
Dragan Bo˘na˘ki

C e n t r u m  v o o r  W i s k u n d e  e n  I n f o r m a t i c a

 Software ENgineering

Using Fairness To Make Abstractions Work

Dragan Bosnacki, Natalia Ioustinova, Natalia Sidorova 

REPORT SEN-E0313 DECEMBER 16, 2003

SEN
Software Engineering



CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the 
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names 
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2003, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X



Using Fairness To Make Abstractions Work

ABSTRACT
Abstractions often introduce infinite traces which have no corresponding traces at the concrete
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those traces. In this paper, we consider a timer abstraction that introduces a cyclic behaviour on
abstract timers and we show how one can exclude cycles by imposing a strong fairness
constraint on the abstract model. By employing the fact that the loop on the abstract timer is a
self-loop, we render the strong fairness constraint into a weak fairness constraint and embed it
into the verification algorithm. We implemented the algorithm in the DTSpin model checker and
showed its efficiency on case studies. The same approach can be used for other data
abstractions that introduce self-loops.
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Dragan Bošnački1, Natalia Ioustinova2, and Natalia Sidorova1

1 Eindhoven University of Technology
Den Dolech 2, P.O. Box 513, 5612 MB Eindhoven, The Netherlands

d.bosnacki@tue.nl, n.sidorova@tue.nl
2 Department of Software Engineering, CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Natalia.Ioustinova@cwi.nl

Abstract. Abstractions often introduce infinite traces which have no
corresponding traces at the concrete level and can lead to the failure
of the verification. Refinement does not always help to eliminate those
traces. In this paper, we consider a timer abstraction that introduces a
cyclic behaviour on abstract timers and we show how one can exclude
cycles by imposing a strong fairness constraint on the abstract model.
By employing the fact that the loop on the abstract timer is a self-loop,
we render the strong fairness constraint into a weak fairness constraint
and embed it into the verification algorithm. We implemented the algo-
rithm in the DTSpin model checker and showed its efficiency on case
studies. The same approach can be used for other data abstractions that
introduce self-loops.

1 Introduction

Abstraction techniques are widely used to make the verification of complex/para-
meterised/infinite systems feasible. Abstraction, intuitively, means replacing one
semantical model by an abstract, in general, simpler one. The abstraction needs
to be safe, which means that every property checked to be true on the abstract
model, holds for the concrete one as well. This allows the transfer of positive
verification results from the abstract model to the concrete one.

The concept of safe abstraction is well-developed within the Abstract Inter-
pretation framework [8, 9, 12]. The relation between the concrete model and its
safe abstraction is formalized there as a requirement on the relation between the
data operations of the concrete system and their abstract counterparts. Every
value of the concrete state space is mapped by the abstraction function α into an
abstract value that “describes” the concrete value. As an example consider the
abstraction of integers into their signs in which e.g. −3 is mapped by α into neg.
For every operation (function) f on the concrete level, an abstraction fα needs
to be defined which “mimics” f . In general, the abstraction can be nondetermin-
istic. For example, addition (+) over the integers is abstracted into an operation
(+α) such that pos +α neg may yield pos or neg nondeterministically. This is
formally captured by letting fα be a function into the powerset over the domain
of abstract values.
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Fig. 1. Abstracted timer

Working within the Abstract Interpretation framework guarantees the preser-
vation (in the direction from the abstract to the concrete model) of the truth
of formulas of temporal logics without existential quantification over paths, e.g.
�L+

µ (i.e., all formulas of the µ-calculus without negation and containing only
the � operator) or next-free LTL [19, 11]. Counterexamples can be spurious. In
case a counterexample is found, the abstraction should be refined and the re-
fined model is then model-checked. Such a sequence of refinements can happen
to be infinite; in this case one needs different techniques to prove or disprove the
property.

In this paper we consider a simple abstraction for (discrete) timers similar to
the one from [10]. This abstraction is often used to prove that a property holds
for all instantiations of settings of a timer that are greater or equal to some
value k. It leaves all values below k unchanged and maps all other values to the
abstract value k+. Being a deterministic operation on the concrete model, the
time progress operation tick becomes non-deterministic on the abstract one (see
Fig. 1). That introduces infinite traces with k+ tick−→ k+ being chosen whenever
tick is enabled. As a result, the timer never expires, which, in general, does not
correspond to any trace of the concrete model. For instance, properties of the
form �(φ→ �ψ) get disproved on the abstract model whenever they depend on
the fact that the timer in question eventually expires after being set. Refining
the model by taking a greater value for k, we still keep the loop at k+

new. So,
refinement gives no solution to this problem.

The systems we consider are specified as parallel compositions of commu-
nicating processes. A process consists of a number of locations, variables and
a number of transitions connecting the locations and changing the valuations
of variables. Processes can communicate by rendezvous/buffered message pass-
ing and through shared memory. There are explicit timing constraints in the
specification imposed by timer operations.

We assume that the properties are given in the universal fragment of µ-
calculus �Lµ. The verification methodology we propose works for any formula
of the fragment without negation �L+

µ and, under certain conditions that oc-
cur relatively often in practice (for instance, if the formula does not refer to
abstracted variables (timers)), for the whole �Lµ.3

To exclude the infinite loop k+ tick−→ k+ that causes spurious counterexamples,
we impose a strong fairness condition Φα on the abstract model, which we call

3 Since for any �Lµ formula, there exists an an equivalent �L+
µ formula (see e.g. [19])

this is not a significant loss of generality.
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t-fairness : “For any trace where k+ tick−→ (k − 1) is infinitely often enabled,
k+ tick−→ (k − 1) is infinitely often taken or t is infinitely often set to a new
value”. We show that the concrete property Φ that corresponds to the t-fairness
condition Φα trivially holds on the concrete model. Therefore, in order to prove a
formula φ on the concrete system we check the validity of the formula Φα → φα

on the abstract one, where φα is the corresponding abstract version of φ. If
Φα → φα holds, we conclude that φ holds on the concrete system. It should be
emphasized though that we use fairness only to eliminate unwanted traces in the
abstract system. We do not lift fairness constraints from the concrete system to
the abstract system.

