ 1) ≤ χγ(j + 1). We add
the pair (i+ 1, j + 1) to R. The conditions of Def. 5.13 are satisfied.

If [[e]]ηα
l

6= > then only the guard of the output edge is transformed and

l −→g] B c!(s,e) l̂ ∈ Edg]. Since ζγ(i) ≤ χγ(j), [[g]]]η] is true by Lemma 5.13 and
[[e]]η ≤ [[e]]η] by Lemma 5.11. By rule Output of Table 9, we get transition

(l, η]) →co !s(pid,v>>) (l̂, η]), where v>> = [[e]]η] . The output in P is mimicked by

the output in P]. We define χλ(j + 1) = co!s(pid , v
>>) and χγ(j + 1) = (l̂, η]).

Since [[e]]η ≤ [[e]]η] , pζλ(i+ 1)q ≤ pχλ(j + 1)q holds for labels. Since the output
step of the original system and the mimicking step of the closed one change
only the location and ζγ(i) ≤ χγ(j), ζγ(i + 1) ≤ χγ(j + 1). We add the pair
(i+ 1, j + 1) to R. The conditions of Def. 5.13 are satisfied.

Subcase: c ∈ Inenv

In this case, process P sends a message to the environment.
The transformation changes all outputs to the environment to skip-actions.

By rule T-Outputext of Table 12, we obtain l →g] B skip l̂ ∈ Edg]. Since

124 Closing and Flow Analysis for Model Checking Reactive Systems

ζγ(i) ≤ χγ(j), [[g]]]η] is true by Lemma 5.13. The output to the environment

in P is mimicked by (l, η]) →τ (l̂, η]) in P]. We define χλ(j + 1) = τ and

χγ(j+1) = (l̂, η]). pζλ(i+ 1)q ≤ pχλ(j + 1)q holds for labels. Since ζγ(i) ≤ χγ(j)
and the output step of the original system and the mimicking step of the closed
one change only the location, ζγ(i+1) ≤ χγ(j+1). We add the pair (i+1, j+1)
to R. The conditions of Def. 5.13 are satisfied.

Case: Assign
Assume that the (i + 1)th-step of ζ is (l, η) →τ (l̂, η[x 7→ v]), i.e. ζγ(i) = (l, η),

ζλ(i + 1) = τ , and ζγ(i + 1) = (l̂, η[x 7→ v]). By rule Assign of Table 9, we get

l −→g B x:=e l̂ ∈ Edg . Here we should consider three cases: (i) expression e is
guaranteed to be influenced by the environment and the value of x is not used
until it gets a reliable value, i.e. x 6∈ Var⊥>; (ii) expression e is guaranteed to be
influenced by the environment and variable x can be present in expressions or
guards that should be treated dynamically, i.e. x ∈ Var⊥> ; (iii) otherwise.

Subcase: [[e]]ηα
l

= > and x 6∈ Var⊥>

By rule T-Assign1 of Table 12, we obtain l −→g] B skip l̂ ∈ Edg]. [[g]]]η] is
true by Lemma 5.13, because ζγ(i) ≤ χγ(j). Therefore the assignment in P

can be mimicked by (l, η]) →τ (l̂, η]) in P]. We define χλ(j + 1) = τ and

χγ(j + 1) = (l̂, η]). pζλ(i+ 1)q ≤ pχλ(j + 1)q holds for labels. Since x 6∈ Var⊥>,
[[e]]ηα

l̂
= > and ζγ(i) ≤ χγ(j), we get ζγ(i + 1) ≤ χγ(j + 1). We add the pair

(i+ 1, j + 1) to R. The conditions of Def. 5.13 are satisfied.

Subcase: [[e]]ηα
l

= > and x ∈ Var⊥>

By rule T-Assign12 of Table 12, we obtain l −→g] B x:=>> l̂ ∈ Edg]. Since
ζγ(i) ≤ χγ(j), [[g]]]η] is true by Lemma 5.13. By rule Assign of Table 9, the

assignment in P can be mimicked by the assignment (l, η]) →τ (l̂, η]
[x 7→>>])

in P]. We define χλ(j + 1) = τ and χγ(j + 1) = (l̂, η]
[x 7→>>]). Moreover,

pζλ(i+ 1)q ≤ pχλ(j + 1)q holds for labels.
The assignment step of the original system changes the value of x to v and

the mimicking step of the closed system changes the value of x to >>. Since
ζγ(i) ≤ χγ(j) and v ≤ >>, ζγ(i+ 1) ≤ χγ(j + 1). We add the pair (i+ 1, j + 1)
to R. The conditions of Def. 5.13 are satisfied.

Subcase: [[e]]ηα
l
6= >

If [[e]]ηα
l

6= >, only the guard of the assignment is modified by the transfor-

mation, i.e. l −→g] B x:=e l̂ ∈ Edg]. Since ζγ(i) ≤ χγ(j), [[g]]]η] is true by
Lemma 5.13. By Lemma 5.11, [[e]]η ≤ [[e]]η] and v>> = [[e]]η] . By rule Assign

of Table 9, the assignment in P can be mimicked by (l, η]) →τ (l̂, η]
[x 7→ v>>]) in

P]. We define χλ(j+1) = τ and χγ(j+1) = (l̂, η]
[x 7→ v>>]). Since ζγ(i) ≤ χγ(j)

and [[e]]η ≤ [[e]]η] , ζγ(i + 1) ≤ χγ(j + 1). We add the pair (i + 1, j + 1) to R.
The conditions of Def. 5.13 are satisfied.

Case: Set
Assume that the (i+1)th-step of ζ is (l, η) →τ (l̂, η[t 7→ on(v)]), i.e. ζγ(i) = (l, η),

ζλ(i + 1) = τ , and ζγ(i + 1) = (l̂, η[t 7→ on(v)]). By rule Set of Table 9, we

5.4 Program Transformation 125

have l −→g B set t:=e l̂ ∈ Edg . Here we consider two sub-cases: (i) expression
e is guaranteed to be influenced by chaos; and (ii) it is not influenced by the
environment or it depends on a system run.

Subcase: [[e]]ηα
l

= >

By rule T-Set of Table 12, l −→g] B set t:=>> l̂ ∈ Edg]. Since ζγ(i) ≤ χγ(j),
[[g]]]η] is true by Lemma 5.13. By rule Set of Table 9, setting timer t in P

can be mimicked by setting (l, η]) →τ (l̂, η[t 7→ on(>>)]) timer t in P]. We define

χλ(j + 1) = τ and χγ(j + 1) = (l̂, η]
[t 7→ on(>>)]). pζλ(i+ 1)q ≤ pχλ(j + 1)q holds

for labels. Since ζγ(i) ≤ χγ(j) and on(v) ≤ on(>>), ζγ(i + 1) ≤ χγ(j + 1). We
add the pair (i+ 1, j + 1) to R. The conditions of Def. 5.13 are satisfied.

Subcase: [[e]]ηα
l
6= >

The edge of the original specification remains unchanged, only the guard is
transformed, i.e. l −→g] B set t:=e l̂ ∈ Edg]. Since ζγ(i) ≤ χγ(j), [[g]]]η] is true
by Lemma 5.13. By Lemma 5.11, [[e]]η ≤ [[e]]η] and v>> = [[e]]η] . By rule Set of

Table 12, setting timer t in P can be mimicked by (l, η]) →τ (l̂, η[t 7→ on(v>>)])

setting timer t in P]. We define χλ(j+1) = τ and χγ(j+1) = (l̂, η]
[t 7→ on(v>>)]).

pζλ(i+ 1)q ≤ pχλ(j + 1)q holds for the labels. ζγ(i + 1) ≤ χγ(j + 1), because
ζγ(i) ≤ χγ(j) and on(v) ≤ on(v>>). ζγ(i + 1) ≤ χγ(j + 1). We add the pair
(i+ 1, j + 1) to R. The conditions of Def. 5.13 are satisfied.

Case: Reset
The transformation does not modify reset edges. The proof that a reset of timer
t in P can be mimicked by a reset of t in P] is straightforward.

Case: Timeout
Assume that the (i + 1)th-step of ζ is the timeout step (l, η) →τ (l̂, η[t 7→ off]),

i.e. ζγ(i) = (l, η), ζλ(i+ 1) = τ , and ζγ(i+ 1) = (l̂, η[t 7→ off]). By rule Timeout

of Table 9, we have l −→gt B reset t l̂ ∈ Edg .
The timeout guard t = on(0) is modified by the transformation into the

guard ((t = on(0)) ∨ (t = on(>>))). Since ζγ(i) ≤ χγ(j) and t = on(0) is true
in ζγ(i), ((t = on(0)) ∨ (t = on(>>))) is true in χγ(j) by Lemma 5.13. By
rule Timeout of Table 9, the timeout in P can be mimicked by the timeout
(l, η]) →τ (l̂, η]

[t 7→ off]) in P]. We define χλ(j + 1) = τ and χγ(j + 1) =

(l̂, η]
[t 7→ off]). pζλ(i+ 1)q ≤ pχλ(j + 1)q holds for labels. Both the timeout τ -

step of the original system and the mimicking step of the closed one set the
timer t to off . Since ζγ(i) ≤ χγ(j), ζγ(i + 1) ≤ χγ(j + 1). We add the pair
(i+ 1, j + 1) to R. The conditions of Def. 5.13 are satisfied.

Case: TDiscard
Analogous to the Timeout case above.

Case: TickP

Assume that the (i+ 1)th-step of ζ is the tick step, (l, η) →tick (l, η[t 7→(t−1)]),
i.e. ζγ(i) = (l, η), ζλ(i+ 1) = τ , and ζγ(i+ 1) = (l, η[t 7→(t−1)]). By rule TickP

of Table 9, we have blocked(l, η).
We postpone setting timer tP to on(1) in P] until we meet a tick -step

along ζ, hence, P] is not blocked at χγ(j). By Lemma 5.15, we add a sequence

126 Closing and Flow Analysis for Model Checking Reactive Systems

χγ(j) →χλ(j+1) . . . →χλ(j+m) χγ(j + m) such that ζγ(i) ≤ χγ(j + k) and
χλ(j + k) = τ for all k = 1..m. We also add (i, j + k) to R for all k =
1..m. At χγ(j + m), P] is blocked, hence it can take the mimicking tick -step
χγ(j + m) →tick χγ(j + m)[t 7→(t−1)]. We define χλ(j + m + 1) = tick and
χγ(j+m+1) = χγ(j+m)[t 7→(t−1)]. By Lemma 5.12, ζγ(i+1) ≤ χγ(j+m+1).
We add (i+1, j+m+1) to R. The tick -step of P is mimicked by the sequence of
τ -steps followed by the tick -step in P]. The conditions of Def. 5.13 are satisfied.
2

Lemma 5.17.

Let Spec be a specification, and Spec] be the specification obtained by trans-
forming Spec according to the rules of Table 12. Let S and S] be LTSs built
by applying the rules of Table 9, rules In and Out of Table 2 and the rules
of Table 6 to Spec and Spec], respectively. Let γ and γ] be configurations of S
and S], such that γ ≤ γ]. If blocked(γ), then γ] = γ]

0 →τ γ]
1 →τ . . . →τ γ]

n

for some configurations γ]
i and some n ≥ 0 such that γ ≤ γ]

i for all i, and
blocked(γ]

n).

Proof. Straightforward from Lemma 5.15 and Def. 5.10. 2

Lemma 5.18.

Let Spec be a specification, and Spec] be the process specification obtained by
transforming Spec according to the rules of Table 12. Let S and S] be LTSs
built by applying the rules of Table 9, rules In and Out of Table 2 and the
rules of Table 6 to Spec and Spec], respectively. Then for each trace ζ of S
there is a trace χ of S] such that ζ ≡R χ for some R ⊆ N × N.

Proof. Here, we show that for any trace ζ of S we can build a trace χ of S]

such that ζ ≡R χ for some R. Initially, all queues modelling channels in S and
in S] are empty, all variables have the same initial values and all the timers
are deactivated, hence γ0 ≤ γ]

0 for initial configurations γ0 and γ]
0 of S and S],

respectively. R is initialized as {(0, 0)}. Further, we proceed by induction on
the length of ζ. Each step of S is mimicked by a step of S] so that conditions
of Def. 5.13 are satisfied, and configurations reached by the original step and
the mimicking step are related by ≤.

Assume that (i, j) ∈ R. Before we proceed with a case analysis on rules
In, Out of Table 2 and the rules of Table 6, we consider channels of the open
system and channels of the closed one. The queues modelling channels in closed
system S] do not contain messages sent to or received from the environment.

Case: In
Assume that a channel c has state (c, q) in S and state (c, q]) in S], and
that (c, q) ≤ (c, q]). Let c in S takes (c, q) →co?s(pid,v) (c, q :: s(pid , v)) (rule
In of Table 2), i.e. some process within the system sends a message s(pid , v)
via c to another process. Channel c in S] can mimic step co?s(pid , v) by a
step (c, q) →co?s(pid,v>>) (c, q :: s(pid , v>>)), where v ≤ v>>. The channel state
reached by the original and the channel state reached by the mimicking step

5.4 Program Transformation 127

are in relation ≤, i.e. (c, q :: s(pid , v)) ≤ (c, q :: s(pid , v>>)) (cf. Def. 5.8) and
pco?s(pid , v)q ≤ pco?s(pid , v

>>)q and condition 2 of Def. 5.13 is satisfied.

Assume that c in S makes a step (c, q) →co?s(pid,v) (c, q :: s(pid , v)), i.e. some
process within the system sends a message s(pid , v) via c to the environment.
In this case, q] = ε (cf. Def. 5.9). Since (c, q) ≤ (c, ε) and pco?s(env , v)q = τ ,
(c, q :: s(pid , v)) ≤ (c, ε) and condition 1 of Def. 5.13 is satisfied.

Assume that c in S makes a step (c, q) →co?s(env ,v) (c, q :: s(pid , v)), i.e. the
environment sends a message s(env , v) to a process within the system. Since
(c, q) ≤ (c, q]) and pco?s(env , v)q = τ , (c, q :: s(pid , v)) ≤ (c, q]) and condition 1
of Def. 5.13 is satisfied.

Case: Out
Analogous to the In case.

Case: Comm
Let (. . . , σk, . . . , σl, . . .) →τ (. . . , σ̂k, . . . , σ̂l, . . .) be the (i + 1)th-step of ζ. It
means that ζγ(i) = (. . . , σk, . . . , σl, . . .), ζλ(i+ 1) = τ and ζγ(i+ 1) = (. . . , σ̂k,
. . . , σ̂l, . . .). Further we consider four subcases: (i) receiving a message sent by
a process of the system; (ii) receiving a message sent by the environment;
(iii) sending a message to a process within the system; (iv) sending a message
to the environment.

Subcase: (i)
By rule Comm of Table 6, we have σk →ci?s(pid,v) σ̂k for some process Pk and
σl →ci !s(pid,v) σ̂l for some channel cl.

Since ζγ(i) ≤ χγ(j), process P]
k can take σ]

k →ci?s(pid,v>>) σ̂
]
k mimicking

input (see case Input of Lemma 5.16). Moreover, channel cl in S] can mimic

the ci!s(pid , v)-step by σ]
l →ci !s(pid,v>>) σ̂

]
l . By rule Comm of Table 6, the τ -step

of S can be mimicked by (. . . , σ]
k, . . . , σ

]
l , . . .) →τ (. . . , σ̂]

k, . . . , σ̂
]
l , . . .) in S].

In this case, we define χλ(j + 1) = τ and χγ(j + 1) = (. . . , σ̂]
k, . . . , σ̂

]
l , . . .).

According to Lemma 5.16, ζγ(i + 1) ≤ χγ(j + 1). We add (i + 1, j + 1) to R.
The conditions of Def. 5.13 are satisfied.

Subcase: (ii)
By rule Comm of Table 6, we have σk →ci?s(env ,v) σ̂k for some process Pk and
σl →ci !s(env ,v) σ̂l for some channel cl.

Since ζγ(i) ≤ χγ(j), process P]
k can do a mimicking input σ]

k →τ σ̂
]
k (cf. the

case Input of Lemma 5.16). By rule Interleaveτ of Table 6, the τ -step of S

can be mimicked by (. . . , σ]
k, . . . , σ

]
l , . . .) →τ (. . . , σ̂]

k, . . . , σ
]
l , . . .) in S]. In this

case, we define χλ(j + 1) = τ and χγ(j + 1) = (. . . , σ̂]
k, . . . , σ

]
l , . . .). According

to Lemma 5.16, ζγ(i+1) ≤ χγ(j+1). We add (i+1, j+1) to R. The conditions
of Def. 5.13 are satisfied.

Subcase: (iii)
By rule Comm of Table 6, we have σk →co?s(pid,v) σ̂k for some channel ck and
σl →co !s(pid,v) σ̂l for some process Pl. Moreover, the message is sent to another
process within the system, i.e. c 6∈ inenv .

128 Closing and Flow Analysis for Model Checking Reactive Systems

Since ζγ(i) ≤ χγ(j), process P]
l can take σ]

l →co !s(pid,v>>) σ̂
]
l (cf. the case

Output of Lemma 5.16). Channel ck in S] can mimic the co?s(pid , v)-step by

σ]
k →co?s(pid,v>>) σ̂

]
k. By rule Comm of Table 6, the τ -step of S can be mimicked

by (. . . , σ]
k, . . . , σ

]
l , . . .) →τ (. . . , σ̂]

k, . . . , σ̂
]
l , . . .) in S].

We define χλ(j + 1) = τ and χγ(j + 1) = (. . . , σ̂]
k, . . . , σ̂

]
l , . . .). According to

Lemma 5.16, ζγ(i+ 1) ≤ χγ(j + 1). We add (i+ 1, j + 1) to R. The conditions
of Def. 5.13 are satisfied.

Subcase: (iv)
By rule Comm of Table 6, we have σk →co?s(pid,v) σ̂k for some channel ck and
σl →co !s(pid,v) σ̂l for some process Pl. Moreover, the message is sent to the
environment, i.e. c ∈ inenv .

Since ζγ(i) ≤ χγ(j), process P]
l can do a mimicking τ -step σ]

l →τ σ̂
]
l (see

case Output of Lemma 5.16).
By rule Interleaveτ of Table 6, the τ -step of S can be mimicked by tran-

sition (. . . , σ]
k, . . . , σ

]
l , . . .) →τ (. . . , σ]

k, . . . , σ̂
]
l , . . .) in S].

In this case, we define χλ(j + 1) = τ and χγ(j + 1) = (. . . , σ]
k, . . . , σ̂

]
l , . . .).

According to Lemma 5.16, ζγ(i + 1) ≤ χγ(j + 1). We add (i + 1, j + 1) to R.
The conditions of Def. 5.13 are satisfied.

Case: Interleavein

Assume that (. . . , σk, . . .) →co?s(env ,v) (. . . , σ̂k, . . .) is the (i + 1)th-step of ζ,
i.e. ζγ(i) = (. . . , σk, . . .), ζλ(i+ 1) = co?s(env , v) and ζγ(i+ 1) = (. . . , σ̂k, . . .).

This case corresponds to condition 1 of Def. 5.13, i.e. there is no step in S]

mimicking the (i + 1)th-step of ζ. But the configuration ζγ(i + 1) reached by
the step is in relation ≤ with χγ(j) and pco?s(env , v)q is τ (see case In above).
We add (i+ 1, j) to R. The conditions of Def. 5.13 are satisfied.

