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ABSTRACT
Model-based tools for automatic test generation usually can handle systems of a rather limited
size. Therefore, they cannot be applied directly to systems of real industrial size. Here, we
propose an approach to test generation combining enumerative data abstraction, test
generation methods and constraint solving. The approach allows applying enumerative test
generation tools like TGV to large and infinite systems. Given such a system, abstractions allow
to derive a finite abstract system suitable for automatic test generation with enumerative tools.
Abstract test cases need to be parameterized with actual test data, in order to execute them.
For data selection, we make use of constraint solving techniques. Test case execution will later
be done by TTCN-3.
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1. Introduction
The test of a software product is a crucial aspect in every software developing process. Therefore,
various test approaches have been developed over the last decades. Depending on the position of
test case development in the software development process, they can roughly be categorized into test-
first and test-last approaches. In test-first approaches like unit testing in an extreme programming
process [1] (XP) require the software developer to write test cases before the code of the implementation
under test (IUT). In many cases, these test cases are then at the same time the specification of the
IUT. However, the effects of the test-first approach are not without controversy. In only half the
studies presented in [13], a positive effect on the software quality could be determined, which in only
one case was definitely not accompanied by a decrease in productivity.

In this paper, we concentrate on test-last approaches, like they are custom in more formal devel-
opment processes, e.g. the Rational Unified Process [27]. Here, the software product is modeled and
specified before its implementation and test. To support modeling software over different phases of
a development process using models of different granularity and degree of abstraction, the Model-
Driven Architecture (MDA [29]) has been developed by the OMG. Separating software specification
and implementation allows to apply this approach to the development of the IUT and its test cases.
The MDA divides the documents produced during software development into platform-independent
models (PIM), platform-specific models (PSM) and code. This has the advantage, that software can
be evolved or ported more easily than with a specification, which is already platform-specific code like
in XP. The disadvantage of course is, that test cases are not created “automatically”. Automatic test
generation tries to eliminate this shortcoming.

Conformance testing [36] is one of the most rigorous among existing testing techniques, checking
whether an IUT is consistent with its specification. This is the case only if every observable behavior
of the IUT is allowed by the specification. Regarding the MDA and testing, we are working on the
most abstract view on a system, the PIM, here. From this PIM we generate platform-independent test
models and finally platform-independent test code. The generated test cases do not reject consistent
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IUTs and do not accept IUTs showing behaviors not allowed by the specification. One major problem
of automatic test generation is its termination or the number of generated test cases, resp. If the
generation process is not guided except for the specification documents, it may not terminate at all or
produce many unnecessary test cases around a few useful ones. Thus, we have to make an attempt to
focus the generation on certain aspects, like the main risks of an IUT (risk-based testing). This aim
can be reached by introducing test purposes, which describe the relevant behavioral aspects for a set
of test cases.

Not only the selection of behavior is crucial for successful test generation, but also that of data.
Software is in most cases interacting with an environment, which stimulates the execution of interface
actions parameterized with data values coming from large or even infinite domains. Considering these
parameters already at the stage of test generation leads to problems similar to the ones described
above. Thus, we have to abstract away from concrete data and concentrate on behavioral aspects
only for test case generation, and reintroduce data for test execution.

In this paper, we present such a test generation framework. Starting from a PIM of an IUT and
an appropriate test purpose, we abstract away input and output data from the IUT. The abstract
system then shows at least the behavior of the original system [20]. Afterwards, abstract test cases
are generated, which contain a control flow and are parameterizable with concrete data values during
test execution. These data values can be obtained from a rule system, which is set up in parallel and
serves data intervals for data selection and as a test oracle.

We implement our approach to generate test cases from µCRL specifications with TGV. TGV (Test
Generation with Verification technology) [22] is a tool for the automatic generation of test cases from
formal specifications of reactive systems. TGV implements algorithms based on adaptation of on-
the-fly model-checking algorithms. Test selection in TGV is based on the concept of test purposes.
However, specifications of systems operating on large or infinite data domains are beyond the scope of
TGV even with on-the-fly test generation using test purposes. µCRL (micro Common Representation
Language) is a specification language based on process algebra with data. We use this language
to specify systems and test purposes. A µCRL toolset supports state space generation, reduction
techniques, optimization techniques based on static analysis and abstractions. Prolog is used to
implement constraint solving for data selection and the test oracle.

This paper is organized as follows. In Section 2, we give an introduction to the theory of conformance
testing, which our approach is based on. Section 3 defines syntax and semantics of the systems, we
are working with. Section 4 discusses the necessary preliminaries of constraint solving. The approach
of data abstraction is introduced in Section 5. Section 6 discusses the determination of test case
parameters. In Section 7, we work out the application of our approach to the CEPS [6] case study
before we conclude in Section 8, also presenting an overview of related work.

2. Testing Theory
Our approach is based on conformance testing that validates whether an implementation conforms
to its specification. In a theory of conformance testing [34], the notion of conformance is formalized
by a conformance relation between specification and implementation that are assumed to be input
output labeled transition systems (IOLTS s). In this paper, we refer to a variant of the theory, which
is described in [22]. We do not yet discuss the problem of quiescence here.

Definition 1 ((Deterministic) IOLTS). An input output labeled transition system IOLTS is a tuple
M = (Σ,Lab,→, σinit) where

• Σ 6= ∅ is a set of states,

• Lab is a set of labels (actions),

• →⊆ Σ× Lab × Σ is a transition relation,

• σinit ∈ Σ is the initial state.
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The set of labels Lab consists of three subsets of actions, LabI , LabO, and {τ} denoting input,
output and internal actions. Input and output actions are visible, internal actions are invisible.

An IOLTS is deterministic iff there is only one outgoing transition for each action λ ∈ Lab in each
state σ ∈ Σ. �

The behavior of an IOLTS is given by sequences of states and transitions β = σinit → σ1 → . . .
starting from the initial state. In traces, the states are projected out, i.e. [[M ]]trace ⊆ Lab?. We use
[[M ]]trace to denote the set of traces of an IOLTS M .

Definition 2 (Trace). A trace β of M is a mapping βλ : N −→ Lab, where either N = {0, 1, 2, . . . , n}
or N = N, and there exists a mapping βσ : N −→ Σ such that (βσ(i) →βλ(i+1) βσ(i + 1)) ∈→ for all
i, (i + 1) ∈ N . If N = N, trace β is called an infinite trace; otherwise, it is called a finite trace. The
length of β is defined as |N | and referred to as |β|.

In the further text, we refer to the set of traces in M as [[M ]]trace . �

Definition 3 (Relation after). The relation after is defined for states and action labels as Σ×Lab →
P(Σ) with Σ′ = σ after λ being the set of states which can be reached from σ by a transition labeled
with λ.

For traces and action labels, the relation after is defined as [[M ]]trace × Lab → P(Σ) with Σ′ =
β after λ being the set of states which can be reached by a transition labeled with λ after trace β. �

IOLTS s modeling IUT s are assumed to be input-complete, meaning, the implementation cannot
refuse any input from the environment. Given a model MIUT of an implementation and a model MSpec

of a specification, the implementation conforms to the specification iff for each trace β in [[MSpec ]]trace ,
MIUT after β produces only outputs that can be produced by MSpec after β. In case, MSpec is input
complete, conformance is the standard trace inclusion relation1.

We are interested in test generation where the test selection is guided by a test purpose [22]. A
test purpose is a deterministic IOLTS MTP that is equipped with a non-empty set of accepting states
Accept and a set of refusing states Refuse which can be empty. Both accepting and refusing states are
trap states. Moreover, MTP is complete in all the states except of the accepting and refusing ones.

Definition 4 (Trap State). In an IOLTS M = (Σ,Lab,→, σinit), a trap state is a state σ ∈ Σ for which
trap : Σ → {true, false} defined as trap(σ) = ∀(σ, λ, σ′) ∈→ (σ = σ′) holds. �

Definition 5 ((Complete) Test Purpose). Let the IOLTS MSpec = (ΣSpec ,LabSpec ,→Spec , σSpec
init ) be a

specification. A test purpose is a (complete) deterministic IOLTS MTP = (ΣTP ,LabTP ,→TP , σTP
init)

with a set of labels LabTP = LabSpec
I ∪ LabSpec

O ∪ {ACCEPT, REFUSE} (internal actions of Spec
are not considered here).

Let furthermore be:

• ΣTP
acc = {σ|σ ∈ ΣTP ∧ trap(σ) ∧ ∃t ∈→TP

(
t = (σ,ACCEPT, σ)

)
} ⊆ ΣTP and

• ΣTP
ref = {σ|σ ∈ ΣTP ∧ trap(σ) ∧ ∃t ∈→TP

(
t = (σ,REFUSE, σ)

)
} ⊆ ΣTP .

ΣTP
acc is the set of accept states of the test purpose, ΣTP

ref the set of refuse states. The following must
hold for a test purpose:

ΣTP
acc 6= ∅ ∧ ΣTP

acc ∩ ΣTP
ref = ∅.

Transitions labeled with ACCEPT or REFUSE are allowed in trap states only. �

Test generation guided by a test purpose consists in building a standard synchronous product MSP

of MSpec with MTP and finally transforming it into a complete test graph MCTG by assigning verdicts.
The state space of the synchronous product MSP forms the reachable part of ΣSpec × ΣTP . The set
→SP is constructed by only matching the action names of MSpec and MTP .

1The difference with ioco [34] is that we do not abstract from τ -steps and that we do not yet consider quiescence.
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Definition 6 (Synchronous Product of System Specification and Test Purpose [22]). The synchronous
product MSP of the system specification MSpec = (ΣSpec ,LabSpec ,→Spec , σSpec

init ) and a complete test
purpose MTP = (ΣTP ,LabTP ,→TP , σTP

init) is the IOLTS MSP = MSpec ×MTP = (ΣSP ,LabSP ,→SP

, σSP
init) where:

• LabSP = LabSpec ∪ {ACCEPT, REFUSE} is the alphabet of the IOLTS ,

• →SP is the set of transitions such that ((σ, σ′′), λ, (σ′, σ′′′)) ∈→SP⇔
((

(σ, λ, σ′) ∈→Spec ∧
(σ′′, λ, σ′′′) ∈→TP

)
∨

(
(σ′′, ACCEPT, σ′′′) ∈→TP ∧

σ = σ′
)
∨

(
(σ′′, REFUSE, σ′′′) ∈→TP ∧σ = σ′

))
, and

• σSP
init = (σSpec

init , σTP
init) ∈ ΣSP is the initial state.

�

Definition 7 (Complete Test Graph [22]). The complete test graph CTG is an IOLTS MCTG =
(ΣCTG ,LabCTG ,→CTG , σCTG

init ) which is determined from the synchronous product MSP in the fol-
lowing way:

1. The set of actions is determined by mirroring the set of actions of MCTG : LabCTG = LabCTG
I ∪

LabCTG
O with

• LabCTG
O ⊆ LabSpec

I ,

• LabCTG
I = LabSpec

O .

The reason for mirroring inputs and outputs lies in the relation between a test case and the
implementation under test, as the input of the IUT is the output of the test case and vice versa.
However, since a test case can normally not test all possible inputs of an SUT, its set of outputs
LabCTG

O is limited to a subset of the SUT’s set of inputs LabSpec
I .

2. The set of states is determined. This set is divided into four subsets ΣCTG = ΣCTG
L2A︸ ︷︷ ︸

⊇ΣCTG
Pass

∪̇ΣCTG
Inconc∪̇ΣCTG

Fail

which are defined as follows:

Lead to Accept: ΣCTG
L2A = {σ ∈ ΣSP |∃β ∈ [[MSP ]]trace(σ →β σ′ ∧ σ′ ∈ ΣSP

acc)},
Pass: The set ΣCTG

Pass ⊆ ΣCTG
L2A is defined as ΣCTG

Pass = ΣSP
acc. This set may not be empty.

Inconclusive: ΣCTG
Inconc = {σ′|∃σ ∈ ΣCTG

L2A , σ′ 6∈ ΣCTG
L2A , ι ∈ LabSP

O (σ →ι σ′ ∈→SP )},
Fail: ΣCTG

Fail = {σCTG
Fail }, σCTG

Fail 6∈ ΣSP .

For reasons of manageability of the resulting IOLTS, the state σCTG
Fail exists only implicitly and

is assumed as end point for all possible traces σ 6∈ [[MSP ]]trace . It is not actually generated.

3. The set of transitions of the CTG is defined as →CTG=→CTG
L2A ∪ →CTG

Inconc ∪ →CTG
Fail with:

• →CTG
L2A =→SP ∩(ΣCTG

L2A × LabCTG × ΣCTG
L2A ),

• →CTG
Inconc=→SP ∩(ΣCTG

L2A × LabCTG
I × ΣCTG

Inconc),

• →CTG
Fail = {σ →CTG

Fail |σ ∈ ΣCTG
L2A ∧ λ ∈ LabCTG

I ∧ σ after λ = ∅}.