By exploiting some specifics of the class of systems we are working with, we
show that the strong fairness criterion can be reformulated into a weak fairness
one. When one deals with explicit model checking this is often a significant
advantage because algorithmically, it is easier to deal with the latter.

Moreover, when one stays in the realm of explicit-state model checking, it
is much more efficient to build the t-fairness check into the model checking
algorithm, instead of expressing it as a formula. In this case, one can check for
the validity of φ on the abstract model, assuming a built-in t-fairness check.
The t-fairness check algorithm we propose here is inspired by Choueka’s flag
algorithm [5], and it is a version of the algorithm for weak process fairness
which is implemented in the model checker Spin [15]. We implemented our
algorithm in DTSpin [3] (a discrete-time version of the Spin model checker [15])
and tested the prototype implementation on some examples from the literature
with encouraging results.

Related work. Counter abstractions similar to the timer abstraction we use
are quite standard and they can be traced to [20]. Such abstractions are often
used to abstract (discrete) timers for the verification of safety properties (see
e.g. [10]). We study here the verification of liveness properties, which gives rise
to the use of fairness requirements on the abstract model.

There are several papers that deal with the problem of eliminating spurious
execution sequences caused by abstraction. The closest to our approach is the
theory of linear abstraction from [17]. The general method of data abstraction
presented there can also suffer from the problem of spurious execution sequences.
To eliminate those, it is suggested to augment the system under consideration
by an auxiliary monitoring module (executed synchronously with the system)
and then to abstract the system obtained by such a composition. In one of the
examples, [17] features a three valued counter abstraction ({0, 1, 2+}, using our
notation). Thus, one could apply the idea of a monitoring process to eliminate
extra sequences introduced by self-loops to abstract states. However, this would
lead to a solution based on strong fairness on the transition level. The monitor
labels the “critical” transitions with −1 or +1. The (strong) fairness criterion
requires that if a −1 transition is executed infinitely often then also a +1 tran-
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sition is executed infinitely often. This ensures leaving the artificial self-loops in
the abstract state space introduced by the abstraction.

As it was already emphasized, we show that in the context of timer abstrac-
tion, such a straightforward strong fairness can be transformed into a weak one,
which is a significant advantage in the context of explicit model checking.

In [21] the authors present a three value counter abstraction in the context
of the verification of parameterized systems, i.e., networks of N identical con-
current processes, where N is an arbitrary finite number. The counters count
the number of processes at a particular control (program) location. The solution
to the problem of spurious execution sequences also in this case boils down to
strong fairness. To this end two new variables from and to are introduced. The
unwanted self-looping sequences are eliminated by the natural requirement that
for each process location l if the processes enter l infinitely many times, then
they must also leave it infinitely many times.

The problem of parameterized networks of processes is also treated in [1], with
a solution for the spurious sequences which resembles both of the above given
approaches. The role of the monitors from [17] is played by “ranking functions”,
similar to the ones used to ensure the termination of sequential programs. The
ranking functions count how many processes have executed a particular transi-
tion in the concrete system. By abstracting a ranking function value, similarly
to in [21], one obtains a separation of the “critical” transitions into “negative”
and “positive” ones. The “marking algorithm” which solves the problem of spu-
rious sequences is based on strong fairness. The efficiency remarks in favor of
our solution in the context of explicit model checking would also apply to [1]
and [21].

α-Spin [13] is an extension of Spin with abstraction. The abstraction frame-
work of α-Spin is based on the Abstract Interpretation theory and in that regard
it is similar to our approach. However, to the best of our knowledge, there is no
work that deals with spurious executions in the context of α-Spin. Another ap-
proach to use abstractions in combination with Spin can be found in [15].

The paper is organised as follows: In Section 2 we describe the timer abstrac-
tion and introduce the notion of t-fairness. In Section 3 we present the verification
algorithm. In Section 4 we describe our implementation of t-fairness in DTSpin.
In Section 5 we discuss some experimental results. Finally in Section 6 we give
some conclusions.

2 Timer Abstraction and Fairness

Currently, model checkers provide some facilities to (automatically) reduce a
state space, like partial-order reduction techniques. These techniques deal mainly
with the control flow of a model. On the contrary, data (values stored and trans-
mitted in a system), whose domain is often infinite or very large, are not handled
by them; it is a task of a user to present data in a verification model in a finite
form of reasonable size. Depending on the property to be verified, the actual
values of data may sometimes be ignored or replaced by some abstract values.
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In an abstract model, the operations on data are mimicked by new ones on the
abstract data. The main requirement for an abstraction is that the abstract sys-
tem behaviour should correctly reflect the behaviour of the original system with
respect to a verification task in the sense that (1) an abstraction should capture
all essential points in the system behaviour, i.e., be not “too abstract”, and (2)
an abstraction should be safe.

Abstract Interpretation Framework. The concept of safe abstraction is
well-developed within the Abstract Interpretation framework [8, 9, 12]. The re-
quirement that Abstract Interpretation imposes on the relation between the
concrete model and its safe abstraction can be formalized as a requirement on
the relation between the data and the operations of the concrete system and
their abstract counterparts as follows: Each value of the concrete domain Σ is
mapped by a description function ρ : Σ → αΣ into a value from the abstract
domain αΣ. The abstract value “describes” the concrete value. We assume an
ordering � on the abstract domain αΣ according to the “precision” of abstract
values: given a concrete value x and its abstract description xα = ρ(x), we will
say that any yα ∈ αΣ such that xα � yα is a less precise description of x.