Case: Interleaveout

Assume that (. . . , σk, . . .) →ci!s(pid,v) (. . . , σ̂k, . . .) is the (i + 1)th-step of ζ,
i.e. ζγ(i) = (. . . , σk, . . .), ζλ(i + 1) = ci!s(pid , v) and ζγ(i + 1) = (. . . , σ̂k, . . .).
Moreover c ∈ inenv .

This case corresponds to condition 1 of Def. 5.13, i.e. there is no step in S]

mimicking the (i + 1)th-step of ζ. But the configuration ζγ(i + 1) reached by
the step is in relation ≤ with χγ(j) and pci!s(pid , v)q is τ (see case Out above).
We add (i+ 1, j) to R. The conditions of Def. 5.13 are satisfied.

Case: Interleaveτ

Assume that (. . . , σk, . . .) →τ (. . . , σ̂k, . . .) is the (i+1)th-step of ζ, i.e. ζγ(i) =
(. . . , σk, . . .), ζλ(i+ 1) = τ and ζγ(i+ 1) = (. . . , σ̂k, . . .). Moreover, we assume
that τ is not the result of synchronizing communication steps, i.e. it corre-
sponds to the Assign, Set, Timeout, TDiscard, or Reset case considered
in Lemma 5.16.

By Lemma 5.16 and rule Interleaveτ of Table 6, the τ -step of S can be
mimicked by τ -step (. . . , σ]

k, . . .) →τ (. . . , σ̂]
k, . . .) of S]. We define χγ(j+1) =

(. . . , σ̂]
k, . . .), χλ(j+1) = τ and add (i+1, j+1) to R. The conditions of Def. 5.13

are satisfied.

5.5 Implementation 129

Case: Tick
Assume that (σ1, . . . , σn) →tick (σ̂1, . . . , σ̂n) is the (i+1)th-step of ζ, i.e. ζγ(i) =
(σ1, . . . , σn), ζλ(i + 1) = tick and ζγ(i + 1) = (σ̂1, . . . , σ̂n). By rule Tick of
Table 6, blocked(ζγ(i)).

By Lemma 5.17, there is χγ(j) = γ]
0 →τ γ

]
1 →τ . . .→τ γ

]
m for some config-

urations γ]
i of S] and some n ≥ 0 such that γ ≤ γ]

i for all i, and blocked(γ]
n).

Therefore, we extend χ by a sequence χγ(j) →χλ(j+1) . . .→χλ(j+m) χγ(j +m)
such that ζγ(i) ≤ χγ(j + k), χλ(j + k) = τ for all k = 1..m. We add (i, j + k)
to R for all k = 1..m. At χγ(j + m), S] is blocked, hence it may take the
step χγ(j +m) →tick χγ(j +m)[t 7→(t−1)]. We define χλ(j +m+ 1) = tick and
χγ(j +m+ 1) = χγ(j +m)[t 7→(t−1)] for all t ∈ Var . According to Lemma 5.12,
ζγ(i+1) ≤ χγ(j+m+1). We add (i+1, j+m+1) to R. The tick -step of S is
mimicked by the sequence of τ -steps followed by tick -step in S]. The conditions
of Def. 5.13 are satisfied.

Here we showed that for each finite prefix ζ(i+1) of trace ζ of S, we can
construct a finite prefix χ(j+m) of trace χ of S] such that ζ(i+1) ≡R χ(j+m) for
some R. It means that for each trace ζ of S there is a trace χ of S] such that
ζ ≡R χ for some R, i.e. S �R S]. 2

Lemma 5.19. path inclusion up to stuttering
Let Spec be a specification, and Spec] be the specification obtained by trans-
forming Spec according to the rules of Table 12. Let S and S] be LTSs built
by applying the rules of Table 9, rules In and Out of Table 2 and the rules of
Table 6 to Spec and Spec], respectively. Let L : Γ → 2P and L] : Γ] → 2P be
interpretation functions, P be the set of atomic propositions that mention only
variables x (process and timer) such that [[x]]ηα

l
= ⊥ for all l ∈ Loc, and Γ and

Γ] be sets of configurations of S and S] respectively. Then (S,L) �st (S],L]).

Proof. Follows directly by Lemma 5.18 and Lemma 5.14. 2

Theorem 5.2.

For all formulas ϕ from next-free LTL mentioning only variables x (process
and timer) such that [[x]]ηα

l
= ⊥ for all l ∈ Loc, S |= ϕ if S] |= ϕ.

Proof. Straightforward from Lemma 5.19 and Theorem 2.2. 2

5.5 Implementation

5.5.1 Extending the Vires Toolset

The Vires toolset (see [167]) was introduced for the verification of industrial-
size communication protocols. Its architecture is targeted towards the verifica-
tion of SDL specifications and it provides an automatic translation of SDL-code
into the input language of a discrete-time extension of the Spin model-checker.
Design, analysis, verification, and validation of SDL specifications is supported

130 Closing and Flow Analysis for Model Checking Reactive Systems

by ObjectGeode, one of the most advanced integrated SDL-environments.
ObjectGeode also provides code generation and testing of real-time and dis-
tributed applications.

Spin/DTSpin

sdl2if LIVE if2pml

ObjectGeode

pml2pml

IF

Fig. 21. Toolset components

if [28] bridges the gap between ObjectGeode and Spin/DTSpin (cf.
Sec. 2.4). It contains a translator, sdl2if of SDL specifications into the inter-
mediate representation if. A static analyzer Live [27] performs an optimization
of if-representation to reduce the state space of the model. if-specifications
can be translated to DTPromela models with the help of if2pml-translator
[25] and verified by DTSpin.

We have developed the pml2pml-translator that takes care of the automatic
closing of a subcomponent and implements the theory presented before. The
tool post-processes the output from the translation of an SDL-specification
to Promela, where the implementation covers the subset of SDL described
abstractly in Section 5.2. The translator works fully automatic and does not
require any user interaction, except that the user is required to indicate the
list of external signals. The extension is implemented in Java and requires
JDK-1.2 or later. The package can be downloaded using the following URL:
http://www.cwi.nl/~ustin/EH.html.

5.5.2 Implementation of the Program Transformation

To keep the implementation in Spin’s input-language Promela simple, the
abstraction introduced in Sec. 5.3 is realized as a straightforward source code
transformation. Instead of extending the data domains by one single additional

5.5 Implementation 131

l −→c?s(x) l̂ ∈ Edg s ∈ Sigext x ∈ Var⊥>
T-Input1

ext

l −→gtP
B set tP :=0−→(true) B bx:=false l̂ ∈ Edg i

l −→c?s(x) l̂ ∈ Edg s ∈ Sigext x 6∈ Var⊥>
T-Input2

ext

l −→gtP
B set tP :=0 l̂ ∈ Edg i

l ∈ Loci

NoInput
l −→gtP

B set tP :=1 l ∈ Edg i

l −→c?s(x) l̂ ∈ Edg s ∈ Sig int x ∈ Var⊥>
T-Input1

int
l −→c?s(x,bx) l̂ ∈ Edg i

l −→c?s(x) l̂ ∈ Edg s ∈ Sig int x 6∈ Var⊥>
T-Input2

int
l −→c?s(x,) l̂ ∈ Edg i

l −→g B c!(s,e) l̂ ∈ Edg s ∈ Sigext
T-Outputext

l −→gi B skip l̂ ∈ Edg i

l −→g B c!(s,e) l̂ ∈ Edg c 6∈ Inenv

T-Output1
int

l −→(gi
V

b(e)) B c!(s,e,true) l̂ ∈ Edg i

l −→g B c!(s,e) l̂ ∈ Edg c 6∈ Inenv

T-Output2
int

l −→(gi
V

¬b(e)) B c!(s, ,false) l̂ ∈ Edg i

l −→g B x:=e l̂ ∈ Edg x ∈ Var⊥>
T-Assign11

l −→(gi
V

b(e)) B x:=e−→(true) B bx:=true l̂ ∈ Edg i

l −→g B x:=e l̂ ∈ Edg x ∈ Var⊥>
T-Assign12

l −→(gi
V

¬b(e)) B bx:=false l̂ ∈ Edg i

l −→g B x:=e l̂ ∈ Edg x 6∈ Var⊥>
T-Assign21

l −→(gi
V

b(e)) B x:=e l̂ ∈ Edg i

l −→g B x:=e l̂ ∈ Edg x 6∈ Var⊥>
T-Assign22

l −→(gi
V

¬b(e)) B skip l̂ ∈ Edg i

Table 13. Implementation of the transformation for untimed edges

132 Closing and Flow Analysis for Model Checking Reactive Systems

abstract value for external data, each variable x has associated to it a boolean
flag bx to remember whether its current value is from the outside or not: The
flag’s value is false when x contains data from outside, and true otherwise. For
model checking, memory and time consumption are crucial. The introduction
of a boolean flag for each variable is not optimal in that regard. For instance,
a system can contain variables never influenced by the environment, hence we
need no boolean flags for these variables.

Clearly, the flags are needed only for variables and timers that carry the
value ⊥> (or on(⊥>) for timers) in at least one location; for other variables the
values found with the static analysis can be used. So let Var⊥> be the set of
variables and timers that carry the value ⊥>, respectively on(⊥>), at least once.

The rules of Table 13 define the transformation of untimed edges with re-
spect to the results of the combined may/must analysis. Boolean flags are intro-
duced only for variables that are in Var⊥>. Expressions are interpreted strictly
with respect to chaotic data and we write b(e), where b(e) is true iff all of
the variables from Var⊥> occurring in e have their flags set to true and all
of the variables not belonging to Var⊥> are valuated to ⊥ wrt. the analysis,
i.e. b(e) = (∧n

i=1bxi
)
∧

(∧m
j=1(η

α
l (yj) = ⊥)) where ∀ i = 1..n : xi ∈ Var⊥> and

∀ j = 1..m : yj 6∈ Var⊥>. The transformation of the guards is optimized so that
guards which contain at least one variable marked > are transformed to true.
If all the variables of a guard are marked as ⊥, the guard is left unchanged.

As the abstract system must show at least all behavior of the original system,
actions with guards whose result depends on values coming from outside, i.e.
guards g with b(g) = false, must be enabled. Therefore we replace each untimed
guard by a transformed guard gi given by the disjunction ¬b(g)∨ (g∧ b(g)). To
propagate the information through the system, the parameter lists of signals
exchanged within the system, i.e., signals from Sig int , are extended with the
lists of corresponding flags.

Inputs from the chaotic environment are always enabled. We must make
sure, however, that inputs from the environment do not prevent time progress.
Therefore, as in Sec. 5.4, we add a new timer variable tP for each process,
used to guard inputs from outside and assure time progress (cf. T-Input1

ext ,
T-Input2

ext). This timer is set to 0 until a T-NoInput step is taken non-
deterministically, which sets the timer to 1, thereby postponing the possibility
of taking the next input from the environment until time progresses. Flags
of variables which received their values from environment signals are set to
false to indicate that from this point on the value is not reliable any more
(cf. T-Input1

ext). For internal signals, we differentiate two cases: (i) a variable
changed by the input has a flag; (ii) the variable has no flag. In the first case,
input is extended by the flag of the variable that shows whether a chaotic
or non-chaotic value is transferred (rule T-Input1

int). In the second case, this
value does not matter (rule T-Input2

int).

Outputs to the environment are just removed (cf. rule T-Outputext). In-
ternal outputs are extended as follows: In case the expression e carries a non-
chaotic value, this value is transferred together with the flag true showing that

5.5 Implementation 133

l −→g B set t:=e l̂ ∈ Edg t ∈ Var⊥>
T-Set11

l −→(gi
V

b(e)) B set t:=e−→(true) B bt:=true l̂ ∈ Edg i

l −→g B set t:=e l̂ ∈ Edg t ∈ Var⊥>

T-Set12

l −→(gi
V

¬b(e)) B set t:=0−→(true) B bt:=false l̂ ∈ Edg i

l −→g B set t:=e l̂ ∈ Edg t 6∈ Var⊥>
T-Set21

l −→(gi
V

b(e)) B set t:=e l̂ ∈ Edg i

l −→g B set t:=e l̂ ∈ Edg t 6∈ Var⊥>
T-Set22

l −→(gi
V

¬b(e)) B set t:=0 l̂ ∈ Edg i

T-NoTimeout
l −→(gt

V

¬b(t)) B reset t l ∈ Edg i

l −→gt B reset t l̂ ∈ Edg t ∈ Var i

T-Timeout1

l −→gt B reset t−→(true) B bt:=true l̂ ∈ Edg i

l −→gt B reset t l̂ ∈ Edg t 6∈ Var i

T-Timeout2

l −→gt B reset t l̂ ∈ Edg i

l −→g B reset t l̂ ∈ Edg t ∈ Var⊥>

T-Reset1

l −→gi B reset t−→bt:=true l̂ ∈ Edg i

l −→g B reset t l̂ ∈ Edg t 6∈ Var⊥>
T-Reset2

l −→gi B reset t l̂ ∈ Edg i

Table 14. Implementation of the transformation for timed edges

134 Closing and Flow Analysis for Model Checking Reactive Systems

it is a reliable value (rule T-Output1
int). Otherwise, the same signal is sent

parameterized with a default value and the flag false demonstrating that a
chaotic value is transferred (rule T-Output2

int).
Assignments are treated similarly to outputs. Assignments of chaotic values

are skipped (rules T-Assign12, T-Assign22). The flag of the left side variable
is set to false in case the variable belongs to Var⊥> (rule T-Assign12). As-
signments of non-chaotic values are left unmodified (rule T-Assign11 and rule
T-Assign21). In case the left side variable has a flag, the flag is set to true
(rule T-Assign11).

The transformation rules for timed edges are given in Table 14. Concerning
timers, the set operation and its transformation are similar to an assignment
(rules T-Set11, T-Set12, T-Set21, T-Set22). If the expression e in set t := e
is non-chaotic, the setting is kept unmodified (rules T-Set11, T-Set21). If the
timer has a flag, t’s flag bt gets the value true (see rule T-Set11). Otherwise,
if the expression is chaotic (cf. rules T-Set12, T-Set22), we set the timer to 0
since in the abstraction, a chaotic timer must be able to expire immediately;
the flag of the timer is set to false (rule T-Set12).

By resetting a timer, the timer variable gets the concrete value off , inde-
pendent of its previous value. So the action stays unchanged while the flag of
the timer gets the true value if the timer belongs to Var⊥> (cf. rules T-Reset1,
T-Reset2). The same happens with a timeout of the non-chaotic timer (cf.
rules T-Timeout1, T-Timeout2). According to this rule the same actions
can be taken for the chaotic timer as well, i.e., it can expire immediately. The
expiration of the chaotic timer can, however, be postponed according to rule
T-NoTimeout by non-deterministically setting the timer to 1 at an arbitrary
moment in time.

5.5.3 Experiments

Before we present the results on a larger example — the control-part of a
medium-access protocol — we show the effect of the transformation on the state
space using a few artificial, small examples and we also give small examples
demonstrating the need for both may and must analyses.

Closing with Chaos

In this subsection we take some simple open systems modelled in DTPromela,
close them with chaos as a separate process, and illustrate how the state space
grows with the buffer length and with the number of signals involved into the
communication with the environment.

First, we construct a DTPromela model of a process (see Fig. 22) that
receives signals a, b, or c from the outside, and reacts by sending back d, e, or
f , respectively.

A closing environment will send the messages a, b, and c to the process,
and conversely receive d, e, and f in an arbitrary manner. As explained in Sec-

5.5 Implementation 135

proctype proc(){
start : goto q;
q: atomic{ if

:: envch?a −> proch!d; goto q;
:: envch?b −> proch!e; goto q;
:: envch?c −> proch!f ; goto q; fi ;
}

}

Fig. 22. Process

s : atomic{ if
:: expire(t) −> set(t , 1); goto s ; /∗ stop sending

signals until the next time slice ∗/
:: expire(t) −> envch!a; set(t , 0); goto s ;

...........
:: proch?f −> goto s;
fi }

Fig. 23. Environment

tion 5.4, the environment must behave chaotically also wrt. timing behaviour.
Therefore, in order to avoid zero-time cycles, the sending actions are guarded
by a timeout and an extra clause is added when no more signals are to be
sent in the current time slice. A specification of such an environment process
is given in Fig. 23.

The queues in the verification model, however, have to be bounded. There
are two options in Spin for handling queues. The first one is to block (option
“block” in Spin) a process attempting to send a message to a full queue until
there is a free cell in the queue. With this option, our “naive” closing leads
to a deadlock caused by an attempt of a process to send a message to the full
queue of the environment while the environment is trying to send a message
to the full process queue. Another option is to lose new messages in case the
queue is full (option “lose” in Spin). In this case a large number of messages
gets lost. Many properties cannot be verified using this option. Moreover, there
is a large class of systems where messages should not get lost, for this would
lead to non-realistic behaviour of the system. Still, even when this option is
applicable, time and memory consumption grow tremendously fast with the
buffer size, as shown in Table 15. We can avoid the deadlock in the system
that appears by using option “block” if we limit the number of messages sent
by the environment per time slice. For this purpose, we introduce an integer

136 Closing and Flow Analysis for Model Checking Reactive Systems

opt. buffer states trans. lost messages memo.(MB) time (s)

loose 3 3783 13201 5086 2.644 00.24

loose 4 37956 128079 47173 3.976 01.97

loose 5 357015 1.18841e+06 428165 18.936 20.49

loose 6 3.27769e+06 1.08437e+07 3.86926e+06 170.487 4 min 04.74

Table 15. Different buffer sizes, unlimited number of signals per time slice

variable n set to the queue size and modify the options of the if statement in
such a way that sendings are enabled only if n is positive; n is counted down
with every message sent and n is revived every time before a new time slice
starts (cf. Fig. 24).

:: (n>0 && expire(t)) −> envch!a; n = n−1; set(t, 0); goto ea;
........................

:: expire(t) −> set(t , 1); n= BUFFSIZE; goto ea;

Fig. 24. Environment with a limited number of messages per time slice

opt. buffer states trans. mem.(MB) time (s)

block 3 328 770 2.542 00.06

block 4 1280 3243 2.542 00.10

block 5 4743 12601 2.747 00.24

block 6 16954 46502 3.259 00.78

Table 16. Different buffer sizes (4 signals per time slice)

The verification results for the system closed in such a way are shown in
Table 16. Again, though more slowly than in the previous example, the number
of states, transitions, memory usage, and time required for the verification grow
very fast with the queue length.

5.5 Implementation 137

Next we fix the length of the queue at 4 and vary the number of different
messages sent from the process to the environment and from the environment
to the process. Table 17 shows the experimental results. Note that the growth
of the state space of the system is now caused by the combinatorial explosion
in the queues. (The maximal number of messages that can be sent per time
slice is still equal to the length of the queue.)

n-messages states trans. mem.(MB) time (s)

4 3568 9041 2.644 00.22

5 8108 20519 2.849 00.42

6 16052 40569 3.156 00.75

7 28792 72683 3.771 01.36

8 47960 120953 4.590 02.45

9 75428 190071 5.819 03.86

Table 17. Different numbers of message types

In the experiments for the same process with the embedded environment,
the number of states is constant for all the cases considered and equal to 4. As
one might have expected, closing a system by a separate environment process
behaving chaotically, leads to a state space explosion even for very simple small
systems. Tailoring the environment process such that only ”relevant” messages
can be sent makes the environment process large and complicated, which can
also cause the growth of the state space or lead to errors caused by mistakes
in the environment design.