The CTG may contain loops and choices between several outputs in the same state or between
inputs and outputs and is thus not (necessarily) controllable. �
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The sets of accepting and refusing states of MSP induce the sets of accepted and refused traces de-
noted [[MSP ]]atrace and [[MSP ]]rtrace respectively, where [[MSP ]]atrace ⊆ [[MSpec ]]trace and [[MSP ]]rtrace =
[[MSpec ]]trace\[[MSP ]]atrace . Depending on the trace, executed during the actual test, a verdict is as-
signed.

Definition 8 (Verdict). A verdict is the result of the execution of a test case. It is determined by
the comparison between the actual behavior of the IUT during test case execution and its expected
behavior. In general, there exist five types of verdicts of which we consider the following four: Pass,
Inconc, Fail and None.

The verdict is set by a function setverdict : [[MSP ]]trace → Verdict which is defined as follows:

setverdict(β) =


Pass , iff β ∈ [[MSP ]]atrace
Inconc , iff β ∈ [[MSP ]]rtrace
Fail , iff β 6∈ [[MSP ]]atrace ∪ [[MSP ]]rtrace ∧ |β| > 0
None , iff |β| = 0

The types of verdicts can be structured in the following partial order: None v Pass v Inconc v Fail
(cf. [3], Definition 30). �

The Pass verdict is assigned to those states of MCTG , which correspond to the final states of traces
from [[MSP ]]atrace and thus to the accept states in the test purpose. The Inconc verdict is assigned to
states from which accepting states are not reachable. In this case, the state is still on a trace of MSpec

but the trace does not satisfy the test purpose (traces from [[MSP ]]rtrace). The Fail verdict is implicit.
All unspecified outputs lead to this verdict. During generation of the MCTG , all input and output
actions are mirrored so that the set of input actions of the MCTG equals the set of output actions of
the MSpec and the set of output actions of the MCTG is a subset of the set of input actions of the
MSpec .

As we said before, MCTG may contain choices between several outputs and choices between inputs
and outputs. Controllable test cases are derived by resolving these choices, meaning, a test case does
not contain these choices between outputs or between inputs and outputs anymore.

Definition 9 ((Controllable) Test Case). A test case is a deterministic input complete IOLTS MTC =
(ΣTC ,
LabTC ,→TC , σTC

init) derived from MCTG with

• ΣTC ⊆ ΣCTG : ΣTC = ΣTC
L2A ∪ ΣTC

Pass ∪ ΣTC
Inconc ∪ ΣTC

Fail and ΣTC
L2A ⊆ ΣCTG

L2A , ΣTC
Pass ⊆ ΣCTG

Pass ,
ΣTC

Inconc ⊆ ΣCTG
Inconc, ΣTC

Fail ⊆ ΣCTG
Fail ;

• LabTC ⊆ LabCTG : LabTC
O ⊆ LabCTG

O ∧ LabTC
I = LabCTG

I ;

• →TC⊆→CTG : →TC=→TC
L2A ∪ →TC

Inconc ∪ →TC
Fail and →TC

L2A⊆→CTG
L2A , →TC

Inconc⊆→CTG
Inconc,

→TC
Fail⊆→CTG

Fail ;

• σTC
init = σCTG

init .

Similarly to the sets of accepted and refused traces in CTG , the final states of a test case induce
the sets of traces leading to Pass (Inconc or Fail) verdict denoted [[MTC ]]Pass ([[MTC ]]Inconc or [[MTC ]]Fail,
resp.). �

The test cases, we treat in this paper, are loopfree and controllable. They are executed in parallel
with an IUT . The traces in a test case are chosen in a way that one trace leads to a Pass state. From
this trace, several branches lead to Inconc states in one step. These Inconc states represent traces in
the test purpose which end in a refusing state.

Definition 10 (Soundness [31]). Given a specification MSpec , a test purpose MTP and a test case
MTC , a verdict of a test case MTC is sound iff the following holds for the executed trace β:
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sort Bool
func T :→ Bool F :→ Bool
map and : Bool ×Bool → Bool
var b : Bool
rew and(T, b) = b and(b, T ) = b and(F, F ) = F

Figure 1: Data type for booleans

setverdict(β) =

 Pass ⇔ β ∈ [[MTP ]]atrace ∩ [[MSpec ]]trace
Inconc ⇔ β ∈ [[MTP ]]rtrace ∩ [[MSpec ]]trace
Fail ⇔ β 6∈ [[MSpec ]]trace

The verdict None is not considered here, since it is a construct to assign a test verdict to a trace,
which has not yet been executed.

If for all traces in a test case, a sound verdict is assigned, the test case is sound. �

Using test purposes as selection criteria, it is possible to generate test cases on-the-fly without
generating the whole state space of a specification. However, a complete test graph can easily be too
large or even infinite due to all possible data.

3. Syntax and Semantics of Specifications
In this section, we define the syntax and semantics of the systems we are working with. A specification
Spec is given by its signature Sig(Spec) = (Sort ,Fun,Act ,Comm,Proc) [18]. It specifies an open
system that communicates with its environment. Sort defines a set of data types for the declaration of
variables. Each S consists of a set of constructors, which have the form c :→ S or c : S1×. . .×Sn → S,
resp., with S1, . . . , Sn ∈ Sort . These constructors are used to form typed values DS of sort S (DS → S).

In Fun, functions of the form f :→ S or f : S1 × . . . × Sn → S, resp., are declared. Each of these
functions is defined by one or more axioms on values of sorts S1, . . . , Sn. These axioms have the form
s = t where s and t are equally typed terms formed by any valid combination of typed variables and
function symbols.

Figure 1 shows a sort Bool representing booleans (see sort), that is given by the two constructors
T (for true) and F (for false, see func). The function and is declared in map with three axioms
defining properties of and (see rew). Additionally, b is defined as a variable of sort Bool (see var).

The sets of actions Act and communicating actions Comm is necessary to declare the actions and
communication issues necessary for the process definition. However, we will not discuss them here
in detail. The process itself is defined as Proc in terms of Linear Process Operators [2]. To make
the explanations in this paper easier to understand for the reader, however, we give a definition of
processes based on the theory of Symbolic Transition Systems (STSs). A process definition Proc can
thus be described by a four-tuple (Var ,Loc, σinit,Edg), where Var denotes a finite set of variables,
and Loc denotes a finite set of locations or control states2. A mapping of variables to values is called
a valuation; we denote the set of valuations by Val = {η | η : Var → D}. Let Σ = Loc × Val be
the set of states, where a process has one designated initial state σinit = (linit, ηinit) ∈ Σ. The set
Edg ⊆ Loc × Act × Loc denotes the set of edges. An edge describes changes configurations specified
by an action from a set Act . Considering locations as nodes and edges as edges, such a specification
can also be graphically represented as a symbolic transition system.

As actions, we distinguish (1) input of a signal s containing a value to be assigned to a local variable,
(2) output of a signal s together with a value described by an expression, and (3) assignments. Every

2In an LPO, location would just be one additional parameter in the set of process parameters for a single process,
or n such additional parameters for n parallel processes.
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l −→?s(x) l̂ ∈ Edg ∀v ∈ D
Input

(l, η) −→?s(v) (l̂, η[x 7→ v])

l −→g B!s(e) l̂ ∈ Edg [[g]]η = true [[e]]η = v
Output

(l, η) −→!s(v) (l̂, η)

l −→g B x:=e l̂ ∈ Edg [[g]]η = true [[e]]η = v
Assign

(l, η)→τ (l̂, η[x 7→ v])

Table 1: Step semantics of process definition P (Spec → M)

action except inputs is guarded by a boolean expression g, its guard. The three classes of actions are
written as ?s(x), g B!s(e), and g Bx := e, respectively, and we use α, α′ . . . when leaving the class of
actions unspecified. For an edge (l, α, l̂) ∈ Edg , we write more suggestively l −→α l̂.

The behavior of the process is then given by sequences of states ζ = σinit → σ1 → . . . starting
from the initial one. The step semantics is given by an IOLTS M = (Σ,Lab,→, σinit), where → ⊆
Σ× Lab ×Σ is given as a labeled transition relation between states. The labels differentiate between
internal τ -steps and communication steps, either input or output, which are labeled by a signal and
a value being transmitted, i.e. ?s(v) or !s(v), respectively. We assume that the set of signals coming
from the environment and the set of signals exchanged within the system are disjoint.

The semantics is given by the inference rules in Table 1. Receiving a signal with a communication
parameter x, l −→?s(x) l̂ ∈ Edg , results in an update of the valuation η[x 7→ v] according to the parameter
of the signal (rule Input). Output, l −→g B!s(e) l̂ ∈ Edg , is guarded, so sending a message involves
evaluating the guard and the expression according to the current valuation. It leads to a change of
location of the process that sends the message (rules Output). Assignments, l −→g B x:=e l̂ ∈ Edg ,
result in the change of location and the update of the valuation η[x 7→ v], where [[e]]η = v. Assignments
are internal, so assignment transitions are labeled by τ (rule Assign).

Although we are working with specifications containing only one process definition, it does not limit
our approach. For the linear process operators [2], the realization of our approach is working on, ex-
isting linearization techniques [17] allow to obtain a single process definition for a parallel composition
of a finite number of process definitions by resolving communication and parallel composition.

Assumption 1 (Treatment of Data in Test Purposes). In a test purpose MTP , we assume that the
information about an action carried in the labels of LabTP is limited to the names of the actions.
Data parameters should not eb subject of value assignment and are thus replaced by the don’t-care
parameter ∗. �

4. Constraint Solving Preliminaries
In this section we give an overview of notions related to constraint solving [28].

A constraint domain D consists of a set of n-ary constraint symbols which describe relations, a
logical theory T and for every constraint symbol c a tuple of value sets 〈V1, . . . , Vn〉. An example for
such a constraint symbol is “≤”. A primitive constraint c(X1, . . . , Xn) is constructed from a constraint
symbol and terms in the corresponding value set Vi for every argument position. An example for a
primitive constraint is ≤ (X, Y ) defining the relation X ≤ Y .

A constraint is of the form C = c1 ∧ . . .∧ cm where m ≥ 0 and c1, . . . , cm are primitive constraints.
We use vars(C) to denote the set of variables of constraint C. A valuation θ of a constraint C is a
mapping of variables of vars(C) to values of 〈V1, . . . , Vn〉 in D. A logical theory T determines which
constraints hold and which constraints do not hold under a certain valuation θ. If the constraint C
holds under theory T of constraint domain D, this is denoted D |= [[C]]θ. There are two distinct
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constraints true and false which behave the same for any theory. The tautology true always holds,
while the contradiction false never holds.

Two problems are associated with C: the solution problem and the satisfaction problem. The first
one determines a particular solution, the latter one determines whether there is at least one solution.
Let θ be a valuation for C. θ is a solution for C if [[C]]θ holds, i.e. D |= [[C]]θ. A constraint C is
satisfiable if it has one or more solutions.

A constraint solver solv() for a constraint domain D is a decision procedure that takes as an
input a constraint C and returns either true, false or unknown. Whenever solv(C) returns true,
C is satisfiable. Whenever solv(C) returns false, there is no solution for C and C is unsatisfiable.
The value unknown is returned in all those cases, in which a solution might exist, but could not be
determined by solv(C).

A user defined constraint is of the form p(t1, . . . , tn) where p is an n-ary predicate and t1, . . . , tn
are terms (variables, constants or functions) from a constraint domain. An example for a user-defined
constraint is a(X, f(Y )) : −X > 0, Y < X, which takes two parameters (the variable X and the
function f(Y ), with Y again being a variable) and incorporates the two primitive constraints X > 0
and Y < X. A literal is either a primitive constraint or a user defined constraint. A rule R is of
the form A :− B where A is a user defined constraint and B is a sequence of literals. A fact is a rule
with an empty sequence of literals, i.e. a rule of the form A :−2, where 2 is used to denote an empty
sequence of literals. A constraint logic program P is a sequence of rules.

A goal or a query G is a sequence of literals, i.e. G = L1, . . . , Lm with m > 0. If m = 0, then
G is an empty query denoted 2. Let query G be of the form L1, . . . , L(i−1), Li, L(i+1), . . . , Lm and
Li = p(s1, . . . , sn). Let rule R be of form p(s1, . . . , sn) :− B. The renaming of G at Li by R using %
then is the goal L1, . . . , L(i−1), s1 = %(t1), . . . , sn = %(tn), %(B), L(i+1), . . . , Lm, where % is chosen so
that variables from %(R) do not appear in G .
Definition 11 (Derivation). Let G be a query and P be a CLP program. A state of the program is a
pair 〈G | C〉 where C is a constraint storage.

Let the program be in state 〈Gi | Ci〉, where Gi = L1, . . . , Ln. A derivation step from 〈Gi | Ci〉 to
〈G(i+1) | C(i+1)〉 denoted 〈Gi | Ci〉 ⇒ 〈G(i+1) | C(i+1)〉, is defined as follows:

If L1 is a primitive constraint, then C(i+1) = Ci ∧ L1. If C(i+1) is not satisfiable then G(i+1) is an
empty goal. Otherwise, G(i+1) = L2, . . . , Ln.

If L1 is a user-defined constraint, then C(i+1) = Ci and G(i+1) = %(L1), L2, . . . , Ln, where %(L1) is
the renaming of the constraint L1 in Gi to guarantee that no variable names used in earlier steps
occur.