For every operation (function) f on the concrete data domain, an abstract
function fα is defined, which “mimics” f . (For simplicity, we assume f to be a
unary operation.) In general, the abstraction can be nondeterministic. This is
formally captured by letting fα be a function into the powerset over the domain
of abstract values. The requirement of mimicking is then formally phrased with
the following safety statement :

∀x ∈ Σ ∃y ∈ fα(ρ(x)) : ρ(f(x)) � y.

We assume the semantics of the concrete and abstract systems to be given
with the corresponding transition systems T = (S,R) and Tα = (Sα, Rα). The
states of S, Sα are valuations of the (data and control) variables. Thus, a (con-
crete) state s can be seen as a valuation vector 〈v0, v1, . . . , vn−1〉 and an abstract
state sα as 〈vα

0 , v
α
1 , . . . , v

α
n−1〉. Let ρ0, . . . , ρn−1 be description functions for the

corresponding variables. Then the description function ρ : S → Sα for T and
Tα is defined as follows: ρ(s) = 〈ρ0(v0), . . . , ρn−1(vn−1)〉. (We assume a trivial
(identity) mapping as description function for unabstracted variables.)

The intuition that the states of Sα are “descriptions” of the states of S
is formalized by the requirement that there is a Galois connection between the
state spaces. A Galois connection from 2S to 2Sα

is a pair of monotonic functions
(α, γ), where α : 2S → 2Sα

and γ : 2Sα → 2S , such that for any Q ⊆ S,Q′ ⊆ Sα

Q ⊆ γ(α(Q)) and α(γ(Q′)) ⊆ Q′. The functions α and γ are called abstraction
and concretization function, respectively. Given a description function ρ : S →
Sα, the functions α = post(ρ) and γ = pre(ρ) form a Galois connection from
2S to 2Sα

(Proposition 6 of [19]); post and pre are the corresponding post- and
preimage relations.

The requirement of mimicking the operations is lifted to the level of transition
systems in a straightforward manner. With ρ obtained from ρi’s as described
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above, if the safety requirement on data is satisfied then the safety requirement
on transition systems is satisfied as well. The safety requirement ensures that Sα

simulates S. As a consequence, safe abstractions guarantee the preservation (in
the direction from the abstract to the concrete model) of the truth of formulas
of temporal logics without existential quantification over paths, e.g. �L+

µ (i.e.
formulas of the µ-calculus without negation and containing only the � operator)
or LTL [19, 11].

If we verify a (concrete) formula φ that contains variables to be abstracted,
the preservation results holds for its abstract version φα, which is constructed in
the following way: Let P be the set of atomic propositions of φ and I : P → 2S

be the interpretation function. (Given a state s and a proposition p we write
s |= p iff s ∈ I(p).) Let pα be the proposition that corresponds to the subset
α(I(p)) − α(I(p)) of the abstract state space Sα, obtained under some Galois
connection (α, γ). We say that pα is a contracting abstraction [17] of p under
α. We call φα is a contracting abstraction of a formula φ if φα is obtained by
replacing each atomic proposition p in φ with its contracting abstraction pα.
Abstraction function α is consistent w.r.t. property φ [19]4 iff for each p ∈ P :
α(I(p))∩α(I(p)) = ∅, i.e. the images by α of the interpretations of p and ¬p are
not contradictory. In this case, we call the contraction abstraction φα a consistent
abstraction of φ. Note that for all s ∈ S, sα ∈ Sα such that sα ∈ α({s}), s |= p
iff sα |= pα precisely when pα is consistent, and s |= p if sα |= pα when pα is
contracting.

Theorem 1. Given a transition system T = (S,R), and a �L+
µ (resp. �Lµ)

formula φ, let Tα = (Sα, Rα) be the abstraction of T under a given Galois
connection (α, γ) and let φα be a contracting (resp. consistent) abstraction of φ.
Then Tα |= φα implies T |= φ.

Proof. The theorem is a corollary of Theorem 2, item 1 B, from [19]. 
�

Timer Abstraction We employ the concept of timers to specify timing con-
ditions imposed on the system. Each timer is related to a certain process and
modelled by a timer variable. We denote the value of a timer t at a state s as [[t]]s.
A timer can be activated by setting. Timer variables are mapped to integers; −1
represents a deactivated timer and larger values stand for active timers. A setting
step set(t, e) leads to the change of the timer value to the value given by ex-
pression e. A predicate expire(t) is true iff [[t]] = 0. The transitions are assumed
to be instantaneous. Time progression is modelled as a special transition called
tick that decreases values of all active timers by 1 and leaves deactivated timers
unmodified. Further, we refer to a segment of time separated by time progress
steps as a time slice. We leave the semantics of time partially open here, since
our approach does not depend on it. (We revisit this issue in Section 3.)

To prove that some property holds for all settings of a timer that are greater
or equal to some value k, one often uses a timer abstraction similar to the one
4 The notion of consistent abstraction corresponds to the notion of precise abstraction

from [17].
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of [10]. For a timer t, the concrete domain of timer values Σ = N ∪ {−1} is
replaced with the abstract domain αΣt = {−1, 0, . . . , kt − 1, k+

t }, where the
value kt is a positive value defined by the user assuming that the verification
property still holds even if we do not distinguish between the values of the timer
greater or equal to kt. We overload the notation by using c (−1 ≤ c < kt) as
an abstract value representing the single concrete value i, while c+ describes the
set of concrete values {c, c+ 1, c+ 2, . . .}.