Usage of may and must Analysis

Further we present a couple of illustrative examples showing the difference be-
tween the approach of [151, 103] and the one presented in this Chapter. The
examples are given in DTPromela. The may approach pessimistically removes
all data potentially influenced by data from outside and the transformation is
based on a static may analysis. The approach based on the combined may/must
analysis treats data from outside dynamically, thus achieving a greater preci-
sion, but removes parts afterwards which are guaranteed to be chaotic as given
by the combined analysis of Section 5.3.

The difference is visible at the locations, where the abstract valuation of
some variable can get both > and ⊥ depending on the system run. In the may
approach, the variable instance at this location is handled as chaotic indepen-
dently of the run; now the value of the variable is treated dynamically. The

138 Closing and Flow Analysis for Model Checking Reactive Systems

simplest situation of this sort is when the variable gets its value from a signal
that can be received both from the environment, and from another process of
the system with a reliable value.

As illustration, we take two processes communicating with each other and
with the environment. Fig. 25 shows part of the DTPromela code of the
system specification. Process A can receive signal a(x) both from process B

and from the environment. Moreover, B always sends this signal with a concrete
value.

The DTPromela code of the chaotic environment given as external process
is shown in Fig. 26. The queues in DTSpin are bounded, so we use variable n to
limit the number of messages that process B and the environment can send to A

during one time slice. Otherwise, the system would deadlock in the attempt of
A to send a message to the full queue of the environment while the environment
is trying to send a message to the full queue of the process.

Furthermore, the environment must behave chaotically also wrt. timing be-
haviour. Therefore, send actions of the environment are guarded by a timeout,
which allows to postpone sendings until the next time slice.

proctype A{
...
pa: atomic{

if :: chA?a,x −> goto decision; fi ;
};
decision : atomic{

if
:: (x==0) −> chB!c; goto pa;
:: (x==1) −> chEnv!c; goto pa;
fi }

...
}

proctype B{
...
start : atomic{

set(tB , 5); goto wait tB;}
wait tB:atomic{

if
:: (n>0 && expire(tB)) −> chA!a(0);

n = n−1; set(tB,5); goto wait tB;
:: chB?c −> set(tB, 1); goto wait tB;
fi }

}

Fig. 25. Open System

5.5 Implementation 139

proctype Env{
...
pe: atomic{

if
:: expire(t) −> set(t , 1);

n=BUFFSIZE; goto pe;
:: (n>0 && expire(t)) −>; chA!a, 1;

n = n−1; set(t , 0); goto pe;
:: (n>0 && expire(t)) −> chA!a, 0;

n = n−1; set(t , 0); goto pe;
:: proch?c −> goto pe;
fi ;

}
}

Fig. 26. Environment

Fig. 27 shows the result of the may approach and Fig. 28 shows the result
obtained with the may+must approach. The may-analysis marks variable x in
process A as >; therefore, the guards x==1 and x==0 are transformed to true. As
a consequence, the property of the original system, that for every request a(0,
true) sent by process B to process A, process B eventually gets an answer c from
A, does not hold anymore. A can send the answer to the environment instead.
According to the approach of this chapter, we do not take the pessimistic view
but follow the information about the reliability of the value of x dynamically
during the system run. Therefore, B always gets an answer from A for every
request. Thus the false negative that is obtained during model checking in the
first case does not appear when we model check the closed system in the second
case. That justifies the need for the combination of may and must analysis.

5.5.4 Case Study: a Wireless ATM Medium-access Pro-

tocol

To validate the may approach, we applied the pml2pml-translator in a series
of experiments to the industrial protocol Mascara [169].

Located between the ATM-layer and the physical medium, Mascara is a
medium-access layer or, in the context of the ISDN reference model, a trans-
mission convergence sub-layer for wireless ATM communication [9, 105] in local
area networks. It has been developed within the WAND1 project [169], a joint
European initiative by various telecommunication companies to specify and
implement a wireless access system for ATM-LANs.

1 Wireless ATM Network Demonstrator.

140 Closing and Flow Analysis for Model Checking Reactive Systems

proctype A{
...
pa: atomic{

if
:: expire(tC) −> set(tC, 0);

goto decision ;
:: chA?a,x −> goto decision;
:: expire(tC) −> set(tC, 1); goto pa;
fi ; };

decision : atomic{
if
:: chB!c; goto pa;
:: goto pa;
fi ; }

}

proctype B{
...
:: expire(tB) −> pAch!a(0);

set(tB ,5); goto wait tB;
...
}

Fig. 27. System transformed using only may-analysis

5.5 Implementation 141

proctype A{
...
pa: atomic{

if
:: chA?a,x, bx −> goto decision;
:: expire(tC) −> set(tC, 1); goto pa;
:: expire(tC) −>

set(tC , 0); bx=false; goto decision ;
fi ; };

decision : atomic{
if
:: ((x==0&bx) || (!bx)) −> pBch!c;

goto pa;
:: ((x==1&bx) || (!bx)) −> goto pa;
fi }

}

proctype B{
...
:: expire(tB) −> chA!a(0, true);

set(tB ,5); goto wait tB;
...

}

Fig. 28. System transformed using the combination of may- and must-analysis

142 Closing and Flow Analysis for Model Checking Reactive Systems

Besides the standard transmission convergence sub-layer tasks such as cell
delineation, transmission frame adaptation, header error control, cell-rate de-
coupling, etc., operating over radio-links, i.e., over a necessarily shared phys-
ical medium, adds to the complexity of the protocol. Mascara has to arbi-
trate medium access to the radio environment of a variable number of mobile
ATM-stations,2 provide enhanced error detection and correction mechanisms
at various levels to counter the comparatively high bit-error rate of air-borne
data-transmission. Last but not least, it has to cater for mobility features, al-
lowing a mobile terminal to switch its association with an access point in a
handover.

From the perspective of verification, Mascara is a large protocol. Mascara’s
specification contains over 300 pages of (graphical) SDL. It is itself composed
of various protocol layers and sub-entities (cf. Fig. 29).

Layer Control
Protocol

Message
Encapsulation Unit

MASCARA
Control

Control Segmentation &
Reassembly

Wireless Data Link Control

MAC Data Pump

ATM Layer

Physical Medium Dependent Layer

MASCARA Layer

ICC

Fig. 29. Top-level functional entities

The layer control protocol together with the message encapsulation unit as-
sists in various ways the information exchange between the Mascara layer and
entities located within the upper layers. The segmentation and reassembly unit
does exactly what its name implies: cutting peer-to-peer control messages (also
called MPDUs) into ATM-cell size and putting them together upon reception.
All three mentioned top-level entities are comparatively unsophisticated and
straightforward, as they mainly perform data transformations. The WDLC -
layer, operating already on cell-level, is reminiscent of conventional (non-ATM)

2 Hence the acronym “M obile Access Scheme based on Contention and Reservation
for ATM”.

5.5 Implementation 143

data-link protocols and responsible, per virtual channel, for error- and flow-
controlled cell-transmission. The lowest level of Mascara is the data-pump in-
cluding a real-time scheduler, which forms a large portion of the protocol’s
code-size. Despite its raw size, the functionality offered to the Mascara-layers
above is rather simple: the data-pumps of two communicating stations act as
duplex, lossy fifo-buffers. The other large part of Mascara, making up almost
half of the SDL-code, is its control entity, on which we concentrate here. For
a more thorough coverage of Mascara’s structure and internals, consult the
specification material provided by the Wand consortium [169] and [152].

As the name suggests, the Mascara control entity (MCL) is responsible for
the protocol’s control and signalling tasks. It offers its services to the ATM-layer
above while using the services of the underlying segmentation and reassembly
entity, the sliding-window entities (WLDC’s), and in general the low-layer data-
pump.

Being responsible for signalling, MCL maintains and manages associations
linking access points with mobile terminals, and connections, i.e., the basic data
and signalling transfer channels, corresponding to ATM virtual channels. Mas-
cara control falls into four sub-entities, each divided in various sub-processes
themselves. The two important and complex ones are the dynamic control (DC)
and the steady-state control (SSC). The division of work between the dynamic
and the steady-state control is roughly as follows: SSC monitors in various
ways current associations and the quality of the radio environment in order to
ensure an optimal transmission quality, to keep informed about alternative ac-
cess points, and to initiate in time change of associations, so-called handovers.
The dynamic control’s task, on the other hand, is to set-up and tear down the
associations and connections while managing the related administrative work
like address management, resource allocation, etc. Of minor complexity are the
radio control entity (RCL, with the radio control manager RCM as its most
important process) and the generic Mascara control (GMC).

Both are managed by MCL either in response to requests from the upper
layer or by taking initiative of its own.

MCL carries out the periodical monitoring of the current radio link quality,
gathering the information about radio link qualities of its neighbouring APs to
handover to in the case of deterioration of the current association link quality,
and switching from one AP to another in the handover procedure. Its func-
tionality is implemented by a dynamic number of processes, using a variety of
data-structures, and depending on various timed conditions.

A crucial feature of Mascara is the support of mobility. An MT located
inside the area cell of an AP is capable of communicating with it. Whenever an
MT moves outside the area cell of its current AP, it has to perform a so-called
handover (HO) to an AP whose area cell MT has moved into. A handover
must be managed transparently with respect to the ATM layer, maintaining
the agreed quality of service (QoS) for the current connections. So the protocol
has to detect the need for a handover, select a candidate AP to switch to and
redirect the traffic with minimal interruption.

144 Closing and Flow Analysis for Model Checking Reactive Systems

It is the Mascara control entity that is responsible for the handling of mo-
bility issues. That is why our verification efforts were focused on the Mascara
control, particularly on the parts of MT Control managing the handover pro-
cedure that was specified within the Vires project [167].

One distinguishes two types of handovers in Mascara: backward handover
and forward handover. The forward handover procedure starts when the con-
nection to the current AP is lost and MT urgently needs to find another AP.
Backward handover takes place when MCL notices deterioration of the qual-
ity of the current association. Then it looks for the ’best’ alternative AP to
switch to. After the alternative AP has been found, MT tunes to its old AP.
It keeps the association to the old AP until it gets the association to the new
one. So MT is able to perform its normal activity in the period the upper layer
accomplishes its part of the procedure of associating to the new AP.

In [152], MCL was closed by embedding the chaotic environment manually.
Not surprisingly, verifying properties of MCL closed with chaos yielded false
negatives at first in many cases — the completely chaotic environment was too
abstract. Therefore, the traces leading to these false negatives were analyzed,
which resulted in a refined environment. The refinement was done by identifying
signals that could not be exchanged chaotically lest the verification property
was violated, then constructing a specific environment process handling only
these signals, and finally closing the obtained still open system by embedding
the residual chaos. The conditions imposed on sending the detached signals are
in fact the conditions imposed on the behaviour of the rest of the protocol,
which later formed the correctness properties for the other protocol entities.
Thus, by constructing the environment process we only produce an abstraction
of the real environment, keeping it as abstract as possible and leaving the
whole model still open, which means that the environment prescribes the order
of sendings and receivings for a part of the signals, only. In this way, we can
still benefit from embedding chaos into the process.

Of course, closing the system manually is time-consuming and error-prone.
With the implemented translator, it became possible to reproduce the same se-
ries of experiments quickly, without looking for typos and omissions introduced
during the manual closing. Moreover, we performed the same experiments for
MCL closed with the chaotic environment modelled as a process. In our exper-
iments we used DTSpin, an extension of Spin 3.3.10, using the partial-order
reduction and compression options. All the experiments were run on a Silicon
Graphics Origin 2000 server on a single R10000/250MHz CPU with 8GB of
main memory. Our aim was to compare the state space and resource consump-
tion for the two closing approaches.

Table 18 gives the results for the model checking of MCL with chaos as
external process on the left and embedded on the right. The first column gives
the buffer size for process queues. The other columns give the number of states,
transitions, memory in megabytes and time consumption, respectively. As one
can see, the state space as well as the time and the memory consumption are
significantly larger for the model with the environment as a process, and they

5.6 Conclusion 145

buf.size states trans. mem. time(s) states trans. mem. time(s)

2 9.73e+05 3.64e+06 40.842 15:57 300062 1.06e+06 9.071 1:13

3 5.24e+06 2.02e+07 398.933 22:28 396333 1.85e+06 11.939 1:37

4 2.69e+07 1.05e+08 944.440 1:59:40 467555 2.30e+06 14.499 2:13

Table 18. Model checking MCL with chaos as a process and embedded chaos

grow much faster with the buffer size than for the model with embedded chaos.
The model with the embedded environment has a relatively stable state-space
size and other verification characteristics.

All variants of closing sketched here were model-checked with DTSpin. The
results of the experiments confirm that closing the system based on the may
analysis allows to reduce time and memory consumption compared with the
system closed by adding the environment as a process.

5.6 Conclusion

Model checking has gained popularity in industry and is becoming a constituent
part of software engineering practice since it is, in principle, a push-button
verification technology. The further dissemination of model checking, however,
depends on whether it is possible to reduce the significant human involvement in
applying techniques like abstraction; automation of these techniques is therefore
crucial.

Here, we apply data-flow analysis to transform an open system into a closed,
safe abstraction, well-suited for model checking. The approach for automatic
closing of open systems, based on data and control abstraction of the environ-
ment, is taking the most general environment, i.e., the chaotic one. To avoid the
detrimental effect of external queues on the state space, the closing environment
is embedded into the system. The approach presented here goes beyond [151]
in yielding a more refined abstraction. The price for the refinement is a possible
(but not necessary) increase of the state space, though the state space of the
model is still significantly smaller than the state space of the model closed with
the environment built as an outside chaotic process. We partially remove the
additional state space without losing precision by an a-priori static analysis,
determining variable occurrences that are guaranteed not to be influenced from
outside and those which are guaranteed to be chaotic.

Our approach is implemented as a tool that automatically closes DT-
Promela translations of SDL-specifications by embedding the timed chaotic
environment into the system. The prototype implements the transformation
based on may analysis only. For future work, we will extend our tool for clos-
ing open components with the combined analysis. We also plan to extend the

146 Closing and Flow Analysis for Model Checking Reactive Systems

method to account for more complex data types, process creation and more pre-
cise transformation for guards and expressions influenced by the environment.
Based on the results from [153], another direction for future work is to extend
the pml2pml implementation to handle environments more refined than just
chaos.

6

Timed Verification with µCRL

µCRL is a process algebraic language for specification and verifi-
cation of distributed systems. µCRL allows to describe data and
behaviour aspects but it has no explicit reference to time. In this
work, we propose an approach that allows us to reuse the untimed
language and the related toolset for timed verification without
extending the language and the toolset. We show some experi-
mental verification results obtained on two timed communication
protocols.

The chapter is based on [20].

148 Timed Verification with µCRL

6.1 Introduction

The specification language µCRL [78] (micro Common Representation Lan-
guage) is a process algebraic language that was especially developed to take
account of data in the study of communicating processes. The µCRL toolset [19]
together with the Cadp toolset [65] provides support for enumerative model
checking. One of the most important application areas for µCRL is the specifi-
cation and verification of communication protocols. Communication protocols
are mostly timed systems. A common way to use time is the timeout. In some
cases it is possible to abstract from duration and simulate timeouts with a
non-deterministic choice. However, in other cases the lengths of the timeouts
are essential to the correctness of the protocol. To deal with these cases one
needs an explicit notion of time.

In [76], a timed version of the µCRL language is proposed where time is in-
corporated in µCRL as an abstract data type satisfying a few conditions plus a
construct to make an action happen at a specific time. The timed version of the
language turned out to be useful as a formalism for the specification and analy-
sis of hybrid systems [82]. However, it is not clear yet whether timed µCRL can
be used to analyse systems larger than the examples considered in that paper.
Moreover, most of the existing tools cannot be used for timed µCRL without
modification. Most importantly, linearisation (translating a specification into
the intermediate format) for timed µCRL is not implemented.

The goal of the work we present in this chapter is to establish a framework in
which timed verification may proceed using the existing untimed tools. µCRL
is powerful framework for data and behaviour aspects of reactive systems that
could be reused for timed verification. To achieve the goal of timed verification
with untimed tools, we must restrict ourselves to discrete relative time: the
state spaces of systems with dense or absolute time are almost always infinite.
Techniques, such as regions and zones, which allow finite representations of such
infinite state spaces, are not implemented in the untimed tools. Timestamping
actions with “absolute” time, as it is done in timed µCRL, leads to infinite
state spaces in case of unbounded delays. Consider for example the process
X=sum(t:Time, a@t) which uses time tags (the @ symbol must be read as “at
time”) and thus can do action a at any time. The LTS of X consists of two states
and infinitely many transitions. For this reason, we have chosen a “relative”
time solution. Namely, we introduce time through an action tick, which by
convention expresses one unit of time elapsing. In this case we can specify the
process that can do a at any time as Y=tick.Y+a. The LTS of process Y has
two states and two transitions. The advantage of representing time progression
as an action is that we stay within the syntax of µCRL. Moreover, the special
use of tick is compatible with the semantics of µCRL, and hence the existing
toolset can be used for analysis and verification.

The proposed discrete time semantics is suitable to express time aspects
and analyse time properties of a large class of systems. We argue the usefulness
of our approach with verification experiments on µCRL specifications of the

6.2 µCRL: Basic Notions 149

positive acknowledgment retransmission protocol (PAR) [155] and the bounded
retransmission protocol (BRP) [100], whose behaviour depends on the timers’
settings.

To express timed properties of systems, we introduce an LTL-like timed
temporal logic on actions and show how to encode its time constraints with the
use of tick, which results in untimed temporal formulas. These formulas can
then be translated to the µ-calculus and checked with the Cadp toolset.

The rest of the chapter is organized as follows. In Section 6.2, we sketch
the syntax and semantics of µCRL. In Section 6.3 we present the discrete time
semantics that we work with, and afterwards in Section 6.4 we explain how
timed specifications can be developed within the untimed framework, following
the proposed approach. In Section 6.5 we discuss some experimental results. In
Section 6.6 we introduce a timed temporal logic. We conclude in Section 6.7
with discussing the related works and directions for future work.

6.2 µCRL: Basic Notions

The specification language µCRL (micro Common Representation Language)
is essentially an extension of the process algebra ACP [12] with abstract data
types and recursive definitions. The µCRL toolset provides tool support for a
subset of the µCRL language. In the remainder of this section, we will give an
overview of both the language and its tool support. Details about the language
can be found in [78]. Details about the tool support can be found in [19].

Data in µCRL is specified using equational abstract data types. Each data
type is declared using a keyword sort. Each declared sort represents a non-
empty set of data elements. Elements of a data type are declared using keywords
func and map. The keyword func is used to declare constructors that define
the structure of the data type. The keyword map is used to declare function
symbols that are not constructors. The keyword rew is used to define a set
of equations that represent the properties of the data type. The equations
following the keyword rew are oriented from left to right and used as rewrite
rules by the tools, but may be used in both directions for reasoning.