A derivation is a sequence of derivation steps 〈G1 | C1〉 ⇒ 〈G2 | C2〉 ⇒ . . . ⇒ 〈Gn | Cn〉. A
derivation for a query G starts with the initial state 〈G | true〉. A derivation is successful if it ends
in a state 〈2 | C〉 with C for which solver solv(C) returns either true or unknown.

The constraint storage C of the final state 〈2 | C〉 is named an answer to the goal G.
A valuation θ is a solution for query G if D |= [[C]]θ where C is an answer to 〈G | true〉. �

5. Data Abstraction
Signals coming from the chaotic environment can carry any value. This often boosts the state space
of the system to infinity. We do not make any assumptions about values from environment, meaning
one can conceptually abstract values influenced by the environment via inputs and assignments to
one abstract “chaotic” value, denoted >>. That basically means ignoring these values and focusing
on the control structure of a process. Values that are not influenced by the environment remain the
original ones, and so they should be treated in the same way as in the original system. This data
abstraction was first proposed in [33] for model checking open systems. A system obtained by this
approach is a safe abstraction of the original one, meaning, it shows at least the behaviors of the
original system [33, 21].
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sort Bool>>

func >>Bool : → Bool>>

κBool : Bool → Bool>>

map and>> : Bool>> ×Bool>> → Bool>>

γ : Bool>> → Bool
var b, b′ : Bool
rew and>>(κ(b), κ(b′)) = κ(and(b, b′))

and>>(>>Bool, κ(F )) = and>>(κ(F ),>>Bool) = κ(F )
and>>(>>Bool, κ(T )) = and>>(κ(T ),>>Bool) = >>Bool

and>>(>>Bool,>>Bool) = >>Bool

γ(>>Bool) = T
γ(κ(b)) = b

Figure 2: Transformed sort Bool>>

We implement data abstraction as a transformation on the level of system specification. Abstraction
on the level of specifications is well developed within the Abstract Interpretation framework [10, 11, 12].
The program transformation implementing this data abstraction transforms the signature and the
process definition. For each sort S , we introduce a sort S>> that consists of two constructors, >>S :→
S>> and κ : S → S>>. The first constructor defines a >> value of the sort. The constructor κ (known)
lifts values of sort S to values of sort S>>. For each concrete mapping m : S1 × · · · × Sn → Sn+1, we
define a mapping m>> : S>>1 × · · · × S>>n → S>>n+1 mimicking the original one on the abstracted sorts.
In the general case, mimicking is ensured by providing the following rewrite rules for each abstract
mapping m>>:

m>>(κ(x1), . . . , κ(xn)) = κ(m(x1, . . . , xn))
m>>(x1, . . . , xn) = >>Sn+1 if xi is >>Si

for some i ∈ {1; ...;n}

The transformation of the process specification consists in lifting all variables, expressions and
guards to the new sorts. Each occurrence of a variable x of sort S , is substituted by an occurrence of
the variable x>> of type S>> where S>> is a safe abstraction of sort S. Each occurrence of an expression e
of type S is lifted to expression e>> of sort S>>. Thereby, all the newly introduced symbols (constructors
and rewrite rules) are used and replace the appropriate original ones.

Transformation of guards is similar to the transformation of expressions. Every occurrence of a guard
g is lifted to a guard g>> of type Bool>>. While transforming guards we should ensure that the abstract
system shows at least the behavior of the original system. Therefore, the guards valuated to κ(true) or
κ(false) behave like guards evaluating to true or false, respectively. The guards valuated to >> behave
as guards evaluating to true. We implement this by introducing an extra mapping γ : Bool>> → Bool
that is true whenever a guard is evaluated either to >> or to κ(true) and false otherwise. To avoid
introducing unnecessary nondeterminism, we apply a more refined transformation to the sort Bool.
Its abstraction, sort Bool>>, is illustrated in Fig. 2.

Definition 12 (May Semantics for Chaotic Guards). While a guard g is defined as a function g : D →
{true, false}, a chaotic guard is defined as a function g>> : D>> → {true, false, >>}. To map this three
value logic back to a two value logic, a may-function γ : {true, false, >>} → {true, false} is defined as
follows: γ(κ(true)) = true, γ(κ(false)) = false and γ(>>) = true. �

After transforming the signature and lifting system variables, expressions and guards, we obtain a
system that still can receive all possible values from the environment. The environment can influence
data only via inputs. We transformed every input l −→?s(x) l̂ from the environment into an input
of signal s parameterized by the >>-value of the proper sort followed by assigning this >>-value to
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the variable x (see rule Input>> in Table 2). Assignments and outputs are treated w.r.t. the rules in
Table 1. The semantics of the transformed system are given by the inference rules in Table 3.

Spec Tab. 2−→ Spec>>

Tab. 1
y yTab. 3

M �≤ M>>

M>> can receive only >> values from environment, so the infinity of environmental data is collapsed
into one value. Basically, the transformed system shows at least the traces of the original system
where data influenced by environment are substituted by >> values. This means, that M>> simulates
M . Further, we give an overview of preservation results based on [21, 19].
Definition 13 (≤-Simulation). Let M1 = (Σ1, Lab1, →1, σ1

0) and M2 = (Σ2, Lab2, →2, σ2
0) be two

IOLTS s. (≤a,≤b) is a simulation, iff ∀σ1, σ̂1, σ2, λ1∃σ̂2, λ2

(
σ1 ≤a σ2∧σ1 →λ1 σ̂1 ⇒ (λ1 ≤b λ2∧ σ̂1 ≤a

σ̂2 ∧ σ2 →λ2 σ̂2)
)
, σ1, σ̂1 ∈ Σ1, λ1 ∈ Lab1, σ2, σ̂2 ∈ Σ2, λ2 ∈ Lab2.

We write M1 �≤ M2 if there is such a relation between M1 and M2, also relating their initial states
σ1

init ≤a σ2
init. �

This simulation relation is now defined for concrete and abstracted IOLTS s. Before relating traces
of the transformed system to the traces of the original system, we define an order relation on the
states and on the labels of the systems. To relate states Loc × Val of the original system with the
states of the transformed system Loc ×Val>>, we define the relation ≤S on states as ≤S : Σ× Σ>>.
Definition 14 (Relation ≤S). Let σ = (l, η) and σ>> = (l, η>>) be two states of the IOLTS s M and
M>> with specifications Spec and Spec>>. ≤S : Σ × Σ>> is defined as σ ≤S σ>> iff ∀x ∈ Var

(
[[x]]η>> =

>> ∨ [[x]]η>> = κ([[x]]η)
)
. �

To relate labels Lab of the original system with the labels of the transformed system Lab>>, we
define the relation ≤L: Lab × Lab>>.
Definition 15 (Relation ≤L). Let λ ∈ Lab and λ>> ∈ Lab>>. Then λ ≤L λ>> is defined as follows:

• τ ≤L τ

• ?s(v) ≤L?s(v′) iff either v′ = >> or v′ = κ(v)

• !s(v) ≤L!s(v′) iff either v′ = >> or v′ = κ(v)

�

Lemma 1. Let Spec be a specification and Spec>> be a specification obtained from Spec by the transfor-
mation defined in this section. Let M and M>> be IOLTS s obtained from respectively Spec and Spec>>

by the rules in Table 1 or Table 3, respectively. Then M �≤ M>> and (≤S ,≤L) is this simulation. �

l −→?s(x) l̂ ∈ Edg
Input>>

l −→?s(>>)−→true B x:=>> l̂ ∈ Edg>>

l −→g B!s(e) l̂ ∈ Edg
Output>>

l −→γ(g>>) B!s(e>>) l̂ ∈ Edg>>

l −→g B x:=e l̂ ∈ Edg
Assign>>

l −→γ(g>>) B x:=e>> l̂ ∈ Edg>>

Table 2: Transformation of edges (Spec → Spec>>)
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Proof. The lemma can easily be proven based on Definition 13. Let a specification Spec and its
abstracted counterpart Spec>> be given as follows:

Spec =
(
Z, E , (Var ,Loc, σinit,Edg)

)
with σinit = (linit, ηinit)

Spec>> =
(
Z>>, E>>, (Var ,Loc, σ>>init,Edg>>)

)
with σ>>init = (linit, η

>>
init)

ηinit is the initial valuation of all global variables in Spec. Analogously, η>>init is the initial valuation
of all global variables in Spec>> with some values possibly being set to >>. The semantics of the
specifications are given by two IOLTS s M and M>> defined as follows:

M = (Σ,Lab,→, σinit)
M>> = (Σ>>,Lab>>,→>>, σ>>init)

Furthermore, let σ, σ̂ ∈ Σ, σ →λ σ̂ in the set of transitions and σ>> ∈ Σ>> be given. We prove
the lemma by first considering the relationship between the initial states of both systems and then
considering the relation of an arbitrary step.

Initial step – σinit ≤S σ>>init: We consider the initial states first. σ>>init = (linit, η
>>
init) is derived from

σinit = (linit, ηinit) by substituting either none or some or all variable values in ηinit by >>, while the
control location linit stays the same all three cases. Substituting values in this way leads to η>>init.
The relation ≤S holds here. If η>> is initialized with the original values from M , ∀x ∈ Var

(
[[x]]η>>init

=
κ([[x]]ηinit

)
)

holds. If all initialization values are set to >>, ∀x ∈ Var([[x]]ηinit
= >>) holds. For a mixed

valuation, Var can be divided into exactly two disjunct subsets for which the two conditions above
hold as well so that Definition 14 is fully satisfied.

General step – λ ≤L λ>> ∧ σ ≤S σ>>: Now, we consider the general step. Assume that σ ≤S σ>> and
let σ →λ σ̂ in M be given. Under these conditions, we can prove that:

• ∃σ>> →λ>> σ̂>> in the set of transitions of M>> such that λ ≤L λ>> and

• σ̂ ≤S σ̂>>.

σ ≤S σ>>

λ
y ≤L

yλ>>

σ̂ ≤S σ̂>>

l −→?s(x)−→true B x:=>> l̂ ∈ Edg>>
Input>>

(l, η>>) −→?s(>>) (l̂, η>>[x 7→>>])

l −→γ(g) B!s(e) l̂ [[γ(g)]]η = true [[e]]η = v
Output>>

(l, η) −→!s(v) (l̂, η)

l −→γ(g) B x:=e l̂ [[γ(g)]]η = true [[e]]η = v
Assign>>

(l, η)→τ (l̂, η[x 7→ v])

Table 3: Step-semantics of transformed edges (Spec>> → M>>)
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We have to prove that an appropriate transition σ>> →λ>> σ̂>> is generated in M>> with σ̂ ≤S σ̂>>.
In order to do so, we have to distinguish three different cases, namely input actions, output actions
and τ -steps. In all three cases, the action in M starts in a state σ = (l, η), that in M>> starts in a
state σ>> = (l, η>>) with σ ≤S σ>> ⇔ (l, η) ≤S (l, η>>).

Input action: Let λ be ?s(x). The semantics of the step l →?s(x) l̂ is given for M in table 1
as (l, η) →?s(v) (l̂, η[x 7→ v]). For M>>, rule Input>>, given in table 2, transforms the step to
l →?s(>>)→true B x:=>> l̂. Its step semantics, given as rule Input>> in table 3, finally leads to
(l, η>>) →?s(>>) (l̂, η>>[x 7→>>]). It holds that ?s(v) ≤L?s(>>), since ?s(v) ≤L?s(v′) with v′ = >>.

Furthermore, (l̂, η[x 7→ v]) ≤S (l̂, η>>[x 7→>>]), since ∀x ∈ Var
((

[[x]]η>> = κ([[x]]η)
)
∨

(
[[x]]η>> = >>

))
.

With σ̂ = (l̂, η[x 7→ v]) and σ̂>> = (l̂, η>>[x 7→>>]), this immediately leads to σ̂ ≤S σ̂>>.

Output action: Let λ be g B!s(e). The step semantics for l →g B!s(e) l̂ given in table 1 is (l, η) →!s(v)

(l, η) with [[e]]η = v for M and (l, η>>) →γ(g>>) B!s(e>>) (l, η>>) for M>>. The fact, that η ≤ η>>

holds has already been shown above. It is guaranteed that this step appears in M>>, since
∀g(g ⇒ γ(g>>)) per definition (Definition 12). As defined in Definition 15, !s(v) ≤L!s(v>>) holds
for v>> = κ(v). If v>> is influenced by >> in M>>, this leads to !s(v) ≤L!s(>>), which also holds as
of Definition 15. σ̂ ≤S σ̂>> for the same reason as shown above; there has even been no change
in the valuation η or η>>, resp.