The description function ρt is defined as ρt(c) = c, if c < kt, and ρt(c) = k+
t ,

otherwise. Abstract operations on timers are defined in an intuitive way: setting
a timer to value x becomes setting it to value ρt(x), expireα(a) is true iff a = 0,
and tickα is a non-deterministic operation that changes the value of a timer
from a to b according to the following rules: (1) if a = −1 then b = −1, (2) if
0 ≤ a < kt then b = a− 1 (where “−” works on abstract values as on integers),
(3) if a = x+ then b ∈ {x+, x− 1}.
Lemma 2. System Mα built from system M according to the rules given above
is a safe abstraction of M .

Proof. By a simple check that there exists a Galois connection between the
corresponding transition systems (α : 2S → 2Sα

, γ : 2Sα → 2S), where S, Sα are
the corresponding state spaces, and that the safety statement is satisfied. 
�

From now on we assume that systems under consideration have no deadlocks
and infinite zero-time cycles (infinite traces with a finite number of tick ’s). The
absence of zero-time cycles can be checked on the abstract model by verifying
the property ��tickα, which is a precise abstraction of ��tick. The absence of
deadlocks follows straightforward from the fact that time can progress even when
no other action is possible in the system, and thus tick action is still possible.

Fair timer abstraction. An abstracted system contains more behavior than
the original one. Therefore, positive verification results can be transferred from
the abstract to the concrete system, while counterexamples can be spurious.
Abstraction refinement is a common technique used in case spurious counterex-
amples are found (see e.g. [6]), though just a change of the granularity level does
not always help—the sequence of refinements can turn out to be infinite.

Suppose we use the timer abstraction described above to prove that some
property holds for all timer settings greater or equal to some kt. Due to the non-
determinism introduced with the abstract version of tick , it becomes possible
that the timer once set will never expire. That means that the states that are
always reachable in the concrete system are not reached in the abstract system if
k+

t
tick−→ k+

t step is always chosen. Such a trace gives a spurious counterexample:
In the concrete system the timer expires after a finite number of time slices. The
only possible refinement is taking the same abstraction with a greater value of
k. But the same trace where the timer never expires is still possible, so a coun-
terexample would be produced again. Therefore, we need a different technique
to cope with the problem.
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Imposing a strong fairness condition that requires that for any trace where
transition k+

t
tick−→ (kt − 1) is infinitely often enabled it is infinitely often taken,

gives incorrect results: One can easily build a (concrete) model where a timer t
is infinitely often set to a new value (before it expires), so it can be seen every
time as a new variable in the one-assignment setting. This observation leads us
to the following definition of t-fairness :

Definition 3. Given an LTS T of a system with a set of abstract timers TVarα.
We say that a trace of T is t-fair iff for any t ∈ TVarα the following holds:
k+

t
tick−→ (kt−1) is infinitely often enabled implies that k+

t
tick−→ (kt−1) is infinitely

often executed or set(t, x), x ∈ αΣt, is infinitely often executed.

This definition has a strong fairness pattern. Interestingly, due to the fact
that the loop introduced on a timer with the abstraction is a self-loop, this
requirement can be reformulated as a condition with a weak fairness pattern:

Lemma 4. A trace ξ of T is t-fair iff for any t ∈ TVarα the following holds:
if there exists an infinite suffix σ of ξ such that [[t]]sj

= k+
t for every state of σ,

then set(t, k+
t ) is infinitely often executed along the trace.

Proof. Let p, q, and r denote the propositions (from Def. 3) “k+
t

tick−→ (kt − 1) is
enabled”, “k+

t
tick−→ (kt − 1) is executed”, and “set(t, x), x ∈ αΣt, is executed”,

respectively. Then the t-fairness condition from Def. 3 reads as follows:

��p→ (��q ∨ ��r). (1)

We can split the proposition r into a disjunction of two propositions r1 and r2:
“set(t, k+

t ) is executed” and “set(t, x), where x �= k+
t , is executed”, respectively.

After straightforward transformations, (1) becomes

¬(��p ∧ ��(¬q ∧ ¬r1)) ∨ ��r2. (2)

We will show that ��p∧��(¬q ∧¬r1) (*), is semantically equivalent to ��p′,
where p′ denotes the proposition “the value of t is k+

t ”.
The conjunct ��p says that k+

t
tick−→ (kt −1) is infinitely often enabled. Since

we assume the absence of zero-time cycles, by the timer abstraction definition,
this is equivalent to the proposition “timer t has value k+

t infinitely often”. The
conjunct ��(¬q ∧ ¬r1) says that after some point in the execution sequence
neither k+

t
tick−→ (kt − 1) nor set(t, x), with x �= k+

t , are executed. As these
transitions are the only ones that can change the value of t from k+

t to a value
different than k+

t , we can conclude that from some point the value of t will
remain k+

t forever.
For the other direction, we first observe that if t has value k+

t from some point
on, then k+

t
tick−→ (kt − 1) is enabled infinitely many times. (Again, we use the

absence of zero-time cycles, i.e., a tick transition is executed infinitely often along
any execution sequence.) Also, the other conjunct of (*) follows immediately: As
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k+
t

tick−→ (kt − 1) and set(t, x), where x �= k+
t , are the only statements which can

change the value of the abstract timer t, they also cannot be executed after some
point on.