Every µCRL specification must include a specification of the sort Bool,
which represents the booleans. An example is given in Fig. 30. The sort Bool

declares two constructors: true and false. It also declares two functions:
eq : Bool#Bool-> Bool and and : Bool#Bool-> Bool.

The usual way of modelling a system in µCRL is to decompose the sys-
tem into components and then specify the components and their interactions
separately. Components are usually recursively defined using atomic actions,
sequential and alternative composition and conditionals.

Actions are abstract representations of events in the real world. They are
declared using keyword act and are considered to be atomic. A special constant
δ is used to represent deadlocks, which do not display any behaviour. Sequential

150 Timed Verification with µCRL

sort Bool

func true,false: ->Bool

map eq,and:Bool#Bool->Bool

var b:Bool

rew eq(b,b)=true

eq(true,false)=false

eq(false,true)=false

and(true,b)=b

and(false,b)=false

Fig. 30. A µCRL specification of the sort Bool.

act a

b,c:Bool

proc X=a.X

proc Y=sum(b’:Bool,b(b’).c(b’).Y)

proc Y’(b1:Bool,state:Bool)=

sum(b’:Bool,b(b’).Y’(b’,false)<|eq(state,true)|>delta)+

c(b1).Y’(b1,true)<|eq(state,false)|>delta

init Y’(true, true)

Fig. 31. Components in µCRL

composition X.Y and alternative composition X+Y are two elementary operators
that are used to construct processes. There are no priority operators in µCRL.
The process X.Y first executes X; when X terminates, it continues with executing
Y. The process X+Y behaves either as X or as Y.

The parallel operator can be used to put processes in parallel. The behaviour
of X || Y is an arbitrary interleaving of actions of processes X and Y, assuming
that there is no communication between X and Y.

It is also possible that X and Y communicate in X || Y. This can be described
by declaring on which action names the processes may synchronize. This is
done in a communication section, which is a section starting with the keyword
comm. For example, the interaction between actions a, b and c, resulting in
action d can be expressed as

comm a|b=ab b|c=bc a|c=ac a|bc=d b|ac=d c|ab=d

The comm section says which actions may synchronize, but it does not say
that they have to synchronize. To enforce communication, the unary encapsu-
lation operator encapH(X) is introduced. A process encapH(X) can execute
all actions of X which are not in H. The encapsulation operator can be used to
guarantee that certain actions can occur only in communication.

Sometimes it is convenient to reuse a given specification with different action
names. A renaming operator rename mapping action names to action names

6.2 µCRL: Basic Notions 151

is used for this purpose. The process rename({a → b}, X) behaves as X with
action a renamed to b. To make actions invisible, a hiding operator hideI(X)

is used. This operator renames action names to τ .
µCRL combines abstract data types with process algebra by allowing atomic

actions parameterized by data terms. For example, send(frame(x,y)) stands
for the action send parameterized by a data frame with two data parameters x
and y. Data can influence the behaviour of a process via a conditional operator.
For example, a process X<|B|>Y, where X and Y are processes, behaves as X if
the boolean condition B is true and as Y otherwise. The summation operator
sum(d:D, X(d)), defined for some process X(d) and data type D, behaves as
X(t1)+X(t2)+. . ., i.e. as possible choice between X(d) for any data term ti

taken from D.
The heart of a µCRL specification is the proc section, where the behaviour

of the system is declared. This section consists of equations of the form: X(x1 :
S1, . . . , xn : Sn)=t. Here X is the process name, xi are variables, expressing data
parameters of type Si. Term t is a process expression built from actions and
expressions of the form Y(d1, . . . , dn) (where Y is a process name and di are data
terms or variables) using the above mentioned operators. A process declaration
can thus be recursive. The initial state of the specification is declared in a
separate initial declaration section init. See below for an explanation for Y’.

For example, in Fig. 31 we have specified processes X and Y. Process X sim-
ply repeats action a infinitely often. Process Y infinitely often chooses between
T and F nondeterministically and performs b and c with the same choice as
argument.

Besides the parallel composition operator provided by µCRL, other types of
parallel composition operators can be defined in terms of the basic operators.
For example, the operator X|{tick}|Y lets the processes X and Y run inter-
leaved except for the action tick, which must be performed synchronously by
both X and Y. It can be encoded as follows:

act tick tick’

comm tick|tick=tick’

X |{tick}| Y = rename({tick’->tick},encap({tick},X||Y))

In the process X||Y, tick actions from X and Y may be performed inter-
leaved or at the same time, resulting in a tick’. In the process encap({tick},
X||Y), the interleaved execution is disallowed by means of encapsulation. Fi-
nally, the tick’ is renamed to tick to get the desired result. Note that the
interaction is not limited to two parties. The result of the interaction may itself
interact.

µCRL was successfully applied in the analysis of a wide range of protocols
and distributed systems. Recently it was used to support the optimized redesign
of the Transactions Capabilities Procedures in the SS No. 7 protocol stack for
telephone exchanges [8], to detect a number of mistakes in an industrial pro-
tocol over the CAN bus for lifting trucks [77], and to analyse the coordination
languages SPLICE [54, 97] and JavaSpaces [164], and to arrive at a formally

152 Timed Verification with µCRL

verified prototype implementation of a multi-channel on-board data acquisition
system for Lynx helicopters [67].

Tool support for µCRL is centered around the linear process format [18].
A linear specification consists of a single recursive process, which can choose
between possibilities of the form “action followed by a recursive call”, provided
guard holds:

proc X(d1 : D1 · · · , dn : Dn) =
∑

e11:D11
· · ·

∑
e1n1

:D1n1
a1(s1).X(t1) / c1 . δ+

...
∑

ek1:Dk1
· · ·

∑
eknk

:Dknk
ak(sk).X(tk) / ck . δ+

init X(t0)

The toolset allows the transformation of µCRL specifications into a linear
form [162] (in Fig. 31, process Y’ is a linear equivalent of process Y), the
optimization of a specification in linear form, the simulation of a linear speci-
fication, and the generation of an LTS from a linear specification. The toolset
allows the user to apply a reduction method [81, 21] based on τ -confluence [79].
The reduction method guarantees that the reduced LTS is branching bisimilar
to the original one.

LTSs generated by µCRL toolset are used as input for the Cadp toolset [65].
This provides support for enumerative model checking. Properties to be verified
are usually expressed by formulas of regular alternation-free µ-calculus. In the
regular alternation-free µ-calculus [126], one is allowed to use expressions 〈r〉φ
and [r]φ where r is a so-called regular expression built from action formulas.

Let T = (S,Lab,→, s0) be an LTS (cf. Def. 2.6). An action formula α is
defined as follows:

α ::= action | any | α1 ∨ α2 | ¬α

where action ∈ Lab is an action formula satisfied by the corresponding label
only. Any label from Lab satisfies any. A label satisfies ¬α iff it does not satisfy
α, and a label satisfies α1 ∨ α2 iff it satisfies α1 or α2. A regular expression r
is defined as follows:

r ::= α | r1.r2 | r1 + r2 | r∗

Here α is an action formula, r1.r2 is concatenation, r1+r2 is the choice operator,
and r∗ is the transitive-reflexive closure. For each regular expression r, we refer
to the language it represents as L(r). Intuitively, 〈r〉φ means that φ holds after
some trace from L(r), and [r]φ means that φ holds after all traces from L(r).

6.3 Semantics of Time

In this section we discuss which time semantics is appropriate for our purpose.

6.3 Semantics of Time 153

The first choice to be made is between dense and discrete time. It is normally
assumed that real-time systems operate in “real”, continuous time (though
some physicists contest against the statement that the changes of a system
state may occur at any real-numbered time point). Due to the development of
regions and zones techniques [2], the verification of real-time systems became
possible. However, a less expensive, discrete time solution is for many systems
as good as dense time in the modelling sense, and better than the dense one
when verification is concerned; [88] showed that discrete time suffices for a large
and important class of systems and properties, including all systems that can
be modelled as timed LTSs and such properties as time-bounded invariance
and time-bounded response. Another work that compares the use of dense and
discrete time is [29]; the authors state that discrete time automata can be
analyzed using any representation scheme used for dense time, and in addition
can benefit from enumerative and symbolic techniques (such as BDDs) which
are not naturally applicable to the dense time systems. Having in mind that we
prefer not to step out of the current non-timed framework of µCRL, the choice
for discrete time is obvious.

Timers are usually used to express time constraints imposed on a reactive
system. An expiration of a timer is a natural way to model an interrupt from
hardware or a trigger for a software event. Both interrupt and software event
must be handled, and they must be handled exactly once, i.e. when taking an
event guarded by a timer condition, we assume that the timer which triggered
this event became deactivated (otherwise, the system could handle one event
several times). Time progresses by decreasing the values of all active timers by
one time unit. We will refer to the time progress action as tick and to the
period of time between two tick’s as a time slice.

We consider a class of systems where delays are significantly larger than
the duration of normal events within the system. Therefore, we assume system
transitions to be instantaneous. It has been argued in some works that models
where any action takes some non-zero time allow more faithful descriptions.
However, we believe that such an assumption destroys abstractness of time, as
specifications depend on specific implementation choices. In [130], it was shown
that the zero duration assumption for atomic actions is more general and leads
to much simpler theories. Moreover, this assumption does not prevent from
modelling actions that take some time. Whenever it is necessary, we can put
an explicit time delay before an atomic action or split it into start- and finish-
events.

The assumption about instantaneity of actions leads us to the conclusion
that time progress can never take place if there is still an untimed action
enabled, or in other words, the time-progress transition has the least priority
in the system and may take place only when the system is blocked : there is
no transition enabled except for time progress and communication with the
environment. It means that some actions are urgent, as a process may block
the progress of time and enforce the execution of actions before some delay.

154 Timed Verification with µCRL

sort Timer

func off:-> Timer

on:Nat->Timer

map pred:Timer->Timer

expired:Timer->Bool

set: Timer # Nat -> Timer

reset: Timer -> Timer

var t:Timer

n:Nat

rew expired(off)=F

expired(on(n))=eq(0,n)

pred(on(n))=on(pred(n))

pred(off)=off

set(t, n)=on(n)

reset(t)=off

Fig. 32. A µCRL specification of the sort Timer.

This property is usually called minimal delay, maximal progress or τ -urgency
[130]. In CCS-based process algebras it is strongly related to the communica-
tion mechanism. Indeed, a communication in CCS yields a τ -action; thus, this
property allows to ensure that two processes communicate as soon as they
are ready to do so. In the timed process algebras TPL [86], TCSP [150] and
TiCCS [170], action urgency is enforced for τ -actions only.

6.4 Specifying Timed Systems in µCRL

In the µCRL framework, we can implement timers as data parameters for
processes. Fig. 32 shows the specification of the sort Timer. Terms on(n) stand
for active timers (n is of sort Nat of natural numbers), while deactivated timers
are represented by off terms. (Note that µCRL specifications containing the
sort Timer should also include the sort Nat providing an operation pred that
decreases a non-zero natural number by one and an operation eq for checking
the equality of two numbers.) The operations we allow on timers are (1) setting
a timer to a value given by a natural number that shows the time delay left
until the timer expiration; (2) resetting a timer (setting it to off). The timer
expiration condition given by the predicate expired is the check whether the
delay until the timer expires is zero. Normally, the action guarded by a timer
expiration resets the timer or sets it to a positive value.

Following the time semantics described in Sec. 6.3, we want to model time
progression by the tick action, which is a global action decreasing all active
timers of the system by one and enabled only when the system is blocked. To
achieve this, we enable the tick action in a component if that component is
blocked and if every timer in that component is off or non-zero. By combining
components with the |{tick}| operator as defined in Sec. 6.2, we get precisely
the desired behaviour.

A system is considered blocked if there are no urgent actions possible. As
µCRL has no priority mechanism, we capture urgency by following a specifica-
tion discipline.

First, we classify a number of actions as urgent. Actions that a component
can perform independently of the other components are internal. Enabled in-

6.4 Specifying Timed Systems in µCRL 155

ternal actions are urgent — they take zero time and, hence, they may not be
postponed until later, and tick may not be proposed as an alternative to an
internal action.

The situation with communication is more complicated: When the two com-
municating parties are both ready to communicate, communication should take
place in the current time slice. Thus, no tick action can be given as an alter-
native to a communication action. However, when only one of the parties is
willing to communicate, time progress should not be disabled, meaning that
the process willing to communicate but not having this chance yet, should be
able to take the tick action.

We resolve the problem by introducing asymmetry into communication.
Though µCRL has no notions of “sender” and “receiver”, it is rather usual for
a large class of systems to distinguish between the sending and the receiving
party in a communication action. Moreover, it is logical to expect for a correct
specification that send events take place in the same time slice in which they
become enabled; otherwise communication cannot be seen as synchronous and
a message exchanged between the sender and the receiver should be stored
in a buffer. Reception, however, can be postponed until the next time slice.
Consequently, we allow tick as an alternative to a receive action and not to a
send action.

The classification of actions results in the classification of component states:
We require every state to be either a receive state, i.e. a state where only
“receive” actions are enabled, or a non-receive state, i.e. a state where only
“send” and internal actions can be taken. The check that a µCRL specification
meets this requirement can be easily automated by introducing conventional
names for input and output actions. To simplify matters further, we have used
patterns for specifying states of components as µCRL processes.

proc A(t1 : Timer · · · , tm : Timer, d1 : D1 · · · , dn : Dn) =

a1.X1(t1, y1) / expired(t1) . δ+
...

am.Xm(tm, ym) / expired(tm) . δ+

tick.A(pred(t), d) / not(
Wm

j=1 expired(tj)) . δ+

P

e11:D11
· · ·

P

e1n1
:D1n1

in1(s1).Y1(t1, x1) / c1 . δ+

...

P

ek1:Dk1
· · ·

P

eknk
:Dknk

ink(sk).Yk(tk, xk) / ck . δ

Fig. 33. Pattern of a receive state.

156 Timed Verification with µCRL

proc B(t1 : Timer · · · , tm : Timer, d1 : D1 · · · , dn : Dn) =

P

e11:D11
· · ·

P

e1n1
:D1n1

b1(s1).Z1(t
′
1, x1) / c1 . δ+

...

P

el1:Dl1
· · ·

P

elnl
:Dlnl

bl(sl).Zl(t
′
l, xl) / cl . δ

Fig. 34. Pattern of a non-receive state.

In µCRL, we use process declarations to specify states of a component. All
µCRL processes which correspond to states in one component have the same
list of parameters. For a component with m timers and n other variables, the
first m parameters are timers and the next n are the other variables. The pat-
terns of receive and non-receive states are given in Fig. 33 and 34, respectively.
We use t to denote a vector of timer terms (data terms of the type Timer)
and x, y to denote vectors of untimed data terms. After a receive, internal
or send action, timers of the component can be set or reset, data parameters
can be modified and the state of the component may change. After a tick ac-
tion, all active timers of the component are decreased by operation pred(t) and
everything else remains unchanged. Receive and non-receive states of the com-
ponent have different transitions: In a receive state, we have timer expiration
events a1, . . . , am for expired timers, tick if no timer is expired, and receive ac-
tions in1, . . . , ink. In non-receive states, we only have send and internal actions
b1, . . . , bl.

When we build a system from components, we must not only make sure that
time progression is handled correctly, but also that all enabled communications
within the system are enforced. The first requirement means using |{tick}|,
the latter means encapsulation of send and receive actions. If we specify a
closed system that does not communicate with the outside world, all send and
receive actions should be encapsulated. If a system is open, i.e. it sends and
receives messages from the outside world, then only the sends and the receives
within the system should be encapsulated. Let H be the set of send and receive
actions that take place within the system. Then a system with N components
is described by the following µCRL init statement:

init encap({H}, C1 | {tick} | C2 · · · | {tick} | CN)

Fig. 35 contains the µCRL code of a simple watchdog. The watchdog’s task
is to watch a component working properly. The component is supposed to send
a signal ok every m time units to inform the watchdog that it is functioning
normally. The watchdog is ready to accept signals from the component at any
time. In case it does not receive the signal ok within m time units, it will send
out a warning signal alarm immediately.

The watchdog is specified by two µCRL process declarations. Process A

waits either for a signal ok or for an expiration of timer t. If ok comes, the

6.4 Specifying Timed Systems in µCRL 157

proc A(t:Timer,m:Nat)=

expire.B(reset(t),m)<|expired(t)|>delta+

tick.A(pred(t),m)<|not(expired(t))|>delta+

recv(ok).A(set(t,m),m)<|true|>delta

proc B(t:Timer,m:Nat)=

send(alarm).A(set(t,m),m)<|true|>delta

init A(on(5),5)

Fig. 35. A µCRL watchdog

timer is set to m again. Otherwise, an alarm signal is issued by process B and
the timer is set to m. The watchdog is an open system, i.e. it communicates
with outside by receiving ok and sending alarm, so none of the send and receive
actions is encapsulated.

SET T:=5

SET T:=5

OK

wait

T=on(0)

ALARM

TIMER

process WatchDog

T

A

B

Fig. 36. An SDL watchdog

The discrete time semantics that we have chosen is similar to SDL time
semantics (cf. Sec. 3.2). An analogous watchdog can also be specified in SDL.
In Fig. 36, an SDL specification of a watchdog process is given. It waits either
for a signal OK or for a timeout of timer T. If the signal comes in time, the

158 Timed Verification with µCRL

timer is set to 5 again. Otherwise, the signal ALARM is sent upon expiration of
the timer, the timer is set to 5, and the process comes back to the state wait.
Intuitively, a set of µCRL process declarations that represent one component
corresponds to an SDL process specification. Receive and send actions in a
µCRL specification correspond to input and output actions of SDL processes,
respectively.

6.5 Experiments

We have tested our approach on two protocols: the positive acknowledgment
retransmission protocol (PAR) [155] and the bounded retransmission protocol
(BRP) [100, 49]. These are two classical examples of communication protocols
where time issues are essential for the correct functionality of the protocol.
The goal of the experiments was to show how our approach can be applied
to the specification of time aspects of the protocols and to the verification of
properties that depend on time issues.

BRP

BRP is a variation of the Alternating Bit Protocol [155] where only a bounded
number of retransmission of packets is allowed and timeouts are used to detect
a packet loss or an abortion of transmission. BRP behaves like a buffer, i.e. it
reads data from one sender client and then delivers it at a receiver client.

The usual scenario includes a sender, a receiver, a message channel and
an acknowledgment channel. The two channels are assumed to either lose a
message or deliver it correctly. They also delay messages for time TD. Here we
consider BRP together with its environment consisting of a sender client and
a receiver client (see Fig. 37). The description of BRP and BRP’s environment
is adopted from [52].

The sender client gives a list (d1, . . . , dn) to the sender. Ideally, each element
di should be delivered to the receiver client. When delivered, the element di of
the list is accompanied by an indication: I FST, I INC, I OK, I NOK. Indication
I FST is used if di is the first element of the list and more elements will follow.
All intermediate elements of the list are accompanied by indication I INC.
The last element of the list is delivered together with the I OK indication. If
something goes wrong, I NOK, “not OK” indication is delivered without data.

The sender client is informed after the transmission of the whole list, or
when the transmission is aborted. The indication for the sender client is one of
the following values: I OK, I NOK, I DK. After an I OK or an I NOK indication
the sender client can be sure that the receiver has got the same indication. An
I DK indication may occur after the delivery of the last element. The informa-
tion about a successful delivery of the last element is transported over a lossy
channel. If the acknowledgment for the last element fails, there is no way to
know that the last element has been delivered correctly. After I OK and I DK,
the sender client is ready to transmit the next package.