τ-step: Let λ be an assignment x := e. The semantics of the step l →g B x:=e l̂ is given for M in
table 1 as (l, η) →τ (l̂, η[x 7→ e]). For M>>, rule Input>>, given in table 2, transforms the step to
l →γ(g) B x:=e>> l̂. Its step semantics, given as rule Input>> in table 3, finally leads to (l, η>>) →τ

(l̂, η>>
[x 7→ e>>]

). It is trivial to show that τ ≤L τ holds, since we have equal actions here without

any data parameters. Furthermore, (l̂, η[x 7→ e]) ≤S (l̂, η>>
[x 7→ e>>]

), since ∀x ∈ Var
((

[[x]]η>> =

κ([[x]]η)
)
∨

(
[[x]]η>> = >>

))
. With σ̂ = (l̂, η[x 7→ e]) and σ̂>> = (l̂, η>>

[x 7→ e>>]
), this immediately leads

to σ̂ ≤S σ̂>>.

Using Lemma 1, it is easy to show that every trace of M can be mimicked by a trace of M>>.
Definition 16. Let (σM , σN ) be a state of M×N and (σO, σP ) be a state of O×P . Then the following
holds: (σM , σN ) ≤S (σO, σP ) ⇔ σM ≤S σO ∧ σN ≤S σP . �

Lemma 2. For the synchonous product of automata S and T with P holds: ∀S, T, P (S �≤ T ⇒
S × P �≤ T × P ) under the simulation relation (≤S ,≤L). �

Proof. Let σS , σ̂S ∈ ΣS , σT ∈ ΣT and σP ∈ ΣP be arbitrary states in the automata’s state spaces.
We assume that (σS , σP ) ≤S (σT , σP ), since S �≤ T following Definition 16. Furthermore, we can
assume (see proof for Lemma 1) that σ̂S ≤S σ̂T , σ̂T ∈ ΣT . As of Definition 16, (σ̂S , σ̂P ) ≤S (σ̂T , σ̂P )
since both σ̂S ≤S σ̂T and σ̂P ≤S σ̂P (trivial).

(σS , σP ) ≤S (σT , σP )
λ
y ≤L

yλ>>

(σ̂S , σ̂P ) ≤S (σ̂T , σ̂P )

Now let there be σS →S
λ σ̂S , σT →T

λ σ̂T and σP →P
λ σ̂P . Building the synchronous product over the

automata leads to the transitions (σS , σP ) →S×P
λ (σ̂S , σ̂P ) and (σT , σP ) →T×P

λ (σ̂T , σ̂P ). Building
the synchronous product over two of the automata does not change anything about the action λ under
consideration, so if λ ≤L λ holds for S and T , it will do the same for S × P and T × P .
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Definition 17 (≤-inclusion on traces). Let ζ and ρ be traces of IOLTS s M1 and M2. Trace ρ≤-includes
ζ, written ζ ≤ ρ, iff |ζ| = |ρ| and ζλ(i + 1) ≤L ρλ(i + 1) for all i ∈ {0; . . . ; |ζ|}. �

Definition 18 (≤-inclusion on automata). The set of traces generated by IOLTS M2 ≤-includes the
set of traces generated by IOLTS M1, written as [[M1]]trace ⊆≤ [[M2]]trace , iff for every trace ζ of M1

there exists a trace ρ in M2 such that ζ ≤ ρ. �

Lemma 3. Let TP be a test purpose, MSP be a synchronous product of M with MTP , and M>>
SP be

a synchronous product of M>> with MTP . Then [[MSP ]]atrace ⊆≤ [[M>>
SP ]]atrace and [[MSP ]]rtrace ⊆≤

[[M>>
SP ]]rtrace . �

Proof. Let M ×MTP be the synchronous product of a system and a test purpose and let M>>×MTP

be the synchronous product of an abstracted system and the same test purpose. For both products,
the sets of traces are defined as the disjunct set of accepting traces, which end in an acceptance state,
and refusing traces ending in a refusal state. That means [[M ×MTP ]]trace = [[M ×MTP ]]atrace ∪̇[[M ×
MTP ]]rtrace and [[M>> ×MTP ]]trace = [[M>> ×MTP ]]atrace ∪̇[[M>> ×MTP ]]rtrace . We have to show that
the following holds:

1. [[M ×MTP ]]atrace ⊆≤ [[M>> ×MTP ]]atrace and

2. [[M ×MTP ]]rtrace ⊆≤ [[M>> ×MTP ]]rtrace .

As we have proved before, M ×MTP �≤ M>>×MTP holds (lemmata 1 and 2). It follows from defi-
nitions 17 and 18 that [[M×MTP ]]atrace ∪̇[[M×MTP ]]rtrace ⊆≤ [[M>>×MTP ]]atrace ∪̇[[M>>×MTP ]]rtrace .
Herefrom, we can conclude that

1. [[M ×MTP ]]atrace ⊆≤ [[M>> ×MTP ]]atrace ∪̇[[M>> ×MTP ]]rtrace and

2. [[M ×MTP ]]rtrace ⊆≤ [[M>> ×MTP ]]atrace ∪̇[[M>> ×MTP ]]rtrace .

To prove the above claim, we have to show that

1. [[M ×MTP ]]atrace ∩ [[M>> ×MTP ]]rtrace = ∅ and

2. [[M ×MTP ]]rtrace ∩ [[M>> ×MTP ]]rtrace = ∅.

This is easy to show. There exists no trace ρ ∈ [[M ×MTP ]]atrace which would ever end in a refusal
state, so we can conclude immediately ρ ∈ [[M ×MTP ]]atrace ⇒ ρ 6∈ [[M>> ×MTP ]]rtrace . Analogously,
we can say that ρ ∈ [[M ×MTP ]]rtrace ⇒ ρ 6∈ [[M>> ×MTP ]]atrace . For this reason, our entrance claim
holds.

6. Testing with Abstractions
In this section, we describe the approach of test selection and execution with data abstraction. First,
we give an algorithmic overview over the whole process. Then, we describe how the necessary rule
system is built and how test selection and execution work algorithmically. Finally, we review our
approach and prove the soundness of verdicts derived from test execution.

Test Process Overview
In Figure 3, the test process is described as an algorithm (for its graphical representation cf. Figure 10).
Its input parameters are a specification Spec and a test purpose TP . Spec is abstracted to Spec>>

according to Section 5. Then M>>
Spec is generated from Spec>> and MTP from TP . In parallel, a rule

system RS is built, containing all conditions from Spec. RS will later be needed to parameterize test
cases with concrete data. From the two IOLTS s, the complete test graph M>>

CTG is generated using
TGV (cf. [3]). M>>

CTG may contain choices between several outputs to the IUT or even between inputs
and outputs, so it is not necessarily controllable. Furthermore, M>>

CTG is an overapproximation of all
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Algorithm 1 (SelectAndExecTest(Spec,TP) : verdict ∈ {None,Pass, Inconc,Fail}).
1 setVerdict(None);
2 Spec>> := abstract(Spec);
3 RS := buildRuleSystem(Spec);
4 M>>

Spec := generateLTS (Spec>>);
5 MTP := generateLTS (TP);
6 M>>

CTG := generateCTG(M>>
Spec ,MTP );

7 M>>
TC := selectATC (M>>

CTG);
8 while M>>

TC 6= no testcase
9 (β, θ) := NewPassTrace(no trace, ∅,M>>

TC );
10 if (β, θ) 6= no solution
11 then
12 ExecTest(β, θ,no trace,M>>

TC );
13 terminate;
14 fi
15 M>>

TC := selectATC (M>>
CTG);

16 elihw

Figure 3: Selection and execution of tests

test cases of the original system which satisfy the test purpose, so it may contain traces leading to
unsound verdicts.

Our goal is to obtain parameterizable test cases (for instance in TTCN-3 [14]) together with in-
formation about values that can be used to instantiate them. Hence, we are interested in test cases
where no nondeterministic choice is possible between several outputs or between inputs and outputs.
Therefore, we single out a subgraph of M>>

CTG that contain neither choices between several outputs or
choices between inputs and outputs nor loops. We refer further to this subgraph as an abstract test
case (ATC), denoted M>>

TC .
Even though we are still working on the level of IOLTS s here, we now have to introduce variables

for parameterization. In M>>
TC , each occurrence of >> is substituted by a unique symbolic variable

vij
parameterizing inputs and outputs, respectively. The double index is necessary to identify the

state, in which the transition with the variable starts (index i) and to uniquely identify this variable
within the set of variables on transitions from state i (index j). These variables are embedded into
the transition labels of the IOLTS , but are distinguished as a separate set Var in the further regard.

Definition 19 (Parameterizable Test Case). Given a complete test graph M>>
CTG = (K , VarCTG , Lab,

→CTG , kinit), a parameterized test case M>>
TC is an input complete IOLTS (K ′, VarTC , Lab, →TC ,

kinit) where the set VarTC of symbolic variables of M>>
TC is a subset of the set VarCTG of symbolic

variables of M>>
CTG ; the set of states of the test case is a subset of the set of states of the complete test

graph, and the test case shows only Pass, Inconc and Fail traces possible in the complete test graph,
i.e. [[M>>

TC ]]Pass ⊆ [[M>>
CTG ]]Pass, [[M>>

TC ]]Inconc ⊆ [[M>>
CTG ]]Inconc, and [[M>>

TC ]]Fail ⊆ [[M>>
CTG ]]Fail. �

Before such a test case can be executed, it must be instantiated. This means, that each of the
variables vij

must be preset with a value such that a Pass-state in the test case can be reached with
this valuation. In order to do so, a trace to Pass is selected with NewPassTrace. This algorithm
is described in more detail in Section 6. If such a trace exists, it can be executed under the given
valuation. If this is not the case, then the next possible trace is searched. If no such trace can be
found in the abstract test case under consideration, the next test case is generated and examined for
traces to Pass. If no such trace could be determined at all, then the algorithm terminates with the
final verdict None, since it has not executed any test cases. Please remark, that only one trace is
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l −→g B!s(e) l̂ ∈ Edg
ROutput

s(state(l,Var), state(l̂,Var), param(e)) :− g.

l −→?s(x) l̂ ∈ Edg
RInput

s(state(l,Var), state(l̂,Var [x 7→Y ]), param(Y )).

l −→g B x:=e l̂ ∈ Edg
RAssign

τ(state(l,Var), state(l̂,Var [x 7→ e]), param) :− g.

Table 4: Transformation of specification Spec into rule system RS

selected and executed by this algorithm, even though there might be more. A complete test suite
consisting of more than one traces, could be executed by introducing a loop which repeats the trace
selection and execution actions. The final verdict would then be the upper limit of verdicts for the
single tests (see Definition 8).

Executing the trace β does not mean, that the test execution algorithm is bound to the trace for the
whole execution. At some point during test execution, the IUT may leave the precalculated trace. In
case, that the SUT nondeterministically decides to leave β, the test execution algorithm tries to find
another trace to a Pass verdict. This new trace, however, must contain the part of β, which has yet
been executed, as its prefix. This is also the case for the valuation of this trace prefix. The valuation
can also only be extended by new values for the alternative trace.

Building the Rule System and Queries
A parameterized test case may contain traces introduced by data abstraction. Moreover, information
about the relationship of symbolic variables or concrete values they can be substituted with is absent.
To sort out spurious traces and to obtain information about valuations for symbolic variables, we
employ constraint solving.

We transform the original specification Spec to a constraint logic program or a rule system RS.
This rule system can then be queried. Each Pass-trace β which is selected from M>>

TC is transformed
into a query G := Oβ(θ). Let the set of symbolic variables in the specification be Var symb . If there
is no solution for the query, β is a spurious trace introduced by data abstraction and we remove the
trace from the test case. If there is a solution θ : Var symb → D in RS for the query, the trace β can
be mapped to the trace of the original system.

We refer to trace β with symbolic variables substituted according to θ as an instantiated trace
denoted β(θ). The instantiated trace β(θ) is a trace of the original system M . As we will prove later,
the verdict assigned by β(θ) is sound. Knowing at least one possible solution for any Pass-trace is
already enough to start executing test case M>>

TC . Further, we define the transformation of an original
specification into a rule system and obtain a query from a Pass- or Inconc-trace of the test case.

Transformation from the original specification Spec to the rule system RS is defined by the inference
rules given in Table 4. These rules map edges of the specification to rules of RS. All the rules are of
the form rule name(state(l,Var), state(l̂,Var

′
), param(Y )) :− g. The first state parameter describes

the source state of the edge in terms of the specification location and the process variables. The
second state parameter describes the changed target state in the same terms. The third parameter
param contains all symbolic variables or expressions which are local for this edge. These are the action
parameters.

Rule ROutput transforms an output edge l −→g B!s(e) l̂ into a rule s(state(l,Var), state(l̂,Var),
param(e)) :− g. The name of the rule coincides with the signal s. The edge leads to change of location
from l to l̂. The values of the process variables Var remain unmodified. The signal is parameterized
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with a value given by expression e that becomes a parameter of the param-part of the rule. The rule
holds only if the guard is satisfied.

Rule RInput transforms an input edge l −→?s(x) l̂ into a rule s(state(l,Var), state(l̂,Var [x 7→Y ]),
param(Y )). Here, input leads to the substitution of process variable x by a symbolic variable Y that
is local for this rule.