Thus, we can replace (*) with the equivalent proposition ��p′ and rewrite
(2) as ��p′ → ��r2, which is the (weak t-fairness) condition of Lemma 4. 
�

Thus we can express the t-fairness criterion by the LTL formula Φα =∧
t∈TVarα(��p → ��q), where p and q are propositions corresponding to the

terms “[[t]]sj
= k+

t ” and “set(t, k+
t )” from Lemma. 4, respectively. Though this

property is formulated on states and transitions, it can be easily encoded as a
property defined on the states of the system. (To express the fact that some
transition q is infinitely often taken, one can e.g. extend the model with intro-
ducing a boolean variable bq that is negated every time the transition is taken
and replace ��q with ��bq ∧��¬bq.) One can see the analogy between Φα and
the definition of weak fairness for processes, where a timer set to k+

t corresponds
to an enabled process and an execution of the set operation corresponds to an
execution of an action by the process.

Further, one can show that the t-fairness criterion Φα is a consistent (and,
therefore, also contracting) abstraction of the LTL formula Φ =

∧
t∈TVar (��p′ →

��q′), where p′, q′ are defined as “[[t]]sj
≥ kt” and ”set(t, x), where x ≥ kt”,

respectively. This can be done by a simple check that p and q are consistent
abstractions of p′ and q′, respectively. Indeed, let sα ∈ α({s}). Timer t has the
value k+

t in the abstract state sα iff t has a value greater or equal to kt in s.
Similarly, t is set to some x which is greater or equal to kt by a transition which
has s as the target state iff it is set by a transition in the abstract state which
ends up in the state sα with [[t]]sα = k+

t .
Suppose we want to verify that T |= φ for some �L+

µ (resp. �Lµ) formula
φ and a concrete system T without infinite zero-time traces. The “concrete”
version of the abstract t-fairness condition, Φ, holds on any trace of T : If from
some point on the value of timer t remains greater or equal to kt, then the timer
must be infinitely often set to some value greater than kt. Otherwise, since tick
happens infinitely often, the value of t will eventually become less than kt. Thus,
T |= φ iff T |= (Φ→ φ).

By Theorem 1 we know that instead of verifying T |= (Φ→ φ) on the concrete
system, we can verify its contracting (resp. consistent) abstraction (Φ→ φ)α on
the abstract system. By definition of contracting (consistent) abstraction, the
last formula is equivalent to Φα → φα. In case φ does not refer to variables
(timers) that are abstracted, the abstraction α is trivially a consistent abstrac-
tion for all atomic propositions in φ and we have φα = φ. If φ does mention
abstracted timers, one has to derive the contracting abstraction φα of φ. Finally,
by Theorem 1, Tα |= (Φα → φα) implies T |= (Φ→ φ) and thus also T |= φ.

Thus, by imposing t-fairness condition on the abstract model, we eliminate
spurious counterexamples caused by unfair non-deterministic choices made by
abstract functions.
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3 Incorporating t-Fairness into the Verification Algorithm

To express the formula Φα as an LTL formula defined on the states of the sys-
tem, one needs to introduce additional variables (see Section 2). Therefore it is
computationally expensive to verify the formula Φα → φα and it is more con-
venient to incorporate the t-fairness requirement into the verification algorithm
that verifies φα by considering t-fair traces only. In this section we describe how
to embed the t-fairness check into a model-checking algorithm for LTL.

Since there is a strong analogy between t-fairness and weak process fairness,
one can easily adapt any algorithm for model checking under weak process fair-
ness. The algorithm we propose here is inspired by the weak process fairness
algorithm used in Spin [15, 2], which is a combination of the Nested Depth First
Search (NDFS) algorithm [7] and Choueka’s flag algorithm [5]. In the automata-
theoretic approach, to verify a property expressed by an LTL formula, the nega-
tion of the formula is translated into a Büchi automaton, which is combined
with the transition system representing the state space of the system. If the lan-
guage accepted by the resulting automaton is empty, the property is satisfied.
As a result, the model checking problem is reduced to a graph theoretic prob-
lem of finding acceptance cycles, i.e., cycles that contain states from a special
designated set of accepting states. The absence of acceptance cycles means that
the property holds for the system. Further on we assume that we work directly
with the labelled transition system (LTS), which is the product of the Büchi
automaton and the LTS of the system.

Given an LTS T = (S,Act,−→T , sinit, F ) of a composition of the transition
system of a given abstract system with the Büchi automaton that represents the
negation of a property to be verified, where S is a finite state space, Act is a set
of actions, −→T⊆ S×Act×S is a transition relation, sinit ∈ S is an initial state
and F ⊆ S is a set of accepting states. Our goal is to construct an extension
of T that contains an acceptance cycle iff there exists a t-fair acceptance cycle
in T . (We say that a cycle s0

a0−−→ ...sn
an−−−→ s0 is t-fair iff ∀t ∈ TVarα there

exists i, (0 ≤ i ≤ n), such that [[t]]si
�= k+

t or ai = set(t, k+
t ).) Therefore, we will

define this extension in such a way that any acceptance cycle would be t-fair by
construction.

Let the abstract system have N abstract timers. Then we construct the
extended LTS T ′ = (S′, Act′,−→T ′ , s′init, F

′) in the following way: The set of
states of the extended system is a set of pairs (s, c), where s ∈ S and 0 ≤ c ≤ N .
We call (s, c) a c-replica of s. (Note that not every replica (s, c) of a reachable
state s of T will be reachable in T ′). 0-replicas are the basic replicas of the states,
while replicas 1, . . . , N allow to track the behaviour of abstract timers t1, . . . , tN ,
respectively. All the accepting states and the initial state of T ′ are 0-replicas of
the accepting states and the initial state of T , respectively. All transitions from
accepting states lead to 1-replicas only. Transitions from a c-replica (s, c), related
to timer tc, lead either to the c-replicas, or, when they guarantee t-fair behaviour
w.r.t. timer tc, to the next ((c+1) mod (N +1)) replica. Since all the acceptance
states are 0-replicas, any acceptance cycle contains for every abstract timer at
least one transition that guarantees t-fairness.
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The verification algorithm starts the construction of T ′ from the initial state
(sinit, 0) and proceeds by adding the 0-replicas in accordance with the transition
function −→T until an accepting state is met. If an accepting state s is encoun-
tered, the algorithm adds a dummy τ -step that connects the 0-replica of s with
the 1-replica of the same state. A move from a c-replica with 1 ≤ c ≤ N to the
((c + 1) mod (N + 1))-replica happens when a state is encountered in which
tc has a value different from k+

t or a step setting timer tc is taken, i.e. when
the t-fairness condition for tc is fulfilled. (A move from 0-replica to 1-replica is
possible only by τ -steps connecting the replicas of the same accepting state.) For
the rest, the algorithm adds states following the transition function −→T .