6.5 Experiments 159

R_CLIENT

FR_CH
TD

ACK_CH
TD

SENDER
T1 SYNC

RECEIVER
TR

S_CLIENT

S_out

<d1, ..., dn>
R_out

Fig. 37. BRP

From the sender client, the sender receives a package (d1, . . . , dn) to transmit
([80]). It sends the elements of the list one by one over the message channel. For
each element of the list, the sender forms a frame consisting of two indication
elements, a bit and the list element. The first indication shows whether the
element is the first element of the list. The second one indicates whether the
element is the last element of the list. The bit is an alternating bit that is used
to guarantee that data do not get duplicated. The sender sends the frame via
the message channel. To detect the loss of frames and/or acknowledgments, the
sender sets timer T1 and waits for the acknowledgment from the receiver.

In the waiting state, the sender considers several possibilities. If the sender
receives an acknowledgment, the sender negates its alternating bit and proceeds
with sending the next frame. If the sender receives an acknowledgment for the
last element of the list, it sends I OK to the sender client and is ready to start
with another list.

If the sender does not get the acknowledgment in time, it wakes up when
timer T1 expires. The number of retransmissions for each element of the list
is limited by MAX. If the number of retransmissions attempted has not reached
MAX, the sender resends the same frame. Otherwise, the sender sends an I DK

or an I NOK indication to the sender client, depending on whether the current
list element is the last element of the list or not and waits until timer SYNC

expires. This timer ensures that the sender does not start the transmission of
another list before the receiver has properly reacted to the failure. Upon the
expiration of timer SYNC, the rest of the list is skipped and the sender becomes
ready to start with a new list.

The receiver receives frames from the message channel. Upon the recep-
tion of a frame, the receiver checks whether the frame came with the correct
alternating bit. If the alternating bit coincides with the one expected by the
receiver, it delivers the data element together with the proper indication to the
receiver client and sends an acknowledgment over the acknowledgment channel.

160 Timed Verification with µCRL

If the frame comes with a wrong alternating bit, the receiver discards the frame
and sends the acknowledgment. The receiver is able to detect situations when
the sender has given up, namely, the receiver sets timer TR after receiving a
frame and waits for the next frame. If the timer expires, the receiver delivers
indication I NOK to the receiver client and becomes ready to receive a next list.

To ensure that no premature timeout is possible for the sender, the sender
sets timer T1 to a value longer than twice delay on the channels (T1 > 2·TD) and
waits for the acknowledgment. It is enough for the message channel to deliver a
frame and for the acknowledgment channel to deliver an acknowledgment [52].

A premature timeout at the receiver would abort the connection when there
is still a possibility for some frame to arrive. To ensure that no premature
timeout is possible for the receiver, the receiver’s timer TR should be set to a
value that satisfies the following condition [52]: TR≥ 2·MAX·T1+3·TD.

In the case of a failure, the sender should not start transmitting a new list
until the receiver has reacted properly to the failure. Timer SYNC, which is used
for synchronisation in case of a failure, should be set to a value that satisfies
the following condition [52]: SYNC≥TR.

We assume that the packets transmitted by BRP are lists of non-repeating
natural numbers. It means that the system is infinite. Therefore, we apply data
abstractions in order to arrive at a finite state verification model. The protocol
should ensure that if the sender is transmitting a list l, the sequence of elements
that the receiver client gets forms a prefix of l. It can be shown that this holds
if in a list of non-repeating naturals the following properties hold ([49]):

– for any two values e1 and e2 on positions i and j respectively in the list,
with i < j, either e2 is not delivered to the receiver client, or e1 is delivered
to the receiver client before e2.

– for any two values e1 and e2, where e1 is delivered before e2 to the receiver
client, e1 and e2 occur on positions i and j resp. in the list with i < j.

This gives the following idea for a data abstraction: We distinguish two natural
numbers p1, p2, which are abstracted into e1, e2 respectively, while all the
other naturals are non-distinguishable and they are abstracted into an abstract
element nd.

An arbitrary nonempty list of non-repeating naturals is represented by an
abstract list of one of the forms: e1l, e2l, e1e2l, e2e1l, or nemp. nemp rep-
resents non-empty lists that contain neither e1 nor e2, e1l represents lists
containing only e1, e1e2l represents lists containing first e1 and then e2. An
empty list is represented by emp.

Given this data abstraction for lists, we can define an abstract operation on
abstract lists for each concrete operation on concrete lists. We are interested in
the operation that splits a list into two parts: the first element of the list and
the tail. The abstraction of the operation is illustrated by a directed graph in
Fig. 38. The nodes of the graph in Fig. 38 are labelled by abstract lists. An
arrow from node n to node n′ is labelled by the first element of the list in n.

6.5 Experiments 161

nemp

nd

emp

nd
e2 e1

e2 e1

e1e2l

nd

e1

e2l
nd

e2e1l

nd

e2

e1l
nd

Fig. 38. Abstract split operation

The destination node n′ is labelled by the tail of the list in n. This abstraction
is analogous to a well-known canonical abstraction proposed in [75].

We have specified BRP in µCRL using timers to represent delays on the
channels and timeouts at the receiver and the sender side, and list abstraction
to represent all possible lists. Since the system is open, we have closed the
system by the sender client process that provides abstract lists for the sender
and the receiver client process that receives frames and indications delivered
by the receiver.

Using the µCRL toolset we have generated the LTS for the µCRL specifica-
tion of the protocol. Then, with the CADP toolset, we have verified a number of
properties expressed by formulas of the regular alternation-free µ-calculus [126].

One of the properties is the absence of reordering in the delivery of elements.
For example, if the sender receives an abstract list e2e1l from the sender client,
it is never the case that element e1 is delivered to the receiver client before
element e2. That can be expressed by the following formula of the regular
alternation-free µ-calculus:

[T*."get_lst(e2e1l)".(not(’rdeliver(e2.*)’ or ’get_lst(.*)’))*.

’rdeliver(e1.*)’.(not(’rdeliver(e2.*)’ or ’get_lst(.*)’))*.

’rdeliver(e2.*)’]F.

Here get lst(e2e1l) means that the sender gets a list containing e2 before e1,
get lst(.*) stands for getting a new list to transmit, and rdeliver(e1.*)

stands for a pair that consists of element e1 and some indication delivered to
the receiver client.

Another property is that the sender client and the receiver client should have
corresponding indications. For example, if the receiver client gets indication
I OK, then the sender client should receive either I OK or I DK. This property

162 Timed Verification with µCRL

can be expressed as inevitable reachability (cf. [56]) of indication I OK or I DK

by the server client after indication I OK given to the receiver client:
[T*.’get_lst(.*)’.(not(’get_lst(.*)’))*.’rdeliver(.*I_OK)’]

mu X.([’get_lst(.*)’]F and <T>T and

[not(‘‘sdeliver(I_OK)’’ or ‘‘sdeliver(I_DK)’’)]X)

Here, sdeliver(I OK) stands for the delivery of the indication I OK to the
sender client. Proving property
[(not(’rdeliver(.*I_NOK)’))*.’’sdeliver(I_NOK)’’]F,
we show that indication I NOK for the sender client is always preceded (cf. [56])
by indication I NOK for the receiver client.

These properties hold for the system with correct timeouts and do not hold
for the system with premature timeouts. The µCRL specification for BRP and
the properties are available at www.cwi.nl/~ ustin/tmcrl.html.

PAR

The usual scenario for PAR includes a sender, a receiver, a message channel
and an acknowledgment channel. The channels delay the delivery of messages.
Moreover, they can lose or corrupt messages. The sender receives a frame from
the upper layer, sends it to the receiver via the message channel, and waits for
a positive acknowledgment from the receiver via the acknowledgment channel.
When the receiver has delivered the message to the upper layer it sends an
acknowledgment to the sender. After the positive acknowledgment is received,
the sender becomes ready to send a next message. The receiver needs some
time to deliver the received frame to an upper layer. The sender handles lost
frames by timing out. If the sender times out, it re-sends the message.

The following is a an example of an erroneous scenario. The sender times
out while the acknowledgment is still on the way. The sender sends a duplicate,
then receives the acknowledgment and believes that this is the acknowledgment
for the duplicate. The sender sends the next frame, which gets lost. However,
the sender receives the acknowledgment for the duplicate, which it believes to
be the acknowledgment for the last frame. Thus the sender does not retransmit
the lost message and the protocol fails. To avoid this erroneous behaviour, the
timeout interval must be long enough to prevent a premature timeout, which
means that the timeout interval should be larger than the sum of delays on the
message channel, the acknowledgment channel and the receiver [155].

We have specified PAR in µCRL using timers to represent delays on the
channels and the receiver and the timeout for the sender. Since the system is
open, i.e. both the sender and the receiver communicate with upper layers, we
have closed the system by the environment process that provides frames for the
sender and receives frames delivered by the receiver. If the sender is ready to
send the next frame before the environment gets the previous frame delivered
by the receiver, the environment process issues an error action err. The err

action also occurs if the environment gets a wrong (not sent to the sender)
frame from the receiver.

6.6 Timed Verification 163

Using the µCRL toolset we have generated the LTS for the µCRL specifica-
tion of the protocol. Then, with the CADP toolset, we have verified a number
of properties expressed by formulas of the regular alternation-free µ-calculus.
One of the properties is the absence of traces containing the error action err:
[T*."err"]F,
which holds when the sender’s timeout is large enough to avoid premature
timeouts.

Another property we have checked was inevitable reachability of an __out

action after an __in action, meaning that the frame sent by the sender to
receiver will always be delivered by the receiver to the environment:
[T*."__in"] "mu" X.(<T>T and [not("__out")]X).
This property holds neither for the system with correct timeout intervals nor
for the system with premature timeouts. This can be explained by the fact that
the message channel may continuously lose or corrupt a frame, so the frame
will never be delivered to the environment. Using a pattern for fair reachability
given in [126], we have specified the property stating fair reachability of an
__out action after an __in action:
[T*."__in".(not("__out"))*]<(not("__out"))*."__out">T.
This property holds for the system with correct timeout intervals and not for the
system with wrong ones. The µCRL specification for PAR and the properties
are available at www.cwi.nl/~ ustin/tmcrl.html.

6.6 Timed Verification

In the previous sections we showed how to specify a timed system in µCRL and
how to verify properties dependent on the settings of timers. The considered
properties are “qualitative”, i.e. they concern only the order of events. In this
section, we discuss how to verify “quantitative” timed properties, like “event
a happens within 3 time units after event b”. For this purpose, we introduce
an LTL-like language that allows the direct use of timed constraints, and then
show how to encode these timed constraints with the use of tick.

6.6.1 Regular LTL

First, we will give an untimed version of the action-based linear temporal logic.
It is a variation of tLTL of Kaivola [106] extended with regular expressions [126].
As interpretation model, we consider finite LTSs. Let T = (S,Lab,→, s0) be
an LTS (cf. Def. 2.6). Action formulas and regular expressions are defined as
in Sec. 6.2.

The logic we consider here is action-based, so we are interested in paths of
the form α1α2 . . . ∈ Labω, but not in paths of the form π = s0s1 . . . ∈ Sω (cf.
Sec. 2.3). We say that a sequence of labels w = α1α2 . . . ∈ Labω is a path of LTS
T iff there is an trace ζ of T such that ζλ(i) = αi for all i ≥ 1 and ζγ(0) = s0
(cf. Sec. 2.2).

164 Timed Verification with µCRL

Definition 6.1. [semantics of regular expression]
For a path w = α1α2 . . . ∈ Labω, we define w, i, k |=R r for a sequence
w, i, k = αi . . . αk if αi . . . αk ∈ L(r), where L(r) is the language defined by r.

Further we define regular LTL, where LTL modalities are parameterized by
regular expressions.

Definition 6.2. [syntax of regular LTL]

φ ::= > | ¬φ | φ1 ∨ φ2 | φ1 U(r)φ2

where r stands for a regular expression.
We use ⊥, ∧ and ⇒ as derived operators in the usual way, and define

〈r〉φ = >U(r)φ, [r]φ = ¬〈r〉¬φ.

First we give an intuition for the formulas of regular LTL and then we
provide a more formal semantics.

〈r〉φ holds on a path w if there exists a prefix w, 1, i of w that satisfies r
and φ holds on the suffix of w starting at α(i+1).

[r]φ holds on a path w if for w, 1, i that satisfies r, φ holds on the suffix of
w starting at α(i+1).

ψ U(r)φ holds on a path w if there exists such an i ≥ 1 on the path such
that the sequence w, 1, i satisfies r, the path starting at α(i+1) satisfies φ, and
the path starting at any action before α(i+1) satisfies ψ.

Definition 6.3. [semantics of regular LTL]
Let w, i be the suffix of w starting at α(i). Then

– w, i |= >;
– w, i |= ¬φ if w, i 6|= φ;
– w, i |= ψ ∨ φ if w, i |= ψ or w, i |= φ;
– w, i |= ψU(r)φ if there exists some k ≥ i such that

• w, i, k |=R r, and
• w, k + 1 |= φ, and
• for all j : i ≤ j ≤ k, w, j |= ψ holds.

We say that w satisfies φ, denoted as w |= φ, if w, 1 |= φ. Formula φ is
satisfied by an LTS T if all paths of T starting at the initial state satisfy the
formula.

6.6.2 Regular LTL with Time

Now we extend regular LTL with time constraints of the form: ≥ c, ≤ c, = c,
where c is a non-negative integer constant. Further, we refer to a time constraint
of this form as tc.

Definition 6.4. [semantics of time constraints]
Let d(w, i, k) denote the number of tick steps in a finite sequence w, i, k. Then:

6.6 Timed Verification 165

– w, i, k |=≤ c if d(w, i, k) ≤ c;
– w, i, k |=≥ c if d(w, i, k) ≥ c;
– w, i, k |== c if d(w, i, k) = c.

Definition 6.5. [syntax of regular LTL with time]

φ ::= > | ¬φ | φ1 ∨ φ2 | φ1U(r)tcφ2

where tc is a time constraint and r stands for a regular expression that does
not mention the action tick.

We use ⊥, ∧ and ⇒ as derived operators in the usual way, and define
〈r〉tcφ = >U(r)tc φ, [r]tcφ = ¬〈r〉tc¬φ.

The intuition about regular expressions is that they hold on traces regardless
of time progression. This means that a path with ticks satisfies a regular
expression if the path with the tick steps projected out satisfies the path
formula. We refer to a path w with all tick steps projected out as π(w)tick.

Definition 6.6. [tick-semantics of regular expressions]
We define

w, i, k |=tick
R r iff π(w)tick |=R r

The intuitive semantics of the formulas is similar to those of regular LTL.
〈r〉tcφ holds on a path w if there exists a prefix w, 1, i of w that satisfies r and
the time constraint tc, and φ holds on the suffix of w starting at α(i+1).

[r]tcφ holds on a path w if for w, 1, i that satisfies r and time constraint tc,
φ holds on the suffix of w starting at α(i+1).

ψ U(r)tc φ holds on a path if there exists an action on the path such that
the path up to that action matches both r and tc, the suffix of the path starting
after this action satisfies φ and the path starting at any action before satisfies
ψ.

Definition 6.7. [semantics of regular LTL with time]
Let w, i be the suffix of w starting at α(i). Then

– w, i |=tick >;
– w, i |=tick ¬φ if w, i 6|=tick φ;
– w, i |=tick ψ ∨ φ if w, i |= ψ or w, i |= φ;
– w, i |=tick ψ U(r)tc φ if there exists some k ≥ i such that

• w, i, k |=tick
R r, and

• w, i, k |= tc, and
• w, k + 1 |=tick φ, and
• for all j : i ≤ j ≤ k w, j |=tick ψ holds.

We say that w satisfies φ, denoted w |=tick φ, if w, 1 |=tick φ. Formula φ is
satisfied by an LTS T if all paths of T starting from the initial state satisfy the
formula.

166 Timed Verification with µCRL

Example 1: Each request is followed by an answer in at most 5 time units:

[any∗.request]〈any∗.answer〉≤5>

Example 2: request is never followed by fail within 2 time units.

[any∗.request][any∗.fail]≤2⊥

6.6.3 tick-encoding of Regular LTL with Time

In this section we present a construction for translating a formula from regular
LTL with time into regular LTL with tick. The key to this translation is the
construction of a regular expression over an action domain with tick from a
regular expression over a domain without tick but with a time constraint. This
is done by translating both the regular expression and the time constraint into
deterministic finite automata, combining these automata into a single automa-
ton and translating this automaton back into a regular expression.

Regular expressions and deterministic finite automata have the same ex-
pressive power and can be translated into each other [98]. Let RE(A) be the
translation from a deterministic finite automaton A to an equivalent regular
expression r and let Ar be the deterministic finite automaton obtained by the
transformation of a regular expression r into a deterministic finite automaton.

Next, we will give the translation of time constraints into deterministic
finite automata. But first, we give the formal definition of deterministic finite
automata and languages recognized by finite automata.

Definition 6.8.

A deterministic finite automaton (DFA) A is a tuple (S, Σ, T, s0, F), where

– S is a set of states;

– Σ is a set of labels;

– T : S ×Σ → S is a transition function;

– s0 is an initial state;

– F ⊆ S is a set of final states.

The set of strings recognized by A is given by

L(A) = {α1 . . . αn | ∃s1, . . . sn ∈ S, sn ∈ F, ∀j = 0..n− 1 : (sj , αj+1, sj+1) ∈ T}

Lemma 6.1.

For each time constraint tc there is a deterministic finite automaton Atc rec-
ognizing it.

6.6 Timed Verification 167

Proof. The deterministic finite automata recognizing time constraints can be
built as follows:

A≤c =

({0, 1, . . . , c+ 1}, {tick}, {(c+ 1, tick, c+ 1), (i, tick, i+ 1) | i = 0 . . . c},

{0}, {0, 1, . . . , c})

A=c =

({0, 1, . . . , c+ 1}, {tick}, {(c+ 1, tick, c+ 1), (i, tick, i+ 1) | i = 0 . . . c},

{0}, {c})

A≥c =

({0, 1, . . . , c}, {tick}, {(i, tick, i+ 1), (c, tick, c) | i = 0 . . . c− 1}, {0}, {c})

2

We now have a deterministic finite automaton Ar corresponding to the
regular expression and a deterministic finite automaton Atc corresponding to
the time constraint. All we need to do is to build the product automaton, which
will recognize all interleavings of strings recognized by these two automata. The
following definition gives such a construction:

Definition 6.9.

Given two deterministic finite automata Ar ≡ (S1, Σ1, T1, I1, F1) and Atc ≡
(S2, {tick}, T2, I2, F2), we define A = Ar ×Atc as (S,Σ, T, I, F), where

– S = S1 × S2;

– Σ = Σ1

⋃
{tick};

– T : S ×Σ → S such that

• T ((s1, s2), a) = (ŝ1, s2) iff s1, ŝ1 ∈ S1, s2 ∈ S2 and T1(s1, a) = ŝ1,

• T ((s1, s2), tick) = (s1, ŝ2) iff s1 ∈ S1, s2, ŝ2 ∈ S2 and T2(s2, tick) = ŝ2;

– I = I1 × I2;

– F = F1 × F2.