Rule RAssign maps an assign-edge l −→g B x:=e l̂ into a τ -rule τ(state(l,Var), state(l̂,Var [x 7→ e]),
param) :− g. The rule is satisfied only if the guard g is satisfied. An assignment is represented by
substituting process variable x by expression e. τ -rules have no local parameters, thus the structure
param has the arity 0.

oracle(i, r) =



[] , iff r = [][
sig(τ)(state(linit,Var init), state(l1,Var1), param)|oracle(1, r′)

]
,

iff i = 0 ∧ r = [σ →τ σ′|r′][
sig(s)(state(linit,Var init), state(l1,Var1), param(Y ))|oracle(1, r′)

]
,

iff i = 0 ∧
(
r =

[
σ →?s(Y ) σ′|r′

]
∨ r =

[
σ →!s(Y ) σ′|r′

] )[
sig(τ)(state(li,Var i), state(li+1,Var i+1), param)|oracle(i + 1, r′)

]
,

iff i > 0 ∧ r = [σ →τ σ′|r′][
sig(s)(state(li,Var i), state(li+1,Var i+1), param(Y ))|oracle(i + 1, r′)

]
,

iff i > 0 ∧
(
r =

[
σ →?s(Y ) σ′|r′

]
∨ r =

[
σ →!s(Y ) σ′|r′

] )
Table 5: Transformation of a trace of M>>

TC into oracle OTC

After the rule system RS has been generated, we proceed with choosing a Pass-trace β in M>>
TC

and transforming it into an oracle Oβ := oracle(0, β) using the function given in Table 5. Basically, a
oracle is a sequence of rule invocations corresponding to the transitions along the chosen Pass-trace.
Each transition along the trace is transformed into a rule invocation, which has the name of the action
under consideration given as sig(s). The parameters of this rule invocation are the state of the system
where the transition starts (first parameter), the system’s state after the transition and the action’s
parameters. In the first transition, which is characterized by the counter i = 0, the starting state of
the transition is set to the initial state of the system. The function oracle then iterates through the
trace and appends all rule invocations to one list, which forms the oracle.

In the oracle Oβ , all free variables in the system have not yet been bound to values. This happens
by applying the constraint solver to the rule system RS and the oracle Oβ using the function θ :=
solve(RS,Oβ , θconst).

Definition 20 (Partial Valuation). Let vars : [[M ]]trace → Var symb be a function that projects the set
of variables Var symb of M to that subset that is actually used in a given trace from [[M ]]trace .

Given a valuation θ : vars(β) → D and a trace δ, which is a prefix of β, we define the partial
valuation bθcδ : vars(δ) → D such that bθcδ(x) = θ(x)∀x ∈ vars(δ). �

The parameter θconst ⊆ θ can be used to define a set of constant valuation assignments. For
instance, if a prefix δ of β has already been executed during a test and only for the suffix of β a new
valuation has to be found, θconst := bθcδ can be defined as this set of constant values. In all cases,
where this situation is not applicable, i.e. no part of θ has to be constant, the optional parameter
θconst can be defined as ∅ and is further ignored. Having calculated a valuation θ for a trace β, the
query G := Oβ(θ) can be built and it can be checked, whether < G , true > is solvable.

When describing the test selection process in Section 6, the algorithm NewPassTrace has already
been mentioned. Its task is to select a trace β from the abstract test case and find a valuation θ, so
that β(θ) is a trace in the original system specification Spec. Therefore, the algorithm makes use of
the oracle Oβ and the rule system RS.
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Lemma 4. Let β(θ) be a trace β of the ATC instantiated with the valuation θ. Then:

RS ` Oβ(θ) ⇔ β(θ) ∈ [[MSpec ]]trace

Proof. To show the equivalence stated above, we have to divide the proof into two parts, proving each
direction separately.

RS ` Oβ(θ) ⇐ β(θ) ∈ [[MSpec ]]trace We begin with proving the lemma for test oracles consisting of
only one step.

1. Let β(θ) be a trace of one transition σinit →τ σ̂ ≡ (linit,Var init) →τ (l̂,Var init[x 7→ v]). As
defined in the step semantics in Table 1 (rule Assign), the appropriate step in the specification
is linit −→g B x:=e l̂ with [[g]]θ = true and v = [[e]]θ. According to rule RAssign in Table 4,
the rule system RS contains the rule τ(state(linit,Var init), state(l̂,Var init[x 7→ e]), param) :− g.
Following the function oracle in Table 5, the oracle Oβ only contains the rule invocation
τ(state(linit,Var init), state(l1,Var1), param). This oracle holds since

(a) RS contains the appropriate rule (see above),

(b) this rule instantiates e with [[e]]θ when invoked, and

(c) this rule holds for l̂ = l1, Var init[x 7→ e] = Var1 under valuation θ and [[g]]θ = true.

2. Let β(θ) be a trace of one transition σinit →!s(v) σ̂ ≡ (linit,Var init) →!s(v) (l̂,Var init). As
defined in the step semantics in Table 1 (rule Output), the appropriate step in the specification
is l →g B!s(e) l̂ with [[g]]θ = true and v = [[e]]θ. According to rule ROutput in Table 4, the rule
system RS contains the rule s(state(linit,Var init), state(l̂,Var init), param(e)) :−g. Following the
function oracle in Table 5, the oracle Oβ only contains the rule invocation s(state(linit,Var init),
state(l1,Var1), param(v)) with v = [[e]]θ. This oracle holds since

(a) RS contains the appropriate rule (see above),

(b) this rule instantiates e with [[e]]θ when invoked, and

(c) this rule holds for l̂ = l1, Var init = Var1 under valuation θ and [[g]]θ = true.

3. Let β(θ) be a trace of one transition σinit →?s(v) σ̂ ≡ (linit,Var init) →?s(v) (l̂,Var init[x 7→ v]). As
defined in the step semantics in Table 1 (rule Input), the appropriate step in the specification
is linit →?s(x) l̂. According to rule RInput in Table 4, the rule system RS contains the
rule s(state(linit,Var init), state(l̂, Var init[x 7→Y ]), param(Y )). Following the function oracle in
Table 5, the oracle Oβ only contains the rule invocation s(state(linit,Var init), state(l1,Var1),
param(v)). Thus, this oracle holds since

(a) RS contains the appropriate rule (see above),

(b) this rule instantiates Y with v when invoked, and

(c) this rule holds for l̂ = l1 and Var [x 7→Y ] = Var1 under valuation θ.

Since we assume the constraint-solver to work correctly, this will be the case if β(θ) ∈ [[MSpec ]]trace .
Now we regard the general step of the proof. We assume to have an oracle Oδ, which holds under

θ since δ ∈ [[MSpec ]]trace . We extend δ by one transition to completely describe trace β ∈ [[MSpec ]]trace
with the prefix δ.

4. Let β(θ) be a trace with the prefix δ followed by the transition σ →τ σ̂ ≡ (l,Var) →τ

(l̂,Var [x 7→ v]). As defined in the step semantics in Table 1 (rule Assign), the appropriate step in
the specification is l −→g B x:=e l̂ with [[g]]θ = true and v = [[e]]θ. According to rule RAssign in
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Table 4, the rule system RS contains the rule τ(state(l,Var), state(l̂,Var [x 7→ e]), param) :− g.
Following the function oracle in Table 5, the oracle Oβ only contains the rule invocation
τ(state(ln,Varn), state(ln+1,Varn+1), param). This oracle holds since

(a) RS contains the appropriate rule (see above),

(b) this rule instantiates e with [[e]]θ when invoked, and

(c) this rule holds for l = ln, l̂ = ln+1, Var = Varn, Var [x 7→ e] = Varn+1 under valuation θ
and [[g]]θ = true.

5. Let β(θ) be a trace with the prefix δ followed by the transition σ →!s(v) σ̂ ≡ (l,Var) →!s(v)

(l̂,Var). As defined in the step semantics in Table 1 (rule Output), the appropriate step in the
specification is l →g B!s(e) l̂ with [[g]]θ = true and v = [[e]]θ. According to rule ROutput in Ta-
ble 4, the rule systemRS contains the rule s(state(l,Var), state(l̂,Var), param(e)) :−g. Following
the function oracle in Table 5, the oracle Oβ only contains the rule invocation s(state(ln,Varn),
state(ln+1,Varn+1), param(v)) with v = [[e]]θ. This oracle holds since

(a) RS contains the appropriate rule (see above),

(b) this rule instantiates e with [[e]]θ when invoked, and

(c) this rule holds for l = ln, l̂ = ln+1, Var = Varn = Varn+1 under valuation θ and [[g]]θ =
true.

6. Let β(θ) be a trace with the prefix δ followed by the transition σ →?s(v) σ̂ ≡ (l,Var) →?s(v)

(l̂,Var [x 7→ v]). As defined in the step semantics in Table 1 (rule Input), the appropriate step in
the specification is l →?s(x) l̂. According to rule RInput in Table 4, the rule system RS contains
the rule s(state(l,Var), state(l̂,Var [x 7→Y ]), param(Y )). Following the function oracle in Table 5,
the oracleOβ only contains the rule invocation s(state(ln,Varn), state(ln+1,Varn+1), param(v)).
Thus, this oracle holds since

(a) RS contains the appropriate rule (see above),

(b) this rule instantiates Y with v, when invoked, and

(c) this rule holds for l = ln, l̂ = ln+1, Var = Varn and Var [x 7→Y ] = Varn+1 under valuation
θ.

Since we assume the constraint-solver to work correctly, this will again be the case if β(θ) ∈ [[MSpec ]]trace .

RS ` Oβ(θ) ⇒ β(θ) ∈ [[MSpec ]]trace We begin with the trace consisting of one transition again.

1. τ Step: Let Oβ contain only the rule invocation τ(state(linit,Var init), state(l1,Var1), param).
This is the final situation after having applied the function oracle to a trace β, which con-
tains one transition σinit →τ σ̂ ≡ (linit,Var init) →τ (l̂,Var init[x 7→ v]) only (see Table 5).
The transition itself has been generated from a specification with an edge linit →g B x:=e l̂,
[[g]]θ = true and [[e]]θ = v (see Table 1, rule Assign). Oβ holds under θ because of the
rule τ(state(linit,Var init), state(l̂,Var init[x 7→ v]), param) :− g in RS, which holds under θ with
v = [[e]]θ, l̂ = l1 and Var init[x 7→ v] = Var1. This rule has been generated from MSpec by RAssign
(see Table 4) for the named edge.

2. Output action: Let Oβ contain only the rule invocation s(state(linit,Var init), state(l1,Var1),
param(v)) with v = [[e]]θ. This is the final situation after having applied the function oracle
to a trace β, which contains one transition σinit →!s(v) σ̂ ≡ (linit,Var init) →!s(v) (l̂,Var init)
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only (see Table 5). The transition itself has been generated from a specification with an edge
linit →g B!s(e) l̂, [[g]]θ = true and [[e]]θ = v (see Table 1, rule Output). Oβ holds under θ because
of the rule s(state(linit,Var init), state(l̂,Var init), param(e)) :−g in RS, which holds under θ with
e being instantiated with [[e]]θ, v = [[e]]θ, l̂ = l1 and Var init = Var1. This rule has been generated
from MSpec by ROutput (see Table 4) for the named edge.

3. Input action: Let Oβ contain only the rule invocation s(state(linit,Var init), state(l1,Var1),
param(v)). This is the final situation after having applied the function oracle to a trace β,
which contains one transition σinit →?s(v) σ̂ ≡ (linit,Var init) →?s(v) (l̂,Var init[x 7→ v]) only (see
Table 5). The transition itself has been generated from a specification with an edge linit →?s(x) l̂

(see Table 1, rule Input). Oβ holds under θ because of the rule s(state(linit,Var init), state(l̂,
Var init[x 7→Y ]), param(Y )) in RS, which holds under θ with Y = v, l̂ = l1 and Var init[x 7→ v] =
Var1. This rule has been generated from MSpec by RInput (see Table 4) for the named edge.

Since we only regard a one-transition trace β here, β ∈ [[MSpec ]]trace holds in all three cases.
Now we assume an oracle Oδ which holds under θ since there exists a β(θ) ∈ [[MSpec ]]trace . In the

general step, we add a rule invocation to the oracle to complete Oβ for trace β with its prefix δ. We
then show that β(θ) ∈ [[MSpec ]]trace .

4. τ Step: Let Oβ contain the rule invocations for Oδ and one additional rule invocation τ(state(ln,
Varn), state(ln+1,Varn+1), param). This is the final situation after having applied the function
oracle to a trace β, which contains the transition σ →τ σ̂ ≡ (l,Var) →τ (l̂,Var [x 7→ v]) only (see
Table 5). The transition itself has been generated from a specification with an edge l →g B x:=e l̂,
[[g]]θ = true and [[e]]θ = v (see Table 1, rule Assign). Oβ holds under θ because of the rule
τ(state(l,Var), state(l̂,Var [x 7→ v]), param) :− g in RS, which holds under θ with v = [[e]]θ, l = ln,
l̂ = ln+1, Var = Varn and Var [x 7→ v] = Varn+1. This rule has been generated from MSpec by
RAssign (see Table 4) for the named edge.