Theorem 5. Given an LTS T = (S,Act,−→T , sinit, F ) with abstract timers
t1, . . . , tN and its smallest extension T ′ = (S′, Act′,−→T ′ , s′init, F

′) that satisfies
the following conditions:

1. Act′ = Act ∪ {τ};
2. s′init = (sinit, 0);
3. (s, 0) a−→T ′ (s1, 0) if (s, 0) ∈ S′ and s a−→T s1 and s �∈ F ;
4. (s, 0) τ−−→T ′ (s, 1) if (s, 0) ∈ S′ and s ∈ F ;
5. (s, c) a−→T ′ (s1, c1) if (s, c) ∈ S′ and c > 0 and s a−→T s1 with c1 =((c + 1)

mod (N + 1)) if ([[tc]]s �= k+
tc

or a = set(tc, k+
tc

)), and c1 = c otherwise;
6. F ′ = S′ ∩ {(s, 0) | s ∈ F}.

Then the following statements hold:

1. (S,Act,−→T , sinit) and (S′, Act′,−→T ′ , s′init) are branching bisimilar.
2. T contains a reachable t-fair acceptance cycle iff T ′ contains a reachable

acceptance cycle.

Proof. 1. Consider Q ⊆ S × S′ where (s, s′) ∈ Q iff s′ = (s, c) where 0 ≤ c ≤ N .
It is straightforward to check by case analysis that Q is a weak bisimulation.
Since system T is τ -free, T and T ′ are branching bisimilar [23].

2. Notice that all acceptance cycles of the extended state space are t-fair by
construction: An acceptance cycle contains at least one accepting state; this
state is a 0-replica and has outgoing transitions to 1-replicas only. As transitions
from a c-replica lead either to c-replicas, or to “neighbour” ((c+1) mod (N+1))-
replicas (0 ≤ c ≤ N), for any c, the cycle includes a c-replica (s, c), s ∈ S. Every
move from a c-replica to its neighbour satisfies the t-fairness condition for timer
tc, so for every abstract timer there is a transition in the cycle satisfying the
t-fairness condition and thus the cycle is t-fair.

Due to the bisimulation result, any acceptance cycle of T ′ (which is always
t-fair) has a corresponding t-fair acceptance cycle in T .

In the opposite direction: Assume that there is a trace sinit
a0−−→ s1

a1−−→ . . . in
T that contains a fair acceptance cycle. Then there are si, sj such that si = sj

with j > i. The path π from si to sj contains at most m = (j− i) distinct states.
Trace σ = sinit

a−→ ...si....si...si going through the cycle N + 1 times is also the
valid trace of T . Due to the bisimulation result, there is a trace σ′ in T ′ that
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Procedure 6 (dfs(s, c)).
add (s, c) to S′ add a pair to the state space
if c = 0 and s ∈ F 0-replica and state s is accepting
then if (s, 1) �∈ S′ then dfs(s, 1); τ -step from 0-replica to 1-replica
else

for all s a−→T s1 do for all transitions enabled in s
if c > 0 and (a = set(tc, k

+
tc

) or [[tc]]s �= k+
tc

) t-fairness condition
then c1 = (c + 1) mod N the next replica number
else c1 = c; the same replica number
if (s1, c1) �∈ S′ then dfs(s1, c1); recursive call

od;

Fig. 2. Generating t-fair extension of S

mimics σ. The suffix ξ′ of σ′ that mimics passing through the cycle N + 1 times
contains at least m(N + 1) + 1 states. The states of ξ′ are replicas of the states
of π, therefore at most m(N +1) of them are distinct. Thus, there is at least one
state that is present in ξ′ twice, and ξ′ is a cycle.

Now we shall show that ξ′ is an acceptance cycle. We denote the suffix of σ
corresponding to ξ′ as ξ and pick up an arbitrary state s of ξ. Then ξ′ contains
some state (s, c), 0 ≤ c ≤ N . Assume that c > 0. Since ξ is a t-fair cycle, there
are some states q1, q2 reachable from s such that q1 a−→T q2 and ([[tc]]q1 �= k+

t

or a = set(tc, k+
t )). Hence there exists a transition from the c-replica q1 to the

((c + 1) mod N)-replica q2 in ξ′. Proceeding in the same way, we will obtain
transitions leading to some ((c + 2) mod N)-replica, etc., and eventually we
arrive at a 0-replica. Thus, we conclude that ξ′ contains at least one 0-replica
of some state. In T ′, transitions from 0-replicas of non-accepting states lead to
0-replicas, and transitions from 0-replicas of accepting states lead to 1-replicas.
Since ξ contains an accepting state, due to the bisimulation result, ξ′ contains
an accepting state as well and thus it is an accepting cycle of T ′. 
�

We call the extension T ′ a t-fair extension of T . An algorithm that generates
the extended state space in a depth first search (DFS) manner is given in Fig. 2.
It is straightforward to prove the following claim:

Lemma 7. Given an LTS T , let T ′ be a system produced from system T by
applying Procedure 6. Then T ′ is a t-fair extension of T .