Lemma 6.2.

Let Ar be a DFA obtained from a regular expression r that does not mention
tick , and Atc be the DFA obtained from a time constraint tc. Then Ar ×Atc is
a deterministic finite automaton.

Proof. The alphabet of Ar does not intersect with the one of Atc. Both Ar and
Atc are deterministic, so for each (s1, s2) in S there is at most one outgoing
arrow for each element from Σ1 and at most one outgoing arrow labelled by
tick . 2

168 Timed Verification with µCRL

Lemma 6.3.

Let w, i, k be some sequence, r be a regular expression, tc be a time con-
straint, and Atc be a DFA recognizing tc and Ar be a DFA recognizing r. Then
w, i, k |=tick

R r and w, i, k |= tc iff w, i, k |=R r′ where r′ = RE(Ar ×Atc).

Proof. Straightforward. 2

We can now define the translation of regular LTL with time to regular LTL
with tick.

Definition 6.10.

The function T translating a formula φ of regular LTL with time to a formula
of regular LTL with tick is given by:

T (>) = >

T (¬φ) = ¬T (φ)

T (ψ ∨ φ) = T (ψ) ∨ T (φ)

T (ψU(r)tc φ) = T (ψ)U(r′)T (φ)

where
r′ = RE(Ar ×Atc)

This translation preserves satisfaction:

Lemma 6.4.

For an LTS T = (S,Lab,→, s0) and a formula φ of regular LTL with time, we
have

T |=tick φ⇐⇒ T |= T (φ) .

Proof. The proof is by induction on the structure of the formula. The induction
hypothesis is given by the following:

T |=tick φ⇐⇒ T |= T (φ) (1)

(1) can be reformulated as:

w, i |=tick φ implies w, i |= T (φ) (2)

and
w, i |= T (φ) implies w, i |=tick φ (3)

for every sequence w, i.
The basis case is for φ being >. w, i |=tick > and w, i |= >, and thus

w, i |= T (>).
We proceed by considering the inductive step. Let ψ and φ be two temporal

formulas satisfying the induction hypothesis. We have to show that each of the
formulas ¬φ, ψ ∨ φ and ψ U(r)tc φ satisfies the hypothesis.

6.6 Timed Verification 169

Case: ¬φ
Assume that w, i |=tick ¬φ. By Def. 6.7, this implies w, i 6|=tick φ. By the
counter-positive of (3), we can conclude that w, i 6|= T (φ), which by Def. 6.3
leads to w, i |= ¬T (φ). By Def. 6.10, this leads to w, i |= T (¬φ)

Assume that w, i |= T (¬φ). By Def. 6.10, w, i |= ¬T (φ). By Def. 6.3, this
implies w, i 6|= T (φ). By the counter-positive of (2), we can conclude that
w, i 6|=tick φ. By Def. 6.7, this leads to w, i |=tick ¬φ.

Case: ψ ∨ φ
Assume that w, i |=tick ψ ∨ φ. By Def. 6.7, this implies w, i |=tick ψ or
w, i |=tick φ. By (2), we can conclude that w, i |= T (ψ) or w, i |= T (φ). By
Def. 6.3, it leads to w, i |= T (ψ)∨T (φ). By Def. 6.10, T (ψ∨φ) = T (ψ)∨T (φ),
so w, i |= T (ψ ∨ φ).

Assume that w, i |= T (ψ∨φ). By Def. 6.10, this implies w, i |= T (ψ)∨T (φ).
By Def. 6.3, w, i |= T (ψ) or w, i |= T (φ). By (3), we obtain w, i |=tick ψ or
w, i |=tick φ. By Def. 6.7, this leads to w, i |=tick ψ ∨ φ.

Case: ψ U(r)tc φ
Assume that w, i |=tick ψ U(r)tc φ. By Def. 6.7, this implies that there exists
some k ≥ i such that

– w, i, k |=tick
R r, and

– w, i, k |= tc, and
– w, k + 1 |=tick φ, and

– for all j : i ≤ j ≤ k w, j |=tick ψ holds.

By Lemma 6.3, w, i, k |=tick
R r and w, i, k |= tc implies w, i, k |=R r′. To-

gether with (1), w, k + 1 |=tick φ leads to w, k + 1 |= T (φ). Since w, j |=tick ψ
holds for all j : i ≤ j ≤ k, w, j |= T (ψ) holds by (2) for all j : i ≤ j ≤ k.
By Def. 6.7, we can conclude that w, i |= T (ψ)U(r′) T (φ), which leads to
w, i |= T (ψU(r)tc φ) by Def. 6.10.

Assume that w, i |= T (ψU(r)tc φ). By Def. 6.10, this implies the following:
w, i |= T (ψ)U(r′) T (φ). By Def. 6.3, this means that there exists some k ≥ i
such that

– w, i, k |=R r′, and

– w, k + 1 |= T (φ), and
– for all j : i ≤ j ≤ k w, j |= T (ψ) holds.

By Lemma 6.3, w, i, k |=R r′ implies w, i, k |=tick
R r and w, i, k |= tc. To-

gether with (3), w, k + 1 |= T (φ) leads to w, k + 1 |=tick φ. Since w, j |= T (ψ)
holds for all j : i ≤ j ≤ k, w, j |=tick ψ holds by (2) for all j : i ≤ j ≤ k. By
Def. 6.7, this leads to w, i |=tick ψ U(r)tc φ.

From the considered cases, we conclude that w, 1 |=tick φ⇐⇒ w, 1 |= T (φ)
for all paths w of T , i.e. T |=tick φ⇐⇒ T |= T (φ). 2

170 Timed Verification with µCRL

6.7 Conclusion

In this chapter we proposed an approach to specification and verification of
timed systems within the untimed µCRL framework. The experimental results
confirmed the usefulness of the approach.

Timed process algebras can be classified using three criteria. First, whether
they use dense or discrete time. Second, whether they use absolute or relative
time. Third, whether they use time progression constructs or time stamping
of actions. For example, timed µCRL [76] uses absolute time, time stamping
of actions and leaves the choice between dense and discrete time open. Sev-
eral versions of process algebra ACP with time have been studied (e.g. [11,
10]). These algebras use an operator σ to express time progression rather than
an action. For example, the process σ(P) in ACP with discrete relative time
(ACPdrt [10]) is intuitively the same as the process tick.P in µCRL with the
tick-convention. For theoretical work the σ operator is more convenient. For
tool support the tick action is easier because we do not need to implement
the operator and can stay within the µCRL framework.

The use of the tick action results in a time semantics which is similar
to the semantics used in others tools, such as DTSpin [24] and ObjectGeode
[132]. However, the input languages of those tools restrict to one particular
message passing model, and in µCRL we are free to use whatever model we
want. Moreover, Spin restricts to LTL model checking, while in Cadp which
serves as a back-end to µCRL we can use the regular alternation-free µ-calculus.

It will be interesting to find out if the framework presented in this chapter
can be extended to provide tool support for timed µCRL. Another research
topic is the development of time-specific optimization techniques, such as a
tick-confluence based partial order method.

7

Conclusion

172 Conclusion

In the introduction of this thesis, we have posed several research questions.
In this chapter, we show how we have answered these questions in this thesis.

Modelling time aspects

In Chapter 3, we considered the interpretation of time and timers supported by
the commercial SDL design-tools [166, 156] and the standard dynamic seman-
tics of SDL [146]. In this interpretation, system time and the settings of timers
are unbounded and timeouts are treated as messages, which leads to infinite
systems in the context of enumerative model-checking.

We proposed a transformation that substitutes traditional SDL timers by
timer variables. Timers are set not to values expressing a moment of time when
the timer should expire, but to values expressing delays left until the timer ex-
piration. This allows to avoid unbounded timer settings, and thus to eliminate
the time-related factor leading to infinite systems. To optimize the size of sys-
tems further, timeouts are not placed into the input queues but modelled by
timeout guards, so we have fewer possible combinations of messages in the
input queues.

We proved the path equivalence up to stuttering between the original sys-
tem and the transformed one, and thus showed that both positive and negative
verification results can be safely transferred from the transformed system to
the original one for all properties expressible by formulas of LTL−X . Each coun-
terexample found in the transformed system can also be found in the original
system, and all LTL−X formulas satisfied by the transformed system hold on
the original one as well. This proof relates the implementation-oriented inter-
pretation of time and timers in SDL to the verification-oriented interpretation
of the same concepts in DTSpin, which can be considered as an implementation
of the “timers as variables” idea, and formally argues the validity of the use of
DTSpin for the verification of SDL specifications.

Abstracting timers

The correct functionality of reactive systems often depends on time constraints
that are modelled by timers. In practice, it can be important to know whether
the system works correctly for all settings of a timer that satisfy some condition,
which is a parameterized problem. Solving this problem by model checking is in
general impossible. In a number of cases, we can apply abstractions to obtain
a finite-state model for a parameterized system.

In Chapter 4, we considered the time constraints of the form “settings of a
timer are larger than or equal to some k”. We proposed a timer abstraction that
allows to express a family of finite-state systems satisfying such a constraint
by a single finite-state system. We showed that the abstract system can safely
be used for verification purposes. Any property that can be expressed by a
formula of the universal fragment of µ-calculus satisfied on the abstract system
also holds on each system of the family.

173

The timer abstraction turned out to be useful for the verification of a wide
range of properties, in particular safety properties. However, checking some
liveness properties with the timer abstraction, we encountered false negatives:
DTSpin reported that the properties are violated and provided counterexample
traces that are not present in any of the original systems. To get rid of these
traces, we imposed a strong fairness constraint on the abstract system. How-
ever, imposing the strong fairness constraint caused a noticeable growth of the
state space. Due to the fact that the timer abstraction introduces a self-loop,
it was possible to render the strong fairness constraint to a weak fairness con-
straint. Further, we embedded the weak fairness constraint into the verification
algorithm.

The experiments that we performed on PAR and BRP showed that render-
ing to the weak fairness constraint and further embedding the weak fairness
into the verification algorithm are much more efficient in the context of enu-
merative model checking than imposing the strong fairness constraint. We plan
to extend the approach to handle not only the timer abstractions but also more
general data abstractions introducing self-loops.

Closing open systems

Model checkers usually do not work with open systems. Therefore, the step
that follows decomposing a system into components is closing the components
with some environment. Closing, when it is done manually, is slow and error-
prone. In Chapter 5, we provided an approach to the automatic closing of open
asynchronous timed systems with the most general, chaotic, environment. The
approach goes beyond [151] in providing a more refined abstraction which gives
fewer false negatives in the verification.

The approach involves static analysis, abstraction and program transforma-
tion. To close a system, we need to differentiate variable instances (variables at
locations) that are definitely influenced by the environment, variable instances
that are definitely not influenced by the environment, and variable instances
whose values depend on a system run. For this purpose, we combine may-
analysis marking variables instances potentially influenced by the environment
with must-analysis marking variable instances definitely influenced by the en-
vironment. Further, we abstract the infinity of data from the environment into
a single abstract value. For timers, we use a more complex, three-valued, ab-
straction. Abstracting data coming from environment, we eliminate one factor
causing state explosion.

Posterior to the combined analysis and abstraction, we provide a program
transformation that closes the system by embedding the behaviour of the en-
vironment into the system. The transformation is based on the results of the
combined analysis. It removes all manipulations with data that are definitely
influenced by the environment. The rest of the data is treated dynamically.
Embedding excludes asynchronous communication between the system and its
environment and thus eliminates another factor causing state explosion.

174 Conclusion

Embedding is done in such a way that the closed system shows more be-
haviour than the original one. This claim is justified by a proof showing that for
every trace of the original system there is a trace in the closed system with the
same stuttering-free projection. It gives us the preservation of the properties
expressed by formulas of LTL−X mentioning only variables not influenced by
the environment in the direction from the closed system to the original one.
Therefore, the closed system may safely be used for the verification.

We implemented the closing approach as a tool that automatically closes
DTPromela translations of SDL specifications. The prototype implementa-
tion is based on may-analysis only, which gives a less refined abstraction than
the one based on the combined analysis. In future, we plan to extend the im-
plementation by the combined analysis. The approach itself will be extended
to deal with process creation and complex data types.

Reuse of untimed verification methods for timed verification

The specification language µCRL [78] (micro Common Representation Lan-
guage) is a process algebraic language that covers both data aspects and be-
haviour aspects of reactive systems. The µCRL toolset [19] provides support
for state space generation, abstraction and optimization prior to enumerative
model checking that can be performed with the Cadp toolset [65].

In Chapter 6, we provided a framework that allows to use the existing
untimed language and the toolset for timed verification without introducing
any syntactical or semantical changes into the language and without modifying
the toolset.

We restricted ourselves to relative discrete time. Time progression is mod-
elled as a tick-action that represents elapsing one unit of time. A timed parallel
composition operator is defined in terms of basic µCRL operators. Time pro-
gression has the least priority in the system. This property, called maximal
progress, is usually expressed by introducing priority operators. We avoid the
introduction of new operators providing a special specification discipline that
allows us to stay within µCRL syntax and semantics.

The proposed discrete-time semantics is suitable to express time aspects and
to analyse time properties of a large class of reactive systems. We justified the
usefulness of our approach by the verification experiments on µCRL specifica-
tions of the positive acknowledgment retransmission protocol (PAR) [155] and
the bounded retransmission protocol (BRP) [100], whose behaviour depends
on the timers’ settings.

To express not only qualitative but also quantitative timed properties of sys-
tems, we introduced an LTL-like action-based timed temporal logic and showed
how to encode its time constraints with the use of tick, which results in un-
timed temporal formulas. These formulas can then be translated to the regular
alternation free µ-calculus and checked with the µCRL and Cadp toolsets.

The LTL-like action-based timed temporal logic together with the specifi-
cation discipline provide the framework for the timed verification with untimed

175

µCRL and Cadp toolsets. In future, we are interested in applying this frame-
work for the verification of real industrial systems. Another direction for future
work is development of time-specific optimization techniques.

176 Bibliography

References

1. R. Alur. Timed Automata. In Proc. of CAV ’99, volume 1633 of Lecture Notes
in Computer Science, pages 8–22. Springer-Verlag, 1999.

2. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

3. R. Alur and T. A. Henzinger. Logics and models of real time: A survey. In Proc.
of the Real-Time: Theory in Practice, REX Workshop, pages 74–106. Springer-
Verlag, 1992.

4. R. Alur and T. A. Henzinger. Reactive modules. In Proceedings of LICS ’96,
pages 207–218. IEEE, Computer Society Press, July 1996.

5. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
In Proceedings of the IEEE Symposium on Foundations of Computer Science,
Florida, Oct. 1997.

6. R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and
S. Tasiran. Mocha: Modularity in model checking. In A. J. Hu and M. Y. Vardi,
editors, Proc. of CAV ’98, volume 1427 of Lecture Notes in Computer Science,
pages 521–525. Springer-Verlag, 1998.

7. K. Apt and D. Kozen. Limits for automatic verification of finite-state systems.
Information Processing Letters, 15:307–309, 1986.

8. T. Arts and I. A. van Langevelde. Correct performance of transaction capa-
bilities. In Proc. of 2nd Conference on Applications of Concurrency to System
Design (ICACSD’2001), Newcastle upon Tyne, UK, pages 35–42. IEEE Com-
puter Society Press, 2001.

9. The ATM forum. http://www.atmforum.com, 2000.
10. J. C. M. Baeten and J. A. Bergstra. Discrete time process algebra. Formal

Aspects of Computing, 8(2):188–208, 1996.
11. J. C. M. Baeten and C. A. Middelburg. Process Algebra with Timing: Real

Time and Discrete Time. In Bergstra et al. [17].
12. J. C. M. Baeten and W. P. Weijland. Process algebra. Cambridge Tracts in

Theoretical Computer Science, 18, 1990.
13. T. Basten. Branching bisimilarity is an equivalence indeed! Information Pro-

cessing Letters, 58(3):141–147, 1996.
14. K. Baukus, Y. Lakhnech, and K. Stahl. Verification of parameterized protocols.

Journal of Universal Computer Science, 7(2):141–158, 2001.
15. G. Behrmann, A. David, K. G. Larsen, O. Möller, P. Pettersson, and W. Yi.

UPPAAL - present and future. In Proc. of 40th IEEE Conference on Decision
and Control. IEEE Computer Society Press, 2001.

16. J. A. Bergstra, C. A. Middelburg, and Y. S. Usenko. Discrete time process
algebra and the semantics of SDL. In J. A. Bergstra, A. Ponse, and S. A.
Smolka, editors, Handbook of process algebra, pages 1209–1268. Elsevier Science
BV, 2001.

17. J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process Algebra.
Elsevier, 2001.

18. M. Bezem and J. F. Groote. Invariants in process algebra with data. In Proc.
of the Concurrency Theory, pages 401–416. Springer-Verlag, 1994.

19. S. C. C. Blom, W. J. Fokkink, J. F. Groote, I. A. van Langevelde, B. Lisser,
and J. C. van de Pol. µCRL: a toolset for analysing algebraic specifications.
In G. Berry, H. Comon, and A. Finkel, editors, Proc. of 13th Conference on

Bibliography 177

Computer Aided Verification (CAV’01), Paris, France, volume 2102 of Lecture
Notes in Computer Science, pages 250–254. Springer-Verlag, 2001.

20. S. C. C. Blom, N. Ioustinova, and N. Sidorova. Timed verification with µCRL.
In M. Broy and A. Zamulin, editors, Proc. of the 5th Int. Conf. Perspectives of
System Informatics, volume 2890 of Lecture Notes in Computer Science, pages
178–192. Springer, 2003.

21. S. C. C. Blom and J. C. van de Pol. State space reduction by proving confluence.
In E. Brinksma and K. Larsen, editors, Computer Aided Verification: 14th Int.
Conference, CAV 2002 Copenhagen, Denmark, July 2002 Proc., volume 2404 of
Lecture Notes in Computer Science, pages 596–609. Springer Verlag, 2002.

22. D. Bošnački. Partial-order reduction in presence of rendez-vous communication
with unless constructs and weak fairness. In D. Dams, R. Gerth, S. Leue, and
M. Massink, editors, Theoretical and Practical Aspects of SPIN Model Checking,
5th and 6th Int. SPIN Workshops, volume 1680 of Lecture Notes in Computer
Science. Spriner-Verlag, 1999.

23. D. Bošnački. Enhancing State Space Reduction Techniques for Model Checking.
PhD dissertation, Eindhoven University of Thechnology, 2001.

24. D. Bošnački and D. Dams. Integrating real time into Spin: A prototype im-
plementation. In S. Budkowski, A. Cavalli, and E. Najm, editors, Proc. of For-
mal Description Techniques and Protocol Specification, Testing, and Verification
(FORTE/PSTV’98). Kluwer Academic Publishers, 1998.

25. D. Bošnački, D. Dams, L. Holenderski, and N. Sidorova. Verifying SDL in Spin.
In S. Graf and M. Schwartzbach, editors, TACAS 2000, volume 1785 of Lecture
Notes in Computer Science. Springer-Verlag, 2000.

26. D. Bošnački, N. Ioustinova, and N. Sidorova. Using fairness to make abstractions
work. In S. Graf and L. Mounier, editors, Proc. of the 11th Int. Spin Workshop on
Model Checking of Software, volume 2989 of Lecture Notes in Computer Science,
pages 198–215. Springer, 2004.