5. Output action: Let Oβ contain only the rule invocation s(state(ln,Varn), state(ln+1,Varn+1),
param(v)) with v = [[e]]θ. This is the final situation after having applied the function oracle to
a trace β, which contains one transition σ →!s(v) σ̂ ≡ (l,Var) →!s(v) (l̂,Var) only (see Table 5).
The transition itself has been generated from a specification with an edge linit →g B!s(e) l̂,
[[g]]θ = true and [[e]]θ = v (see Table 1, rule Output). Oβ holds under θ because of the rule
s(state(l,Var), state(l̂,Var), param(e)) :−g in RS, which holds under θ with e being instantiated
with [[e]]θ, v = [[e]]θ, l = ln l̂ = ln+1 and Var = Varn = Varn+1. This rule has been generated
from MSpec by ROutput (see Table 4) for the named edge.

6. Input action: Let Oβ contain only the rule invocation s(state(ln,Varn), state(ln+1,Varn+1),
param(v)). This is the final situation after having applied the function oracle to a trace β,
which contains one transition σ →?s(v) σ̂ ≡ (l,Var) →?s(v) (l̂,Var [x 7→ v]) only (see Table 5). The
transition itself has been generated from a specification with an edge l →?s(x) l̂ (see Table 1, rule
Input). Oβ holds under θ because of the rule s(state(l,Var), state(l̂,Var [x 7→Y ]), param(Y )) in
RS, which holds under θ with Y = v, l = ln, l̂ = ln+1, Var = Varn and Var [x 7→ v] = Varn+1.
This rule has been generated from MSpec by RInput (see Table 4) for the named edge.

Since the prefix δ of β holds under θ and there exists one of the transitions named above, which
also holds under θ, β ∈ [[MSpec ]]trace holds.

The algorithm NewPassTrace plays a crucial role in trace selection for test execution. It is not
only refered to by the algorithm SelectAndExecTest , but also by ExecTest , which actually executes a
particular test trace. NewPassTrace is depicted in Figure 4.
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Algorithm 2 (NewPassTrace(δ, θ, M>>
TC ) : (β, θ′) ∈ [[M>>

TC ]]Pass × {Var symb → D}).
1 β := selectFirst(δ, [[M>>

TC ]]Pass);
2 while β 6= no trace
3 Oβ := oracle(0, β)
4 θ′ := solve(RS,Oβ , bθcδ)
5 G := Oβ(θ′)
6 if < G , true > is satisfiable
7 then return (β, θ′);
8 else β := selectNext(δ, [[M>>

TC ]]Pass);
9 fi

10 elihw
11 return no solution;

Figure 4: Pass trace selection procedure

The algorithm takes a trace prefix δ, a valuation θ and a test case M>>
TC as input parameters and

returns a trace β ∈ [[M>>
TC ]]Pass as well as an appropriate valuation (here θ′). It iterates over all possible

traces to Pass with prefix δ in the test case and returns the first, which contains δ as its prefix and
satisfies the query G under the valuation θ′. θ′ is derived by solving the rule system RS for the trace
β with a partial solution bθcβ given. This partial solution cannot be changed anymore, since it gives
the (proper) valuation for the already executed trace δ. The new trace found by NewPassTrace must
satisfy < Oβ(θ′), true >. If it does not, then the next possible trace to Pass is selected.

Test Execution
An original system may behave nondeterministically, for instance, if it not only evaluates data being
sent by the test case but also from other sources, or if the specification is more general than its
(refined) implementation. In these cases, it is possible that during test execution the IUT leaves a
trace to Pass which had been calculated beforehand and which is in principle a valid trace. When
that happens, the execution of the test case has to be adapted to the new situation dynamically.

Let β be a Pass-trace of M>>
TC , θ be a solution for the query obtained from β by the rules in Table 5,

and δ be the already executed prefix of β (initially it is empty). Let next be a function that returns
the next step of trace β or no step, if no such step exists. Sending a signal to the IUT happens by
the function sendToIUT , receiving by receiveFromIUT . Both functions are parameterized with the
signal to be sent or received.

Test execution works as described in the recursive algorithm in Figure 5. First, the actual step
under consideration is calculated. Then, a decision is made, based on the type of this step. If the next
step is no step, that means no further step has been found in the test trace, the algorithm assigns
either the None verdict, if no steps have yet been executed, or the Pass verdict. In this case, the test
execution finished without finding any failures or inconclusive situations in the IUT . If the actual step
is a τ -step, ExecTest is invoked recursively, adding the τ -step to the trace prefix, which has already
been executed before. An output step !s(x) is treated nearly equally, except that the signal s is sent
to the IUT . Its parameters are instantiated according to θ.

Handling an input ?s(X) is more complex. First, the input is received from the IUT as ?sig(Y ). If
now both the signal sig and the valuation of its parameters [[Y ]] are as expected, then the step is just
added to the executed trace prefix and a recursive invocation of the execution algorithm happens. If
the signal sig or the parameter valuation does not fit the expectations, then it is checked, whether test
execution has already left the valid traces in the system specification. In this case, Fail is assigned,
otherwise a new trace to Pass with the new valuation is searched. If no such trace exists, Inconc is
assigned. Otherwise, the algorithm is invoked recursively and test execution goes on.
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Algorithm 3 (ExecTest(β, θ, δ, M>>
TC ) : verdict ∈ {None,Pass, Inconc,Fail}).

1 step := next(β, δ);
2 case step
3 no step :
4 if |δ| > 0
5 then setVerdict(Pass);
6 else setVerdict(None);
7 fi
8 τ : ExecTest(β, θ, add(δ, step),M>>

TC );
9 !s(X): sendToIUT (s([[X]]θ));

10 ExecTest(β, θ, add(δ, step),M>>
TC );

11 ?s(X): receiveFromIUT (sig(Y ));
12 if sig = s ∧ [[Y ]] = [[X]]θ;
13 then ExecTest(β, θ, add(δ, step),M>>

TC );
14 else
15 δ′ := add(δ, sig(Y ));
16 Oδ′ := oracle(0, δ′);
17 Gδ′ := Oδ′(bθcδ[X 7→[[Y ]]]);
18 if ¬satisfiable(< Gδ′ , true >)
19 then setVerdict(Fail);
20 else
21 (β′, θ′) := NewPassTrace(δ′, bθcδ[X 7→[[Y ]]],M

>>
TC );

22 if (β′, θ′) = no solution
23 then setVerdict(Inconc);
24 else ExecTest(β′, θ′, δ′,M>>

TC );
25 fi
26 fi
27 fi
28 esac

Figure 5: Test execution procedure

Further, we argue the correctness of our approach by proving that the verdicts assigned to the IUT
after having applied the algorithm ExecTest, are sound. Let Spec be a specification and TP be a test
purpose. Let Spec>> be a specification obtained by transforming Spec by the rules in Table 2. Let M>>

be an IOLTS generated by the rules in Table 3 and RSSpec be a rule system gnerated by the rules in
Table 4.

First, the synchronous product M>>
SP ⊆ M>>

Spec × MTP is built. From M>>
SP , the abstract complete

test graph M>>
CTG is derived. From M>>

CTG , we get an abstract controllable test case M>>
TC , from which

we select a trace β to Pass. This trace is instantiated with data, which has been derived from a query
to RSSpec . The trace β is then executed. An already executed prefix of β is trace δ.

In the following, we will first prove some invariants over the algorithm. Then we prove that the
test verdict assigned to a test case after execution of the algorithm is sound. All line numbers in the
proofs refer to the line numbers in ExecTest (Figure 5).

Lemma 5 (Termination of Test Execution). Given a finite trace β, the test execution algorithm always
terminates, given that the IUT is deadlock-free.

Proof. As its first statement, the algorithm ExecTest always executes a function next on trace β to
derive the next step in the test to execute. Given a finite trace β, at the end of this trace the function
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returns no step. In this case, the trace has been executed completely and the algorithm terminates
with either verdict Pass or None (lines 5 and 6).

The function next determines the next step in β by comparing it to its already executed prefix δ.
Each step executed during the test is appended to δ before the test execution algorithm is reinvoked.
This happens in lines 8, 10, 13 and in line 15 before the reinvocation of ExecTest (line 24). In so
doing, it is guaranteed that δ always reflects the actual state of test execution and that next always
returns a correct next step or no step after β has been executed completely.

Lemma 6 (Assignment of Verdict). When the test execution algorithm terminates, it always assigns
a verdict.

Proof. The test execution algorithm either completely executes β and then terminates assigning Pass
or None (see Lemma 5), or it already terminates in lines 23 assigning Inconc or 19 assigning Fail,
resp. In all other cases (lines 8, 10, 13 and 24) it is reinvoked and does not terminate with the actual
step.

Lemma 7. For all δ(θ), for which the algorithm does not terminate with a Fail verdict, holds: δ(θ) ∈
[[MSpec ]]trace .

Proof. Proof by induction.

First step: The initial trace β has been chosen by NewPassTrace(no trace, ∅,M>>
TC ) for execution.

In the invocation of this algorithm, no trace prefix is preselected (parameter no trace) and
the possible resulting valuation for the chosen trace has also not been limited (parameter ∅).
The selection made by the Pass trace selection algorithm is the trace β which is per definition
(Definition 9) a trace in [[M>>

Spec ]]trace . The trace can be instantiated by θ to β(θ) ∈ [[MSpec ]]trace ,
since NewPassTrace ensures Oβ := oracle(0, β) ∧ θ := solve(RS,Oβ ,M>>

TC ) ∧ G := Oβ(θ)∧ <
G , true > is satisfiable, which holds iff β(θ) ∈ [[MSpec ]]trace (Lemma 4 and proof). Since δ(θ) is
a – possibly empty – prefix of β(θ), the aforementioned claim also holds for δ(θ).

Inductive step: The test execution algorithms recursively executes β(θ) transition by transition with
δ(θ) being the prefix, which has already been executed. Taking such an arbitrary transition,
we now have to regard the recursive invocation of ExecTest , whether β′(θ′) ∈ [[MSpec ]]trace still
holds if β(θ) ∈ [[MSpec ]]trace .

1. First we have to regard the recursive invocation in lines 8, 10 and 13. In all three cases
β′ = β ∧ θ′ = θ so that our claim holds (trivial case). The already executed prefix of β′ is
δ′(θ′) in this case, for which of course δ′(θ′) ∈ [[MSpec ]]trace also holds, since neither β nor θ
have changed.

2. In line 24, both β′ 6= β ∧ θ′ 6= θ. In this case the new trace β′ to Pass is searched by
NewPassTrace and executed only, ifOβ′ := oracle(0, β′)∧θ′ := solve(RS,Oβ′ ,M

>>
TC )∧G :=

Oβ′(θ′)∧ < G , true > is satisfiable, which holds iff β′(θ′) ∈ [[MSpec ]]trace . Thus for the
already executed prefix of β′(θ′) also holds: δ′(θ′) ∈ [[MSpec ]]trace .

In all cases, where β 6∈ [[MSpec ]]trace , this is discovered and test execution terminates with a Fail
verdict (line 19 and appropriate proof).

Lemma 8 (Soundness of verdict Fail). In case, that the verdict Fail is assigned, for the trace δ′ =
add(δ, sig(Y )) holds: δ′(θ[X 7→[[Y ]]]) 6∈ [[MSpec ]]trace .
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Proof. First of all, the Fail verdict is assigned only in line 19, where input from the IUT is evaluated.
It is checked whether the executed trace δ′ = add(δ, sig(Y )) ∈ [[MSpec ]]trace under bθcδ[X 7→[[Y ]]].

The valuation θ has been precalculated for the whole test sequence β. bθcδ denotes that part of θ,
which is relevant for the subtrace δ. Accordingly, bθcδ[X 7→[[Y ]]] denotes the same part of the valuation
with X being set to the value of Y .

The trace is valid only, if Gδ′ = Oδ′(bθcδ[X 7→Y ])∧ < Gδ′ , true > is satisfiable (see Definition 4 and
proof). The verdict Fail is set only in those cases, where < Gδ′ , true > is not satisfiable and thus
δ′(bθcδ[X 7→[[Y ]]]) 6∈ [[MSpec ]]trace . For this reason, the assignment of the Fail verdict is sound.

Lemma 9 (Soundness of verdict Inconc). In case, that the verdict Inconc is assigned, for the executed
trace δ holds: δ ∈ [[MSpec ]]trace ∧ δ 6∈ [[MTC ]]Pass.

Proof. The verdict Inconc is assigned in line 23.
In this case δ′(θ[X 7→[[Y ]]]), consisting of the previously executed trace δ and the action under consider-

ation sig(Y ) (both under valuation θ[X 7→[[Y ]]]) is a trace from [[MSpec ]]trace (G := Oδ′(bθcδ[X 7→[[Y ]]])∧ <
G , true > is satisfiable; cf. Lemma 4) and no further trace to a Pass verdict could be found which
results in NewPassTrace returning no solution. This means, that either no trace has been found in
the test case, or a trace β′ has been found, but β′ = NewPassTrace(δ′, bθcδ[X 7→[[Y ]]],M

>>
TC ) ∧ Oβ′ =

oracle(0, β′) ∧ θ′ = solve(RS,Oβ′ , bθcδ[X 7→[[Y ]]] ∧ G := Oβ′(θ′)∧ < G , true > is not satisfiable). In
both cases, verdict Inconc has to be assigned per definition (see Definition 9). Thus, the assignments
of verdict Inconc in the algorithm ExecTest are sound.