To detect acceptance cycles, DFS is extended with a cycle-check procedure
(Fig. 3). Whenever Procedure 8 detects an accepting state, it starts Procedure 9,
which is again a DFS, that reports an accepting state if the seed state is matched
within the cycle-check. Here we omit a detailed description of the NDFS algo-
rithm and refer the interested reader to [7].
The correctness of the algorithm is given by the following claim:
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Procedure 8 (ndfs1(s, c)).
add (s, c, 0) to S′ add a pair to the state space
if c = 0 and s ∈ F 0-replica, and state s is accepting
then if (s, 1, 0) �∈ S′ then ndfs1(s, 1); τ -step from 0-replica to 1-replica
else

for all s a−→T s1 do for all transitions enabled in s
if c > 0 and (a = set(tc, k

+
tc

) or [[tc]]s �= k+
tc

) t-fairness condition
then c1 = (c + 1) mod N the next replica number
else c1 = c; the same replica number
if (s1, c1, 0) �∈ S′ then ndfs1(s1, c1); recursive call

od;
if c = 0 and s ∈ F then seed := (s, 0, 1); ndfs2(s, 0); set the seed and start ndfs2

Procedure 9 (ndfs2(s, c)).
add (s, c, 1) to S′ add a pair to the state space
if c = 0 and s ∈ F 0-replica, and state s is accepting
then if (s, 1, 1) �∈ S′ then ndfs2(s, 1); τ -step from 0-replica to 1-replica
else

for all s a−→T s1 do for all transitions enabled in s
if c > 0 and (a = set(tc, k

+
tc

) or [[tc]]s �= k+
tc

) t-fairness condition
then c1 = (c + 1) mod N the next replica number
else c1 = c; the same replica number
if seed = (s, c1, 1) then REPORT CYCLE! seed is matched, report the cycle
else if (s1, c1, 1) �∈ S′ then ndfs2(s1, c1); recursive call

od;

Fig. 3. NDFS version of Procedure 6

Theorem 10. Given an LTS T , Procedure 8 called with (sinit, 0) reports an
acceptance cycle iff there exists a reachable t-fair acceptance cycle in T .

Proof. Follows from the correctness of the NDFS algorithm from [7] by observing
that the algorithm is actually NDFS from [7] applied on the extended state space
T ′. 
�

The last result completes the series of claims that guarantee the soundness
of the verification approach proposed in this paper. If no acceptance cycle is
detected then the verified property holds for t-fair traces of the abstract system
and therefore also for the concrete system.

Time complexity of the NDFS Algorithm in Fig. 3 is O(N · |T |), where N is
the number of timers, while |T | is the size (states and transitions) of the abstract
system state space. Memory space needed to save T ′ is virtually the same as the
one for T . Instead of keeping each of the N replicas (s, i), (1 ≤ i ≤ N) one
can save only the “useful” part s plus additional 2(N + 1) bits, like it is done
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for process fairness in Spin. The first N + 1 bits correspond to the replicas in
the main depth first search of the NDFS algorithm, while the second group of
(N +1) bits corresponds to the nested DFS. If bit i of the first group is set then
this means that the state (s, i) has been visited by the algorithm. Similarly for
the second group. As the description of s is usually much greater than 2(N + 1)
bits, the bookkeeping overhead is negligible.

4 T -fairness in DTSpin

DTSpin [3] is a discrete-time extension of Spin [15] that has all verification
features of Spin. It was successfully applied for debugging and verification of
timed models of industrial size protocols (see e.g. [4, 16]).DTSpin is designed for
the verification of systems where delays are significantly larger than the duration
of the events within the system. Therefore, system transitions are assumed to be
instantaneous. DTSpin employs the concept of timers to express time aspects of
a system. In DTPromela, the input language of DTSpin, timers are modelled
by variables of a predefined type timer. The data domain and the operations on
timers are defined as in Section 2.

Since the system transitions are assumed to be instantaneous, time progress
has the least priority in the system and may take place only when the system is
blocked. A special process Timer ticks all the active timers down in case the sys-
tem is blocked. DTSpin employs Promela’s statement timeout to check whether
the system is blocked. To ensure that time progression has the least priority, the
usage of timeout is reserved for the implementation of time progression and for-
bidden in DTPromela specifications. Note that by the definition of tick , all
DTPromela models are deadlock-free.

To implement the timer abstraction defined in Section 2, we extend DT-
Promela with a new data type timerα for abstract timers and define the oper-
ations on them as macros. The abstract version of tick , tickα, decreases values of
active abstract timers if they are different from k+

t . If a timer has the k+
t value,

the non-deterministic choice is made between decreasing the value of the timer
to (kt − 1) and leaving it unmodified. Our fairness algorithm from Section 3 is
implemented by means of a pan2tfpan Java program that transforms the pan
verifier generated by Spin for the verification of the property without t-fairness
into a new one that checks the property under t-fairness. The transformation is
automatic and does not require any interaction with the user.

The user applies thus the following scheme for the verification: (1) Choose
timers of a concrete model that should be abstracted and define a kt value for
each of those timers; (2) Redefine the type of the chosen times to timerα and
redefine the set operations according to the kt values; (3) Check whether the
abstract system is free from zero-time cycles, i.e. check whether tick happens
infinitely often. This is done by checking LTL formula: ��timeout. (In DTSpin,
time progresses if the statement timeout of Promela is true. Since this state-
ment is forbidden to use in DTPromela specifications, ��timeout expresses
the absence of zero-time cycles.) (4) Formulate the abstract version of the prop-
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erty to check and generate the pan verifier for this property; (5) Transform the
pan verifier with pan2tfpan to the new pan verifier, which will check the prop-
erty under the t-fairness condition. Positive verification results imply that the
property holds for the concrete system as well. If the property gets violated
on the abstract system, the counterexample is generated, and the user checks
whether the counterexample is spurious or not.