27. M. Bozga, J. C. Fernandez, and L. Ghirvu. State space reduction based on Live.
In A. Cortesi and G. Filé, editors, Proc. of SAS ’99, volume 1694 of Lecture
Notes in Computer Science. Springer-Verlag, 1999.

28. M. Bozga, J. C. Fernandez, L. Ghirvu, S. Graf, J. P. Krimm, and L. Mounier.
IF: An intermediate representation and validation environment for timed asyn-
chronous systems. In J. Wing, J. Woodcock, and J. Davies, editors, Proc. of
Symposium on Formal Methods (FM 99), volume 1708 of Lecture Notes in Com-
puter Science. Springer-Verlag, Sept. 1999.

29. M. Bozga, O. Maler, and S. Tripakis. Efficient verification of timed automata
using dense and disrete time semantics. In T. Kropf and L. Pierre, editors,
Proc.of CHARME’99, volume 1703 of Lecture Notes in Computer Science, pages
125–141. Springer, September 1999.

30. M. Broy. Towards a formal foundation of the Specification Description Language
SDL. Formal Aspects of Computing, 3:21–57, 1991.

31. M. Broy, F. Diderichs, C. Dendorfer, M. Fuchs, T. F. Gritzner, and R. Weber.
Thedesign of distributed systems - an introduction to FOCUS. Technical Report
TUM-19202-2, Institut für Informatik Technische Universität München, 1993.

32. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput., C-35(8):677–691, Aug. 1986.

33. Bs 7925-2, Software Testing. Software Component Testing. BCS SIGIST, 1998.

178 Bibliography

34. J. R. Büchi. On a decision method in restricted second order arithmetic. In
Proc. of the Int. Congress On Logic, Methodology and Philosophy of Science,
pages 1–11. Stanford University Press, 1960.

35. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
Model Checking: 1020 States and Beyond. In Proc. of the Fifth Annual IEEE
Symposium on Logic in Computer Science, pages 1–33, Washington, D.C., 1990.
IEEE Computer Society Press.

36. Y. Choueka. Theories of automata on ω-tapes: a simplified approach. Journal
of Computer and System Science, 8:117–141, 1974.

37. A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: A new
symbolic model checker. International Journal on Software Tools for Technology
Transfer, 2(4):410–425, 2000.

38. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronisation
skeletons using branching time temporal logic specifications. In D. Kozen, editor,
Proc. of the Workshop on Logic of Programs 1981, volume 131 of Lecture Notes
in Computer Science, pages 244–263. Springer-Verlag, 1982.

39. E. M. Clarke, E. A. Emerson, and A. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244–263, 1986.

40. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In Int. Conference on Computer Aided Verifi-
cation (CAV’00), volume 1855 of Lecture Notes in Computer Science. Springer,
2000.

41. E. M. Clarke, O. Grumberg, and D. Long. Model checking and abstraction.
ACM Transactions on Programming Languages and Systems, 16(5):1512–1542,
1994. A preliminary version appeared in the Proceedings of POPL 92.

42. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
43. E. M. Clarke and J. M. Wing. Formal methods: State of the art and future

directions. ACM Computing Surveys, Dec. 1996. Available also as Carnegie
Mellon University technical report CMU-CS-96-178.

44. C. Colby, P. Godefroid, and L. J. Jagadeesan. Automatically closing of open
reactive systems. In Proc. of 1998 ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM Press, 1998.

45. C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory efficient
algorithms for the verification of temporal properties. Formal Methods in System
Design, 1:275–288, 1992.

46. P. Cousot and R. Cousot. Abstract Interpretaion: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proceedings of POPL ’73. ACM, January 1973.

47. D. Dams. Abstract Interpretation and Partition Refinement for Model Checking.
PhD dissertation, Eindhoven University of Thechnology, July 1996.

48. D. Dams. Abstraction in software model checking: Principles and practice (tu-
torial overview and bibliography). In Proceedings of the 9th International SPIN
Workshop on Model Checking of Software, pages 14–21. Springer-Verlag, 2002.

49. D. Dams and R. Gerth. The bounded retransmission protocol revisited. Elec-
tronic Notes in Theoretical Computer Science, 9, 1999.

50. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive sys-
tems: Abstraction preserving ∀CTL∗,∃CTL∗, and CTL∗. In E.-R. Olderog, ed-
itor, Proc. of PROCOMET ’94. IFIP, North-Holland, June 1994.

Bibliography 179

51. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive sys-
tems. ACM Transactions on Programming Languages and Systems (TOPLAS),
19(2), 1997.

52. P. R. D’Argenio, J. P. Katoen, T. C. Ruys, and J. Tretmans. The bounded
retransmission protocol must be on time! In Proc. of the Third Int. Workshop
on Tools and Algorithms for Construction and Analysis of Systems, pages 416–
431. Springer-Verlag, 1997.

53. B. A. Davey and H. A. Pristley. Introduction to Lattices and Order. Cambridge
University Press, 1990.

54. P. F. G. Dechering and I. A. van Langevelde. The verification of coordination.
In A. Porto and G. C. Roman, editors, Proc. of 4th Conference on Coordination
Languages and Models (COORDINATION’2000), volume 1906 of Lecture Notes
in Computer Science, pages 335–340. Springer-Verlag, 2000.

55. Discrete-time Spin. http://win.tue.nl/~dragan/DTSpin.html, 2000.
56. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property spec-

ifications for finite-state verification. In Proceedings of the 21st international
conference on Software engineering, pages 411–420. IEEE Computer Society
Press, 1999.

57. M. B. Dwyer and J. Hatcliff. Slicing software for model construction. In Proc.
of the ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation (PEPM’99), Jan. 1999.

58. M. B. Dwyer and C. S. Pasareanu. Filter-based model checking of partial sys-
tems. In Proc. of the 6th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (SIGSOFT ’98), pages 189–202, 1998.

59. M. B. Dwyer and D. Schmidt. Limiting state explosion with filter-based re-
finement. In Proc. of the 1st International Workshop in Verification, Abstract
Interpretation, and Model Checking, Oct. 1997.

60. E. A. Emerson. Temporal and modal logic. In J. van. Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume B: Formal Models and Semantics,
pages 995–1072. Elsevier, 1990.

61. E. A. Emerson and E. M. Clarke. Using branching time temporal logic to
synthesize synchronisation skeletons. Science of Computer Programming, 2:241–
266, 1982.

62. E. A. Emerson and J. Y. Halpern. Sometimes and not never revisited: On
branching versus linear time. Journal of the Association on Computing Machin-
ery, 33(1):151–178, 1986.

63. E. A. Emerson and C.-L. Lei. Modalities for model checking:Branching time
strikes back. Science of Computer Programming, 8:275–306, 1987.

64. R. Eschbach, U. Glässer, R. Gotzhein, and A. Prinz. On the formal semantics
of SDL-2000: a compilation approach based on an abstract SDL machine. In
Y. Gurevich, editor, Proc. ASM 2000, volume 1912 of Lecture Notes in Computer
Science, pages 242–265, 2000.

65. J. C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and
M. Sighireanu. CADP: A protocol validation and verification toolbox. In Proc.
of the 8th Conference on Computer-Aided Verification (New Brunswick, New
Jersey, USA), pages 437–440, 1996.

66. J. Fischer and E. Dimitrov. Verification of SDL protocol specifications using
extended petri nets. In Proc. of the Workshop on Petri Netx and Protocols of
the 16th Intern. Conf. on Application and Theory of Petri Nets, pages 1–12,
1995.

180 Bibliography

67. W. J. Fokkink, N. Ioustinova, E. Kesseler, J. C. van de Pol, Y. Usenko, and Y. A.
Yushtein. Refinement and verification applied to an in-flight data acquisition
unit. In L. Brim, P. Jancar, M. Kretinsky, and A. Kucera, editors, Proc. of
13th Conference on Concurrency Theory - CONCUR’02, Brno, volume 2421 of
Lecture Notes in Computer Science, pages 1–23. Springer, 2002.

68. N. Francez. Fairness. Springer-Verlag New York, Inc., 1986.
69. M. M. Gallardo, J. Martine, P. Merino, and E. Pimentel. αSPIN: Extending

SPIN with abstraction. In Proc. of 9th Int. SPIN Workshop, Grenoble, France
2002, volume 2318 of Lecture Notes in Computer Science, pages 254–258, 2002.

70. R. J. van Gabbeek and W. P. Weijland. Branching time and abstraction in
bisimulation semantics. J. ACM, 43(3):555–600, 1996.

71. R. J. van Glabbeek. The linear time - branching time spectrum. In J. C. M.
Baeten and J. W. Klop, editors, CONCUR’90. Theories of Concurrency: Uni-
fication and Extension, volume 458 of Lecture Notes in Computer Science.
Springer-Verlag, 1990.

72. R. J. van Glabbeek. The linear time - branching time spectrum ii. In Proc. of
CONCUR 93, volume 715 of Lecture Notes in Computer Science, pages 66–81,
1993.

73. R. J. van Glabbeek. What is the branching time semantics and why to use it?
In M. Nielsen, editor, Bulletin of the EATCS 53, pages 190–198, 1994.

74. P. Godefroid. Using partial orders to improve automatic verification methods.
In E. M. Clarke and R. P. Kurshan, editors, Computer Aided Verification 1990,
volume 531 of Lecture Notes in Computer Science, pages 176–449. Springer-
Verlag, 1991.

75. S. Graf. Verification of a distributed cache memory by using abstractions. In
Workshop on Computer-Aided Verification, CAV’94, Stanford, volume 818 of
Lecture Notes in Computer Science. Springer Verlag, 1994.

76. J. F. Groote. The syntax and semantics of timed µCRL. SEN R9709, CWI,
Amsterdam, 1997.

77. J. F. Groote, J. Pang, and A. G. Wouters. A balancing act: Analyzing a dis-
tributed lift system. In S. Gnesi and U. Ultes-Nitsche, editors, Proc. of 6th
Workshop on Formal Methods for Industrial Critical Systems (FMICS’2001),
Paris, France, pages 1–12, 2001.

78. J. F. Groote and M. Reniers. Algebraic process verification. In Bergstra et al.
[17], pages 1151–1208.

79. J. F. Groote and M. P. A. Sellink. Confluence for process verification. Theoretical
Comput. Sci., 170:47–81, 1996.

80. J. F. Groote and J. C. van de Pol. A bounded retransmission protocol for large
data packets. In M. Wirsing and M. Nivat, editors, Algebraic Methodology and
Software Technology (AMAST’96), volume 1101 of Lecture Notes in Computer
Science. Springer, 1996.

81. J. F. Groote and J. C. van de Pol. State space reduction using partial τ -
confluence. In M. Nielsen and B. Rovan, editors, Proc. of MFCS 2000, volume
1893 of Lecture Notes in Computer Science, pages 383–393. Springer, 2000.

82. J. F. Groote and J. J. van Wamel. Analysis of three hybrid systems in timed
µCRL. Science of Computer Programming, 39:215–247, 2001.

83. R. Hardin, Z. HarEl, and R. P. Kurshan. COSPAN. In R. Alur and T. A.
Henzinger, editors, Proc. of the 1996 Wokshop on Computer-Aided Verification,
volume 1102 of Lecture Notes in Computer Science, pages 423–427, 1996.

Bibliography 181

84. D. Harel and M. Politi. Modeling Reactive Systems with Statecharts, The
STATEMATE Approach. McGraw-Hill, 1998.

85. M. S. Hecht. Flow Analysis of Programs. North-Holland, 1977.
86. M. Hennessy and T. Regan. A process algebra for timed systems. Information

and Computation, 117:221–239, 1995.
87. T. A. Henzinger, O. Kupferman, and R. Majumdar. On the universal and exis-

tential fragments of the mu-calculus. In Proceedings of the Ninth International
Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS), volume 2619 of Lecture Notes in Computer Science, pages 49–64,
2003.

88. T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In
W. Kuich, editor, ICALP, volume 623 of Lecture Notes in Computer Science,
pages 545–558. Springer, 1992.

89. T. A. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for
timed transition systems. Inf. Comput., 112(2):273–337, 1994.

90. U. Hinkel. Formale, semantische Fundierung und eine darauf abgestützte Veri-
fikationsmethode für SDL. PhD thesis, Tech. Univ. München, 1998.

91. U. Hinkel. Verification of SDL specifications on the basis of stream semantics. In
Y. Lahav, A. Wolisz, J. Fischer, and E. Holz, editors, Proc. of the 1st Workshop
of the SDL Forum Society on SDL and MSC (SAM’98), pages 241–250, 1998.

92. E. Holz and K. Stølen. An attempt to embed a restricted version of SDL as a
target language to FOCUS. In S. Leue and D. Hogrefe, editors, Proc. of Forte’94,
pages 324–339. Chapmann & Hall, 1994.

93. G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison Wesley, 2003.

94. G. J. Holzmann and J. Patti. Validating SDL specifications: an experiment. In
E. Brinksma, editor, International Workshop on Protocol Specification, Testing
and Verification IX (Twente, The Netherlands), pages 317–326. North-Holland,
1989. IFIP TC-6 Int. Workshop.

95. G. J. Holzmann and D. Peled. An improvement in formal verification. In
D. Hogrefe and S. Leue, editors, Formal Description Techniques VII, Proc. of
the 7th IFIP WG6.1 Int. Conference on Formal Description Techniques, Berne,
Switzerland, 1994, volume 6 of IFIP Conference Proceedings. Chapman & Hall,
1995.

96. G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth-first search. In
Second SPIN Workshop, pages 23–32. AMS, 1996.

97. J. Hooman and J. C. v. d. Pol. Formal verification of replication on a distributed
data space architecture. In Proc. of 17th Symposium on Applied Computing
(SAC’2002) -Coordination Models, Languages and Applications, pages 351–358.
ACM Press, 2002.

98. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computations. Addison-Wesley, 2001.

99. T. Huckle. Kleine BUGs, groe GAUs: Softwarefehler und ihre Folgen.
http://www5.in.tum.de/ huckle/bugs.html.

100. Infrared remote control system RC6. Philips Consumer Electronics B.V., April
1997.

101. N. Ioustinova and N. Sidorova. Transformation of SDL specifications- a step
towards the verification. In D. Bjorner, M. Broy, and A. Zamulin, editors,
Post-proceedings of Andrei Ershov Fourth International Conference Perspectives

182 Bibliography

of System Informatics (PSI 01), volume 2244 of Lecture Notes in Computer
Science, pages 64–78. Springer, 2001.

102. N. Ioustinova, N. Sidorova, and M. Steffen. Abstraction and flow analysis for
model checking open asynchronous systems. In Proc. of the 9th Asia Pacific
Software Engineering Conference (APSEC 2002), pages 227–235. IEEE Com-
puter Society, 2002.

103. N. Ioustinova, N. Sidorova, and M. Steffen. Closing open SDL-systems for model
checking with DTSpin. In L. H. Eriksson and P. A. Lindsay, editors, FME 2002:
Formal Methods - Getting IT Right, Proc. of Int. Symposium of Formal Methods
Europe, FME 2002, volume 2391 of Lecture Notes in Computer Science, pages
531–548. Springer, 2002.

104. N. Ioustinova, N. Sidorova, and M. Steffen. Synchronous closing and flow ab-
straction for model checking timed systems. In Proc. of the Second Int. Sympo-
sium on Formal Methods for Components and Objects (FMCO’03), volume (to
appear) of Lecture Notes in Computer Science. Springer, 2004.

105. Integrated services digital networks (ISDN). ITU-I, 2000.
106. R. Kaivola. Using compositional preorders in the verification of sliding window

protocol. In Proceedings of 9th International Conference on Computer Aided
Verification (CAV’99), volume 1663 of Lecture Notes in Computer Science, pages
184–195, 1999.

107. Y. Kesten and A. Pnueli. Modularization and abstraction: the keys to practical
formal verification. In L. Brim, J. Gruska, and J. Zlatuska, editors, Proc. of the
23rd Int. Symposium on Mathematical Foundations of Computer Science, pages
54–71, 1998.

108. Y. Kesten and A. Pnueli. Control and data abstraction: The cornerstones of
practical formal verification. Int. Journal on Software Tools for Technology
Transfer, 2(4):328–342, 2000.

109. Y. Kesten and A. Pnueli. Verification by augmented finitary abstraction. Infor-
mation and Computation, 163(1):203–243, 2000.

110. Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear temporal
logic specifications. In Automata, Languages and Programming, volume 1443 of
Lecture Notes in Computer Science, pages 1–16. Springer, 1998.

111. G. Kildall. A unified approach to global program optimization. In Proc. of
POPL ’73, pages 194–206. ACM, January 1973.

112. D. Kozen. Results on the propositional µ-calculus. Journal of Theoretical Com-
puter Science, 27:333–354, 1983.

113. S. Kripke. A semantical analysis of modal logic i: normal modal propositional
caculi. In Zeitschrift fuer Mathematische Logik und Grundlagen der Mathematik,
volume 9, pages 67–96, 1963.

114. R. Kuiper and W. P. de Roever. Fairness assumptions for CSP in a temporal
logic framework. In D. Bjorner, editor, Proc. of the IFIP Working Conference on
Formal Description of Programming Concepts–II, pages 159–170. North-Holland
Publishing Company, 1983.

115. O. Kupferman and M. Y. Vardi. Module checking revisited. In O. Grumberg,
editor, CAV ’97, Proc. of the 9th Int. Conference on Computer-Aided Verifica-
tion, Haifa. Israel, volume 1254 of Lecture Notes in Computer Science. Springer,
June 1997.

116. O. Kupferman, M. Y. Vardi, and P. Wolper. Module checking. In R. Alur,
editor, Proc. of CAV ’96, volume 1102 of Lecture Notes in Computer Science,
pages 75–86, 1996.

Bibliography 183

117. L. Lamport. What good is temporal logic? In R. E. A. Mason, editor, Informa-
tion Processing 83, pages 657–668. Elsevier Science Publishers B.V., 1983.

118. L. Lamport. A fast mutual exclusion algorithm. ACM Transactions in Computer
Systems, 5(1):1–11, 1987.

119. K. Larsen, P. Peterson, and W. Yi. UPPAAL in the nutshell. Software Tools
for Technology Transfer, 1(1):134–152, 1997.

120. O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs
satisfy their linear specification. In Twelfth Annual Symposium on Principles
of Programming Languages (POPL) (New Orleans, LA), pages 97–107. ACM,
1985.

121. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property pre-
serving abstractions for the verification of concurrent systems. Formal Methods
in System Design, 6(1):11–44, 1995.

122. D. Long. Model Checking, Abstraction and Compositional Verification. PhD
thesis, Carnegie Mellon University, 1993.

123. B. D. Lubachevsky. An approach to automating the verification of compact
parallel coordination programs i. Acta Inf., 21:125–169, 1984.

124. K. L. MacMillan. Symbolic model checking:an approach to the state space explo-
sion problem. PhD thesis, Carnegie Mellon University, 1992.

125. Z. Manna and A. Pnueli. Temporal verification of reactive systems: safety.
Springer-Verlag New York, Inc., 1995.

126. R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for regular
aletrnation-free mu-calculus. In Proceedings of the 5th International Workshop
on Formal Methods for Industrial Critical Systems, FMICS’2000, 2000.