Lemma 10 (Soundness of verdicts Pass and None). In case, that the verdict Pass is assigned, the
executed trace δ(θ) ∈ [[MSpec ]]trace ∧ δ ∈ [[M>>

TC ]]Pass ∧ |β| > 0. In case that |β| = 0, None is assigned.

Proof. The Pass verdict is assigned in line 5 in those cases only, where a trace β(θ) ∈ [[MSpec ]]trace (cf.
Lemma 7), with β having been found in M>>

TC by NewPassTrace, could be executed to its very end
without any Fail or Inconc verdicts assigned. Under these conditions and if the executed trace has had
at least one transition, then assigning the Pass verdict is sound (see line 5). In those cases, where no
transition had been executed, setting the None verdict is sound (see line 6).

Lemma 11. The assignment of the test verdict to a test trace is sound.

Proof. This lemma immediately results from the three previous proofs.

7. CEPS Case Study
In this section, we describe the application of our approach to the case study CEPS. The Common
Electronic Purse Specifications (CEPS) define a protocol for electronic payment using a chip card as a
wallet. The specifications consist of the functional requirements [5] and the technical specification [6].
A complete electronic purse system covers three roles: a card user, a card issuer (the issuing bank
institute, for instance) and a card reader as a connection between these two. The hardware of such a
system is given by the purse card itself, the card reader and some network infrastructure. On the card,
the card reader and at the site of the card issuer, software applications are running and communicating
with each other. The roles as represented by software components are depicted in Figure 6.

In our work on the case study, we aim to evaluate our test generation process by automatically
generating parameterizable test cases from a µCRL specification for the card application CEPCardApp
in Figure 6. Our approach starts from a formalized version of the technical specification of the CEPS
system3, which we realized as a µCRL specification. In this specification, all input variables are
substituted by the abstract value >>. By doing so, the problem of state space explosion in the next
steps of the process is avoided w.r.t. the system’s interaction with environment. Afterwards, an LTS
is generated from this abstracted specification. Further, this LTS is used for the actual test case

3see: http://www.irisa.fr/vertecs/Equipe/Rusu/FME02/ceps.if
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CEPS

card:CEPCardApp issuer:CEPCardIssuerApp

reader:CEPCardReaderApp

Figure 6: Collaborating System Roles in CEPS

generation. The generation process itself is guided by the test purpose. It describes a scenario, which
is the focus of the later test cases. This scenario is derived from the system’s functional requirements
documents. From the abstract specification LTS and the test purpose a set of abstract test cases are
generated. Using the original specification, these test cases are parameterized based on a rule system
for actual data selection.

Here, we consider the card application CEPCardApp as the system under test (SUT). Doing so,
the card reader application (CEPCardReaderApp) must be the stimulating testing system. The card
issuer (CEPCardIssuerApp) can be simulated by the card reader application since there is no direct
communication between the issuer and the card (see Figure 6). Testing the card application thereby
means stimulating it with messages and verifying the received responses whether they are plausible.
For the derivation of the test purpose, we regard the use case load transaction. The use case load
transaction is described in [26]. In the following description, which is partially based on an existing
NTIF specification (courtesy of the VASY team at INRIA Rhône-Alpes, cf. [16]) of the purse card
specification, all messages between the card reader application and the card are named after the NTIF
card specification, while the messages between card reader application and the card issuer are named
after [26], since there is no counterpart in the NTIF specification.

In a first step, the reader initializes the card by sending a CepCommand message, parameterized
with LOADINIT, and receiving a response CepReply, telling that the initialization was successful
(code x9000 ). Then the real transaction starts. The card reader application requests money from the
card issuer (Load message) and gets it with a response RespL. This money is then credited on the
card (another CepCommand message, this time parameterized with LOADCREDIT ). The response
CepReply from the card is accepted by the card reader application and the card issuer is informed
via a Comp message. The interactions in this use case are depicted in Figure 7. Sets of uninteresting
parameters in the messages are marked with one hyphen.

In the following subsections, we discuss the application of our test generation process, namely the
generation of abstract test cases and the concretization and parameterization of these test cases, to
the case study. Afterwards, we outline related research of other groups on CEPS.

Test Case Generation
In our case, test case generation is based on the model of the SUT given as a µCRL specification. This
specification is abstracted and an LTS is generated which is then combined with the test purpose,
given as an LTS, too. Depending on the states, reached in the test purpose (refuse or accept states),
verdicts are assigned to the according traces in the resulting abstract test case (cf. [3]). Test data,
and thus the possibility to identify spurious traces, is introduced by constraint-solving.

For test case generation, we first realize the NTIF specification in µCRL and simplify it. We do not
want to test the logging activities of the SUT (as can already be seen in our test scenario in Figure 7),
so that this part is not modelled. We took a part of the CEPS and removed several interface variables
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card:CEPCardApp reader:CEPCardReaderApp issuer:CEPCardIssuerApp

CepCommand(LOADINIT,-)
CepReply(-,x9000)

Load(-)
RespLoad(-)

CepCommand(LOADCREDIT,-)
CepReply(-,x9000)

Comp(-)

Figure 7: Interactions in the test purpose scenario

to reduce the size of data structures. By doing so, CommandType, the data structure sent with the
action CepCommand, is reduced from 15 elements to 5, ReplyType, the data structure for replies form
the SUT, from 22 to 16 elements.

The internal variables of the SUT, which also includes internal arrays, are left untouched. These
internal arrays are necessary for CEPS to, for instance, manage slots on the purse card for different
currencies. For this reason, we do not have to only handle arrays of data elements, but also arrays of
data structures. A purse card has three slots for different “reference currencies” implemented as an
array with three elements. Each element is a data structure of two fields, describing one such reference
currency. 16 further slots on the card refer to the reference currencies, storing amounts of money in
each of these currencies. Each element of this array is again a data structure of five fields, leading to
brutto 80 variables for this array. A third array then stores a boolean value for each of the elements
of the second array, telling whether this element has been “reported” or not. Due to the arrays and
data structures involved, the 44 global variables for the purse card represent brutto 207 single data
values – local variables not yet included. During constraint solving, which is described later in this
section, the number of these internal variables that has to be handled, alone increases with each step
of the abstract test case, ending at approx. 7245 single data values for the smaller of the two examples
(and 118818 single values for the larger one).

In a next step, the specification is abstracted. Thereby, for every datatype, an additional abstracted
datatype containing>> (TT <datatype>) and the lifting function κ (known:<datatype>-><abstracted
datatype>) are introduced. An example is given, showing the datatype CommandCodeType and its
abstracted variant CommandCodeType abstr:

sort CommandCodeType

func

NONE:->CommandCodeType

SPECIFIC:->CommandCodeType

ALLSLOTS00:->CommandCodeType

ALLSLOTS01:->CommandCodeType

REFCURR:->CommandCodeType

LOGINQ00:->CommandCodeType

LOGINQ01:->CommandCodeType

LOADINIT:->CommandCodeType

LOADCREDIT:->CommandCodeType

ERROR_INQ:->CommandCodeType

map
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eq:CommandCodeType#CommandCodeType ->Bool

rew

eq(NONE ,NONE) = T

eq(NONE ,SPECIFIC) = F

...

sort CommandCodeType_abstr

func

TT_CommandCodeType : -> CommandCodeType_abstr

known : CommandCodeType -> CommandCodeType_abstr

map eq : CommandCodeType_abstr#CommandCodeType_abstr -> Bool_abstr

var x,y : CommandCodeType

rew

eq(TT_CommandCodeType ,TT_CommandCodeType) = TT_Bool

eq(TT_CommandCodeType ,known(x)) = TT_Bool

eq(known(x),TT_CommandCodeType) = TT_Bool

eq(known(x),known(y)) = known(eq(x,y))

All process global parameters are defined as parameters of the abstracted datatypes. They are
initialized with the original values from the original specification, lifted to the abstracted data types.
For every summand in the specification, those input variables, which are of type Bool or Nat are
abstracted to >>, all others are at the moment left untouched. As an example, we show one such
summand before and after abstraction:
% before abstraction

...

sum(mInquiry2:CommandType ,CepCommand(mInquiry2).

X(x2p1(x2p0(one)) ,...,pNT_Limit ,...,vNT ,vDeactivated ,vLocked ,

getLoadAmt(mInquiry2) ,0,getCurrency(mInquiry2) ,0,..., getNewBalMax(mInquiry2),

...,mInquiry2 ,...)

<|and(eq(s0 ,x2p0(x2p0(x2p1(x2p0(one))))),and(and(and(eq(getCommand(mInquiry2),

LOADINIT),

not(not(lt(vNT ,pNT_Limit)))),not(vDeactivated)),not(vLocked)))|>delta)+

...

% after abstraction

...

CepCommand(TT_CommandType).

% alternative : CepCommand ( commandData ( TT_CommandCodeType ,TT_Nat ,TT_TxTypeType ,TT_Nat ,

TT_Nat)).

X(x2p1(x2p0(known(one))) ,...,pNT_Limit ,...,vNT ,vDeactivated ,vLocked ,

getLoadAmt(TT_CommandType),known (0),getCurrency(TT_CommandType),known (0) ,...,

getNewBalMax(TT_CommandType) ,...,mInquiry2 ,...)

<|may(and(eq(s0 ,x2p0(x2p0(x2p1(x2p0(known(one)))))),and(and(and(eq(getCommand(

TT_CommandType),LOADINIT),

not(not(lt(vNT ,pNT_Limit)))),not(vDeactivated)),not(vLocked))))|>delta+

...

The abstracted specification is then parsed and an LTS is generated. The resulting LTS is minimized
using strong minimization. We experimented with two mutants. In the first mutant, a status variable
of the process was after action CepReply(updateStatus(mSlotInfo,x940A)) updated with value
x9409 instead of x940A. In the second mutant, this error was corrected.

For the first mutent, the whole process of LTS generation and minimization took 16 minutes and
5,088 seconds on a cluster of five 2.2GHz AMD Athlon 64 bit single CPU computers with 1 GB RAM
each (operating system: SuSE Linux 9.3, kernel 2.6.11.4-20a-default). The abstracted specification
had 3023122 states and 17459807 transitions, which could be reduced by strong minimization to
1627 states and 5487 transitions. Finally, two single test cases without loops are generated using
TGV, one of them limited to a maximal depth search for its preamble of 100 steps, the other one
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unlimited. Starting with the minimized abstracted system model and a test purpose of 5 states
and 5 transitions, the generated unlimited test case contained 594 states with 597 transitions. The
limited test case contained 108 states with 111 transitions. Test case generation took 0.65 seconds or
0.42 seconds, resp., on a workstation with one 2.2GHz AMD Athlon XP 32 bit CPU and 1 GB main
memory (operating system: Redhat Linux Fedora Core 1, kernel 2.4.22-1.2199.nptl).

For the second mutant, whose abstracted specification led to an LTS of 168942 states and 232253 tran-
sitions (1619 states and 1899 transitions after strong minimization), the generation of the LTS took
69.418 seconds on the cluster. Test generation took 3.453 seconds for a test case of 255 states and
286 transitions (the limitation to 100 steps led to identical results as without any limits) on the single
CPU PC.

Test Case Parameterization
For test case parameterization, first a trace to a Pass verdict is selected from the generated abstract test
case. We select only this kind of traces for the moment, since we are not interested in distinguishing
between Inconc and Fail verdicts when executing a test. For this reason, we only want to deliver a
valuation for the variables appearing in the test case, that leads to a Pass verdict, not to Inconc or
Fail. Some parts of such a trace are depicted in Figure 8 and printed in Appendix B.2.

card:CEPCardApp reader:CEPCardReaderApp

Power(ON)

CepCommand(LOADINIT,0,TxLoad,4,5)

CepReply(0,0,0,0,0,0,0,0,0,0,0,5,6,7,0,x9000)

ATR

...

CepCommand(LOADCREDIT,*,TxCancelLastPurchase,*,*)
...

CepReply(0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,x9580)

Reset

CepCommand(ALLSLOTS00,*,TxCancelLastPurchase,*,*)
CepReply(0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,x9580)

CepCommand(REFCURR,*,TxCancelLastPurchase,*,*)

CepReply(0,1,1,1,3,c1,b1,c2,b2,c3,b3,0,0,0,0,x9000)

c1=getCurrency(1,1)
b1=getBalMax(1,1)
c2=getCurrency(2,2)
b2=getBalMax(2,2)
c3=getCurrency(3,3)
b3=getBalMax(3,3)

Figure 8: Test Case Example for CEPS

This test case is derived from the specification of the SUT together with the test purpose for the
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scenario in Figure 7. It is easy to recognize, that the test case contains more actions than the test
purpose. The reason is, that the test purpose only sketches the main focus while the test case must
also cover initialization actions like Power(ON) as well as preparing actions for the test purpose action
(for instance, iteration through an array to a certain position). The actions from the test case are
later relevant for the determination of the test oracle.