5 Experimental results

In this section we describe some experimental results that show the efficiency
of our approach. Our test cases are the positive acknowledgment retransmission
protocol (PAR) [22] and Fischers mutual exclusion protocol [18]. We compare
the results obtained when we specify t-fairness as LTL formulas according to
strong fairness and weak fairness patterns (we will refer to it as verifying with
strong/weak fairness respectively) with the results obtained with our prototype
implementation of the algorithm from Section 3 in DTSpin, which we refer to
as built-in t-fairness. Our prime goal here is to compare the performance of the
three methods rather than to verify the protocols.

Experiments with the Positive Acknowledgment Retransmission Pro-
tocol (PAR) PAR [22] is a classical example of a communication protocol
where time issues are essential for the correct functionality of the protocol. PAR
involves a sender, a receiver, a message channel and an acknowledgment channel.
The sender receives a frame from the upper layer, sends it to the receiver via
the message channel and waits for a positive acknowledgment from the receiver
via acknowledgment channel. When the receiver delivered the message to the
upper layer, it sends the acknowledgment to the sender. After the positive ac-
knowledgment is received, the sender becomes ready to send the next message.
The channels delay the delivery of messages. Moreover, they can lose or corrupt
messages. Therefore, the sender handles lost frames by timing out. If the sender
times out, it re-sends the message. As known, the protocol functions correctly
only under the following condition: the timeout of sender should be greater than
the sum of delays on channels.

We specified PAR in DTPromela using concrete timers to represent delays
on the channels and the sender timeout. Our goal was to check that if the
channels do not lose messages continuously, no message reordering occurs and
no message gets lost, under condition that the timeout of the sender is greater
than the sum of the (given) delays on the channels. To prove the property for
an arbitrary message sequence we used a well-known canonical abstraction [14,
24] and defined two abstract environment processes: one representing an upper
layer for the sender and another one for the upper layer of the receiver. Then we
abstracted the sender’s timer to check the property for all values greater than
the sum of the channels’ delays.

Without t-fairness, the property gets violated, since there exists a trace where
the abstract timer of the sender never expires, staying in the loop k+

t
tick−→ k+

t
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Table 1. PAR

pattern states transitions memory(Mb) time

strong fairness 825761 5.10962e+06 52.286 0:21.00
weak fairness 227569 1.49527e+06 15.320 0:05.98

built-in t-fairness 100275 390012 6.693 0:01.56

(we obtained a t-unfair trace as counterexample). Under the t-fairness condition,
we proved that the property holds. Table 1 contains information on the time
and memory consumption for the verification with DTSpin of the property
formulated with the strong and weak fairness patterns and for the verifier with
built-in t-fairness.

Fischer’s mutual exclusion protocol Our second test example is Fischer’s
mutual exclusion protocol. The protocol uses time constraints and a shared vari-
able to ensure mutual exclusion in a system that consists of N processes running
in parallel and competing for a critical section. We assume that each process has
a unique id from 1 to N . The initial value of the shared variable x is 0. When a
process observes that x is 0, it waits for at most δ1 time units and then writes
its id to x. After that, it waits for at least δ2 time units, and if x still equals
the process id, the process enters the critical section. The process stays in the
critical section for some time and then leaves it.

We have specified Fischer’s mutual exclusion protocol in DTPromela using
concrete timers to represent delays not larger than δ1 and abstract timers to
represent delays which are at least δ2. As known, mutual exclusion is ensured
provided that δ1 < δ2. We have checked the property that if there comes a
request of access to the critical section, one of the processes will get it. Table 2
contains results for strong, weak and built-in t-fairness for the case of two, three
and four processes. Note that the number of abstracted timers in this example
is equal to the number of processes.

Table 2. Fischer’s mutual exclusion

pattern num. of proc. states transitions memory(Mb) time

strong fairness 2 41384 171586 4.363 0:00.46
weak fairness 2 4705 13053 2.724 0:00.08

built-in t-fairness 2 1236 4181 1.573 0:00.01

strong fairness 3 3.28599e+06 2.01406e+07 190.539 1:01.79
weak fairness 3 115874 362068 8.561 0:01.22

built-in t-fairness 3 21592 110332 2.700 0:00.26

strong fairness 4 out of memory
weak fairness 4 2.60665e+06 9.2549e+06 151.729 0:38.34

built-in t-fairness 4 346903 2.45733e+06 20.927 0:05.69
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The experiments were done on AMD Athlon(TM) XP 2400+ with 1Gb of
memory. In all experiments, the verification with built-in t-fairness took signifi-
cantly less time and memory than the verification with strong and weak fairness
patterns expressed as LTL formulas. The prototype implementation pan2tfpan
and the models can be found at www.cwi.nl/~ ustin/tfair.html.

6 Conclusion

In this paper we considered a timer abstraction that introduces a cyclic behav-
ior on abstract timers that is not present at the concrete level. This could lead
to spurious counterexamples for liveness properties. We showed how one can
eliminate those by imposing a strong fairness constraint on the traces of the ab-
stract model. Using the fact that the loop on the abstract timer is a self-loop for
this abstract timer (though there is possibly no self-loop on the corresponding
LTS), we transformed the strong fairness constraint into a constraint which has
a weak fairness pattern, and embedded it into the verification algorithm. Our
experiments with the prototype implementation of the algorithm were encour-
aging. We conjecture that the ideas in this paper can also be used for other data
abstractions that introduce self-loops on the abstracted data.
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