127. S. Merz. Model checking: a tutorial overview. Springer-Verlag New York, Inc.,
2001.

128. L. I. Millet and T. Teitelbaum. Slicing Promela and its application to model
checking, simulation, and protocol understanding. In E. Najm, A. Serhrouchni,
and G. Holzmann, editors, Electronic Proc. of the Fourth Int. SPIN Workshop,
Paris, France, Nov. 1998.

129. R. D. Nicola and F. Vaandrager. Three logics for branching bisimulation. Journal
of the ACM(JACM), 42(2):458–487, 1996.

130. X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras.
In Proc. of the Real-Time: Theory in Practice, REX Workshop, pages 526–548.
Springer-Verlag, 1992.

131. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

132. ObjectGeode 4.0. http://www.csverilog.com/products/geode.htm, 2003.
133. A. Olsen, O. Færgemand, B. Møller-Pedersen, R. Reed, and J. R. W. Smith.

System Engineering Using SDL-92. Elsevier Science, 1997.
134. S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification system.

In D. Kapur, editor, 11th International Conference on Automated Deduction
(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752,
Saratoga, NY, jun 1992. Springer-Verlag.

135. D. Peled. Combining partial order reductions with on-the-fly model-checking. In
Proceedings of the 6th International Conference on Computer Aided Verification,
pages 377–390. Springer-Verlag, 1994.

136. W. Penczek, M. Szreter, R. Gerth, and R. Kuiper. Improving partial order
reductions for universal branching time properties. Fundamenta Informaticae,
43(1-4):245–267, 2000.

184 Bibliography

137. A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science, pages 46–57, 1977.

138. A. Pnueli, J. Xu, and L. Zuck. Liveness with (0, 1,∞)-counter abstraction. In
E. Brinksma and K. G. Larsen, editors, Computer Aided Verification : 14th Int.
Conference, CAV 2002, Copenhagen, Denmark, July 27-31, 2002. Proc., volume
2404 of Lecture Notes in Computer Science, pages 107 – 122. Springer, 2002.

139. J. P. Queille and J. Sifakis. Specification and verification of concurrent systems
in CESAR. In M. Dezani-Ciancaglini and U. Montanari, editors, Proc. of the 5th
Int. Symposium on Programming 1981, volume 137 of Lecture Notes in Computer
Science, pages 337–351. Springer-Verlag, 1982.

140. Specification and Description Language SDL. CCITT, 1993.
141. SDL combined with UML. ITU-T, 1999.
142. Specification and Description Language SDL. ITU-T, 1999.
143. SDL formal definition: Static Semantics. ITU-T, 1993.
144. SDL formal definition: Static Semantics. ITU-T, 2000.
145. SDL formal definition: Dynamic Semantics. ITU-T, 1993.
146. SDL formal definition: Dynamic Semantics. ITU-T, 2000.
147. F. Regensburger and A. Barnard. Formal verification of SDL systems at the

Siemens mobile phone department. In B. Steffen, editor, Proc. of Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’98), volume
1384 of Lecture Notes in Computer Science, pages 439–455. Springer, 1998.

148. W. P. d. Roever, H. Langmaack, and A. Pnueli, editors. Compositionality: The
Significant Difference, Proceedings of the International Symposium COMPOS
’97, Malente, Germany, September 7–12, 1997, volume 1536 of Lecture Notes in
Computer Science. Springer Verlag, 1998.

149. J. Rushby. Theorem proving for verification. In F. Cassez, C. Jard, B. Rozoy, and
M. D. Ryan, editors, Modelling and Verification of Parallel Processes: MOVEP
2000, number 2067 in Lecture Notes in Computer Science, pages 39–57, Nantes,
France, June 2000. springer Verlag.

150. S. Schneider. Concurrent and Real-Time Systems: The CSP Approach. Wiley,
2000.

151. N. Sidorova and M. Steffen. Embedding chaos. In P. Cousot, editor, Proc. of
the 8th Static Analysis Symposium (SAS’01), volume 2126 of Lecture Notes in
Computer Science, pages 319–334. Springer-Verlag, 2001.

152. N. Sidorova and M. Steffen. Verifying large SDL-specifications using model
checking. In R. Reed and J. Reed, editors, Proc. of 10th Int. SDL-Forum, Copen-
hagen, Denmark, volume 2078 of Lecture Notes in Computer Science, pages
399–416. Springer, June 2001.

153. N. Sidorova and M. Steffen. Synchronous closing of timed SDL systems for model
checking. In A. Cortesi, editor, Proc. of the Third Int. Workshop on Verification,
Model Checking, and Abstract Interpretation (VMCAI) 2002, volume 2294 of
Lecture Notes in Computer Science, pages 79–93. Springer-Verlag, 2002.

154. Spin. http://www.spinroot.com.
155. A. S. Tanenbaum. Computer Networks. Prentice Hall International, Inc., 1981.
156. Telelogic Malmö AB. SDT 3.1 User Guide, SDT 3.1 Reference Manual. Telel-

ogic, 1997.
157. Telelogic TAU SDL Suite. http://www.telelogic.com/products/sdl/, 2003.
158. W. Thomas. Automata on infinite words. In J. van Leeuwen, editor, Handbook

of Theoretical Computer Science, pages 133–191. Elsevier, 1990.

Bibliography 185

159. F. Tip. A survey of program slicing techniques. Journal of Programming Lan-
guages, 3(3):121–189, 1995.

160. H. Tuominen. Embedding a dialect of SDL in Promela. In Proc. of 6th Int.
SPIN Workshop, volume 1680 of Lecture Notes in Computer Science. Springer,
1999.

161. K. J. Turner. Using Formal Description Techniques: An Introduction to Estelle,
Lotos, and SDL. John Wiley & Sons, Inc., 1993.

162. Y. S. Usenko. Linearization in µCRL. PhD thesis, Technische Unversiteit Eind-
hoven, 2002.

163. A. Valmari. A stubborn attack on state explosion. Formal Methods in System
Design, 1992. Earlier version in the proceeding of CAV ’90 Lecture Notes in
Computer Science 531, Springer-Verlag 1991, pp. 156–165 and in Computer-
Aided Verification ’90, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science Vol. 3, AMS & ACM 1991, pp. 25–41.

164. J. C. van de Pol and M. Valero Espada. Formal specification of JavaSpaces
architecture using µCRL. In F. Arbab and C. L. Talcott, editors, Proc. of 5th
Conference on Coordination Languages and Models (COORDINATION’2002),
volume 2315 of Lecture Notes in Computer Science, pages 274–290. Springer-
Verlag, 2002.

165. M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115(1):1–37, 15 1994.

166. Verilog. ObjectGEODE SDL Simulator - Reference Manual, 1996.
167. Verifying industial reactive systems (VIRES), Esprit long-term research project

LTR-23498. http://radon.ics.ele.tue.nl/~vires/, 1998-2000.
168. W. Visser and H. Barringer. Practical CTL * model checking: Should SPIN

be extended? International Journal on Software Tools for Technology Transfer,
2(4):350–365, 2000.

169. A wireless ATM network demonstrator (WAND), ACTS project AC085.
http://www.tik.ee.ethz.ch/~wand/, 1998.

170. Y. Wang. Real-time behaviour of asynchronous agents. In J. C. M. Baeten
and J. W. Klop, editors, Theories of concurrency: unification and exten-
sion(CONCUR’90), volume 458 of Lecture Notes in Computer Science, 1990.

171. P. Wolper. Expressing interesting properties of programs in propositional tempo-
ral logic. In Proc. of 13th ACM Symp. on Principles of Programming Languages,
pages 184–192, St. Petersburgh, January 1986.

172. ITU-T Recommendation X.291-ISO/IEC 9646-2, Information Technology- Open
Systems Interconnection- Conformance Testing Methodology and Framework-
Part 2: Abstract Test Specifications.

Summary

In this thesis, we present a number of techniques facilitating the verification
of reactive systems. A well-established formal technique for the verification
of reactive systems is model checking, which is recognized both by industry
and by the academic community. As model checking is based on state space
exploration, the stumbling block limiting the applicability of model checking is
the state explosion problem. Techniques presented in this work were developed
to alleviate this problem; they combine abstraction, static analysis and program
transformation.

Often, reactive systems are timed systems, and timers are used to express
timed constraints imposed on a system. Interpretations of time and time con-
straints in specification languages used by industry are mainly implementation-
oriented and unsuitable for verification purposes. SDL is a vivid representative
of the class of implementation-oriented languages, where time is modelled by
infinitely an growing variable and timeouts are treated as messages.

We propose a transformation that substitutes traditional SDL timers by
timer variables. The transformation allows to avoid unbounded time settings
and to optimize the size of the system by modelling timeouts as timeout guards.
We justify that for verification purposes timers as variables can be used instead
of traditional timers. We prove that original and transformed systems are re-
lated by path equivalence up to stuttering, which guarantees the preservation of
both positive and negative verification results for properties that are expressible
by formulas of the temporal logic LTL−X .

The concept of timers as variables can be successfully used for timed veri-
fication using untimed verification frameworks that do not take time into ac-
count. As an example, we take the µCRL framework that provides a language
for the specification of reactive systems and a toolset for the generation and
optimisation of state spaces. This framework is especially developed to take
data into account. We propose a specification discipline that allows to use the
untimed toolset and the untimed specification language for timed verification
without introducing new constructs into the language and without modifying
the toolset. We also introduce an LTL-like action-based timed temporal logic.
The formulas of this logic can be translated into the regular alternation-free
µ-calculus and model checked with the Cadp toolset. Thus we obtain a pow-
erful framework for timed verification that covers both time and data aspects
of reactive systems.

In a number of practical examples, properties of reactive systems are ex-
pected to hold for all settings of timers satisfying a certain condition. A typical
example of such a condition is “for all settings of a timer larger than or equal to
some k”. Checking whether a property holds for all systems where settings of a
timer satisfy this condition would require an infinite number of iterations, and

188 Summary

thus solving this problem by model checking directly is impossible. We propose
a timer abstraction that allows to represent an infinite family of finite state
systems satisfying this condition by a single finite state system. We also show
that properties that can be expressed by formulas of the universal fragment of
the µ-calculus are preserved in the direction from the abstract system to the
original one. This timer abstraction appears to be useful for the verification of
a wide range of properties. However, it can give rise to false negatives when
liveness properties are verified. The problem can be resolved by imposing a
strong fairness condition on the abstract system. Imposing this strong fairness
condition leads to a substantial growth of the state space. For the timer ab-
straction, we prove that the strong fairness condition can be brought down to
a weak fairness condition. We demonstrate that the weak fairness condition
can be built into the model checking algorithm implemented in Spin. Using
the built-in weak fairness is much more efficient than using the strong fairness
condition.

Compositional verification is one of the approaches used to cope with state
explosion. A system is decomposed into components that can be checked sepa-
rately. Since model checkers usually do not work with open systems, the com-
ponents should be closed prior to model checking. Manual closing is error-prone
and time-consuming. We provide automatic closing of open systems with the
most general, chaotic, environment. Closing involves static analysis, abstraction
and program transformation. We propose a combination of may- and must-
analyses that marks variables at each location of a system specification as
definitely influenced by the environment, or as definitely not influenced by the
environment, or as “don’t know” variables whose values at a location depend
on a run. The data coming from the environment are abstracted into a single
abstract value. For timers, we use a more complex three-valued abstraction.
A program transformation, which follows the combined may/must analysis,
removes the manipulations on data that are definitely influenced by the envi-
ronment. The manipulations on data that are definitely not influenced by the
environment are left unmodified. The manipulations on “don’t know” data are
treated dynamically in the transformed system. Abstracting from data coming
from the environment eliminates one factor causing state explosion. Another
factor leading to state explosion is asynchronous communication with the en-
vironment. The transformation removes it by embedding the environment into
the system. We show that there is path inclusion up to stuttering between the
closed and the original open system. This guarantees the transfer of positive
verification results from the closed system to the original open one for all prop-
erties that can be expressed by LTL−X formulas mentioning only variables not
influenced by the environment.

All techniques presented in this thesis have been implemented. For each of
the developed approaches, we have performed a number of experiments con-
firming their usefulness.

Samenvatting

In dit proefschrift hebben wij een aantal technieken gepresenteerd die helpen
bij de verificatie van reactieve systemen. Een gerenommeerde formele tech-
niek voor het verifiëren van reactieve systemen is model checking, gebruikt
door zowel bedrijven als de academische wereld. Aangezien model checking
gebaseerd is op het onderzoeken van toestandsruimtes, is het struikelblok voor
de toepasbaarheid van model checking het probleem van explosie van toestand-
sruimtes. De technieken gepresenteerd in dit proefschrift werden ontwikkeld
om dit probleem te verlichten. Zij combineren abstractie, statische analyse en
programma-transformatie.

Vaak zijn reactieve systemen ook systemen met tijd, en worden timers ge-
bruikt om de tijdsbeperkingen uit te drukken die het systeem worden opgelegd.
Interpretaties van tijd en tijdsbeperkingen in specificatietalen gebruikt bij be-
drijven zijn voornamelijk georiënteerd op implementatie en ongeschikt voor
verificatiedoeleinden. SDL is een duidelijke vertegenwoordiger van de klasse
van implementatiegeoriënteerde talen waarin de tijd gemodelleerd wordt met
een oneindig groeiende variabele en waarin timeouts als berichten worden be-
handeld.

Wij hebben een transformatie voorgesteld die traditionele SDL-timers ver-
vangt door timervariabelen. De transformatie maakt het mogelijk om onbe-
grensde tijdswaarden te vermijden en de grootte van het systeem te optimali-
seren door timeouts als timeout condities te modelleren. Wij hebben gerecht-
vaardigd dat voor verificatiedoeleinden timers als variabelen gebruikt kunnen
worden in plaats van traditionele timers. Wij hebben bewezen dat de origi-
nele en getransformeerde systemen verbonden zijn door “path equivalence up
to stuttering”. Dit garandeert dat zowel positieve als negatieve verificatieresul-
taten behouden blijven voor eigenschappen die uitgedrukt kunnen worden door
formules in de temporele logica LTL−X .

Het concept van timers als variabelen kan met succes worden benut voor
verificatie met tijd, door gebruik te maken van raamwerk voor verificatie die
geen rekening houden met tijd. Als voorbeeld hebben we het µCRL raamw-
erk genomen, dat een taal voor de specificatie van reactieve systemen en tools
voor optimalisatie van toestandsruimtes biedt. Dit raamwerk is in het bijzonder
ontwikkeld om met data te kunnen omgaan. Wij hebben een specificatiemeth-
ode beschreven die het mogelijk maakt om de toolset zonder tijd en de spe-
cificatietaal zonder tijd te gebruiken voor verificatie met tijd, zonder nieuwe
constructies in de taal te introduceren en zonder de toolset aan te passen. Wij
hebben eveneens een LTL-achtige temporele logica gëıntroduceerd die op acties
gebaseerd is en rekening houdt met tijd. De formules van deze logica kunnen
vertaald worden in de reguliere alternatie-vrije µ-calculus en met de Cadp

190 Samenvatting

toolset worden gecontroleerd. Zo hebben wij een krachtig raamwerk verkregen
dat om kan gaan met zowel tijd als data in reactieve systemen.

In een aantal praktische voorbeelden worden de eigenschappen van reac-
tieve systemen geacht geldig te blijven voor alle instellingen van timers die
aan een bepaalde conditie voldoen. Een typisch voorbeeld van zo’n conditie is
”voor alle instellingen van een timer die groter dan of gelijk aan een bepaalde
k zijn”. Om te controleren of een eigenschap geldig blijft voor alle systemen
waar de instellingen van een timer aan deze conditie voldoen is een oneindig
aantal iteraties nodig, en dus is het onmogelijk dit probleem direct op te lossen
met model checking. Wij hebben een timerabstractie gegeven die het mogelijk
maakt een oneindige familie van finite-state systemen die aan deze conditie
voldoen te representeren met een enkel finite-state systeem. Wij hebben ook
aangetoond dat eigenschappen die uitgedrukt kunnen worden door formules uit
het universele fragment van de µ-calculus behouden worden in de richting van
het abstracte systeem naar het originele.

De timerabstractie is nuttig gebleken voor de verificatie van een groot
scala van eigenschappen. Het kan echter onterechte foutmeldingen veroorzaken
wanneer liveness-eigenschappen geverifieerd worden. Het probleem kan wor-
den opgelost door een “strong fairness” conditie aan het abstracte systeem
op te leggen. Het opleggen van deze “strong fairness” conditie leidt tot een
aanzienlijke groei van de toestandsruimte. Voor de timerabstractie hebben we
aangetoond dat de “strong fairness” conditie teruggebracht kan worden tot een
“weak fairness” conditie. Wij hebben aangetoond dat de “weak fairness” con-
ditie ingebouwd kan worden in het model checking algoritme dat verwezenlijkt
is in Spin. Het gebruiken van de ingebouwde “weak fairness” is veel efficiënter
dan het gebruiken van “strong fairness”.

Compositionele verificatie is een van de aanpakken die gebruikt worden voor
het omgaan met explosie van toestandsruimtes. Een systeem wordt ontleed
in componenten die los van elkaar gecontroleerd kunnen worden. Aangezien
model checkers gewoonlijk niet met open systemen werken, moeten de com-
ponenten afgesloten worden voorafgaand aan model checking. Handmatig af-
sluiten is ontvankelijk voor fouten en tijdverslindend. Wij hebben een au-
tomatische afsluiting gegeven van open systemen met de meest algemene, de
chaotische, omgeving. De afsluiting omvat statische analyse, abstractie en pro-
gramma transformatie. Wij hebben een combinatie voorgesteld van may- en
must-analyse die variabelen op iedere locatie van een systeemspecificatie mar-
keert als zeker bëınvloed door de omgeving, als zeker niet bëınvloed door
de omgeving of als ”weet niet”-variabelen waarvan de waarde op een locatie
afhangt van een executie. De gegevens die van de omgeving komen worden
geabstraheerd in een enkele abstracte waarde. Voor timers gebruiken we een
complexere, driewaardige abstractie.

Een programma-transformatie, die de gecombineerde may- and must-analyse
volgt, verwijdert de bewerkingen op data die zeker bëınvloed zijn door de om-
geving. De bewerkingen op data die zeker niet bëınvloed zijn door de omgeving
worden onveranderd gelaten. De bewerkingen op de ”weet niet”-data worden

Samenvatting 191

dynamisch behandeld in het getransformeerde systeem. Het abstraheren van
data uit de omgeving elimineert een factor die explosie van toestandsruimtes
veroorzaakt. Een andere factor die leidt tot explosie van toestandsruimtes is
asynchrone communicatie met de omgeving. De transformatie verwijdert dit
door de omgeving in het systeem vast te leggen. We hebben aangetoond dat
er path inclusion up to stuttering bestaat tussen afgesloten en originele open
systemen. Dit garandeert de overdracht van positieve verificatieresultaten van
afgesloten naar open systemen voor alle eigenschappen die uitgedrukt kunnen
worden in LTL−X formules met alleen variabelen die niet bëınvloed zijn door
de omgeving.

Alle technieken gepresenteerd in dit proefschrift zijn gëımplementeerd. Voor
elk van de ontwikkelde aanpakken hebben we een aantal experimenten uitge-
voerd die hun nut bevestigen.