Afterwards, a Prolog rule system is derived from the original specification that consists of the
functions in the µCRL specification and of the conditions and assignments from the summands. This
rule system is also reusable like the SUT model so that it potentially does not have to be regenerated
each time a test oracle is created. The test oracle itself later delivers possible input and expected
output values for the test execution. This oracle sends queries to the rule system to find out, under
which variable settings the implemented trace can be executed and which values have to be expected
from the SUT.

The basic rule system consists of two parts. In the first part, a meta language is defined based on
the functions of the original µCRL specification. Below, the definition of the datatype Bool as shown
in Figure 1 is printed:

cT. % Constructor "true"

cF:- fail. % Constructor "false"

tBool(X):- X. % Expressions of sort Bool as

% Prolog expressions

and(X,Y):- X,Y. % Meta function and () for Prolog "and"

and(tBool(V0),tBool(V0)):- tBool(V0). % Realization of mCRL and ()

and(tBool(cF),tBool(V0)):- tBool(cF). % functions as Prolog rules.

and(tBool(V0),tBool(cF)):- tBool(cF).

and(tBool(V0),tBool(cT)):- tBool(V0).

and(tBool(cT),tBool(V0)):- tBool(V0).

...

The realization of this datatype is special, since here the datatype Bool from µCRL is not only
mapped to Prolog, but is also given semantics. This explains the existence of definitions of rules for
the constructor T and F (here: cT and cF to conform to lower-case writing for Prolog rules). T is
thereby realized as a Prolog rule, which holds, while F is realized as a failing rule. (The absence of the
latter rule would have the same effect.) Prolog is not as strongly typed as, for instance, µCRL. This
complicates polymorphism, that means finding the right function not only by its name but also by the
types of its parameters. For this reason, all parameters for the Prolog rules are enriched with their type
information like tBool. This can be seen in the five realizations of the µCRL and. Since again these
rules get Prolog semantics, a mapping from tBool(<expression>) to a Prolog Boolean expression,
which can be further evaluated, is given (3rd line). The realization of Bool is especially complex,
since it is the basis of all Prolog work on the specification rules. All other rules are conceptually less
complex, since they simply use the existing Bool basic.

The second part of the rule system defines rules for each of a linearized µCRL specification’s
summands. As an example, one rule is shown in appendix B.3.

A rule has three parameters. The first two define changes of global variables during execution of the
action, which belongs to this rule in the specification. In this case, it is an assignment to the variable
mInquiry. This results in a replacement of the Prolog variable VmInquiry (all variable names begin
with a capital V in our Prolog realization) from the first global -parameter by VmInquiry2 in the second
global -parameter. Since this is the effect of an input from environment, VmInquiry2 also appears in
the local -parameter of the rule. The part after :- defines the condition, under which the action can
be executed. In the first operand of the following (Prolog) conjunction, getCommand, the command
code type (in this case LOADINIT ) is extracted from the variable VmInquiry2. The second operand
defines an exact reproduction of the original condition from the specification using the meta language.
In detail, the control location, in which the transition starts, is checked to be 20 (= ((1 ·2 ·2)+1) ·2 ·2),
the variable VvDeactivated is true and the extracted command code type is LOADINIT.

Having built up the rule system, we can ask queries to it. In the existing implementation, all queries
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which form one trace in the test case are combined to a test oracle. One such oracle (oracle 0, the
only one for our trace) is partially printed in appendix B.4 as an example.

The parameters of the oracle are all those variables, which are input from the SUT’s environment
or relevant output from the SUT. The body of the oracle rule is given by the conjunction of the rules,
which are relevant for the test case under consideration. In the first rule, here power, the global
variables of the SUT are initialized with the values defined in the specification. All changes in the
configuration of the global variables’ valuations are from then on collected in one variable and passed
to the next rule in the conjunction. Local variables are always collected in the third parameter of
each rule; if there exist no local variables for a rule, the structure local stays empty (see reset or
aTR). The last change of the global valuation (rule cepReply(G89, , local(...))) is set to the
Prolog don’t-care parameter, since we are not interested in further steps of the SUT and thus in global
variables. Executing this oracle leads to a result, describing the possible valuations for input and
output variables of the system. Parts of it are shown in appendix B.5.

For a variable, either fixed values can be set (like for Power) or the concrete value of the variable can
be chosen from a range and is not fixed to one value. In this case, the oracle shows a variable instead
of a fixed value (e.g. third, fourth and fifth element of the data structure for CC2 in the example in
appendix B.5). We have to annotate, that the proposal of the constraint solver for variable values
is not bound to those values, which are used in the test purpose (not all values there are don’t-care,
cf. the command code types in CepCommand). The constraint solver only produces a solution for the
given sequence of actions. If the solution set shall be reduced to the values from the test purpose,
these must be fixed when invoking the test oracle.

Within the test oracle definition, the initial values for the process are set as parameters of the first
rule in the conjunction. These values can be left variable, if we want to adjust them on-the-fly at the
beginning of test execution. In this case, we would have defined them as >> values before generating
the parameterizable test case. This would have led to more transitions in the model of the abstracted
SUT. So, we decided to do the experiment leaving the initialization of the process at its original values.

The first parameter of the first rule defines the initial control location of the process as of the
specification. All other parameters define initial values for the global variables. The card application
has four groups of global variables, which are the parameters of the card application like issuer’s and
card identification numbers or the card’s expiration date, the static storage of the card, its working
storage and messages, which are exchanged between the card and the card reader. Since the last two
groups have to be initialized, simply because they exist, but their initial values are not relevant at all,
we only concentrate on some aspects of the static storage, the card’s slots.

For our case, the card has 15 slots of which the first 3 are used. Each of them is initialized to be in
use (true) and that the currency for its slot cannot be changed (also true). Furthermore, each slot gets
a currency identifier and a balance in this currency. In our initialization, this actual balance is equal
to the maximal balance possible for this card slot. These three currencies described here are at the
same time the reference currencies of this card. All the other card slots are initialized with placeholder
values (0 and false). The array of reported slots, the next parameter, is completely initialized with
false since at the start time of the process, which we are describing here, no array slots can have been
reported to anyone.

A limitation for Prolog rule systems and also constraint solving in general is the limitation of
computer memory. Already the CEPS example leads to a vast amount of variables in our test oracle,
for the limited test case 22 input and 3960 internal variables which must be introduced and which are
in parts themselves data structures of, for instance, 16 elements each (e.g. ReplyType or the arrays;
also see a previous paragraph of this section for the number of variables in the examples). At this
point, the approach of constraint solving for test data selection can relatively easily reach certain
limits. However, in our sample test case it is possible to calculate solutions for the constraints, under
which the test case can be executed.

Regarding the actual calculation of solutions for the constraint system, again the question comes
up, if a calculation in advance to the test execution or on-the-fly is the better choice. In this case,
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the on-the-fly solution is more promising. Calculating a complete constraint solution in advance to
the test execution fixates it to exactly one trace through the SUT model. But if the SUT reacts in
a nondeterministic way, this approach will lead to faulty Fail or Inconc verdicts, if the SUT chooses
another trace to Pass than the one precalculated. Calculating all possible traces to Pass would also
be at least very inefficient, so that an on-the-fly calculation, adapted to the actual execution trace,
is the better solution here. However, test data derived from on-the-fly constraint solving can still
be collected and possibly reused in later test reexecutions. The considerations of test execution and,
connected to that, data selection are an integral part of our future work.

8. Conclusion
Related Works
Test Generation with Data Abstraction The closest to our approach is symbolic test generation [9, 15,
23, 31, 37]. This method works directly on higher-level specifications given as input-output symbolic
transition systems (IOSTSs) without enumerating their state space. Given a test purpose and a
specification, their product is built. The coreachability analysis is in these cases over-approximated
by Abstract Interpretation [10].

The purpose and usage of abstraction techniques in our approach is conceptually different from the
one of symbolic test generation, since we use a data abstraction that mitigates infinity of external
data. This enables us to use existing enumerative test generation techniques for the derivation of
abstract test cases which are then instantiated with concrete data derived by constraint solving. In
the symbolic test generation approach, approximate coreachability analysis is used to prune paths
potentially not leading to Pass-verdicts. Both approaches are valid for any abstraction leading to an
over-approximation of the SUT’s behavior. They both also employ constraint solving to choose a
single testing strategy during test execution, so that more case studies are needed to conclude which
approach is more suitable for which class of systems.

The rule systems, we generate to determine test data, are comparable to [30], where also constraint
rules are generated encoding the visible inputs and outputs, guards and internal state changes. These
rules are then used to generate a set of test cases by transforming a system specification in its whole
into Prolog. However, in our case, test cases are already present.

CEPS Case Study CEPS has been the basis for several case studies in which different aspects are
analyzed. On the one hand, they are related to security aspects concretely regarding the standard,
on the other hand CEPS serves as a sandbox for experiments with test generation in general.

Security aspects of the standard are analyzed on the level of models. In [26] an extension of UML,
UMLsec, is exemplarily applied to CEPS for that purpose. This approach, named security modelling,
is driven further in [25] by providing a formal model for a subset of CEPS and applying model
checking to it. In [35] the specification-based test of security-critical protocols like CEPS is discussed.
The approach is thereby a combination of scenario- and specification-based test generation, which is
guided by mutants of the SUT’s specification and attack scenarios. Another test sequence generation
approach, this time using propositional logic solvers, is worked out in [24].

An approach for the specification-based generation of symbolic tests and test oracles is introduced
by [7]. Here, both the specification of the SUT and the test purpose are expressed as labeled transition
systems but are processed symbolically with respect to variables, message parameters and value-
passing to avoid the well-known problem of state-space explosion. Regarding test case generation, this
approach probably leads to the problem described for test case generation with on-the-fly generation
of a non-reusable state space.

The tool STG, developed for this approach, is presented in [8] and [9] with the CEPS case study.
This tool is also applied to CEPS in [32], but here to extract components whose correctness is verified
by afterwards using a theorem prover.



A. Test Execution Algorithm 31

Conclusion and Future Work
In this paper, an approach for the automatic generation of conformance test cases was discussed.
The approach is strongly based on the idea of applying data abstraction to receive a specification
with a manageable state space as the starting point for the generation process. The correctness
of this approach has been proven and its applicability has been tested in the scope of a case study.
Furthermore, an approach for data selection based on constraint-solving has been introduced. It could
also successfully be applied to the case study. Some of the results have been published in [4].

Up to this point, only platform-independent test models and data constraints are generated by
our approach, starting from a formal (process-algebraic) specification. This leaves two interesting
directions for further work. On the one hand, starting test generation from UML models would allow
the integration of our approach into existing software development processes. On the other hand, the
generation of actual test code has not yet been realized. Here, a generator for TTCN-3 parameterizable
test cases is being developed. A problem of special interest is thereby the integration of data selection
into these test cases, for instance by online constraint solving during test execution as proposed in
this paper.

A. Test Execution Algorithm
In this section, the algorithms from Section 6 are shown graphically. Due to technical reasons, >> has
had to be replaced by ∗ in the figures.

Algorithm
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Figure 9: Algorithm NewPassTrace
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Algorithm
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Figure 10: Algorithm SelectAndExecTest
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Algorithm
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B. Selected Codes
B.1 Abstraction of CommandCodeType

sort CommandCodeType

func

NONE:->CommandCodeType

SPECIFIC:->CommandCodeType

ALLSLOTS00:->CommandCodeType

ALLSLOTS01:->CommandCodeType

REFCURR:->CommandCodeType

LOGINQ00:->CommandCodeType

LOGINQ01:->CommandCodeType

LOADINIT:->CommandCodeType

LOADCREDIT:->CommandCodeType

ERROR_INQ:->CommandCodeType

map

eq:CommandCodeType#CommandCodeType ->Bool

rew

eq(NONE ,NONE) = T

eq(NONE ,SPECIFIC) = F

...

sort CommandCodeType_abstr

func

TT_CommandCodeType : -> CommandCodeType_abstr

known : CommandCodeType -> CommandCodeType_abstr

map eq : CommandCodeType_abstr#CommandCodeType_abstr -> Bool_abstr

var x,y : CommandCodeType

rew

eq(TT_CommandCodeType ,TT_CommandCodeType) = TT_Bool

eq(TT_CommandCodeType ,known(x)) = TT_Bool

eq(known(x),TT_CommandCodeType) = TT_Bool

eq(known(x),known(y)) = known(eq(x,y))

B.2 Test Case Example

---

Power(known(ON))

Reset

ATR

CepCommand(commandData(known(LOADINIT),known (0),known(TxLoad),known(succ(succ(succ(

succ (0))))),known(succ(succ(succ(succ(succ (0))))))))

...

CepReply(replyData(known (0),known (0),known (0),known (0),known (0),known (0),known (0),

known (0),known (0),known (0),known (0),known(succ(succ(succ(succ(succ (0)))))),known(

succ(succ(succ(succ(succ(succ (0))))))),known(succ(succ(succ(succ(succ(succ(succ (0)

))))))),known (0),known(x9000)))

...

CepCommand(commandData(known(LOADCREDIT),TT_Nat ,known(TxCancelLastPurchase),TT_Nat ,

TT_Nat))

CepReply(replyData(known (0),known(succ (0)),known(succ (0)),known(succ (0)),known (0),

known (0),known (0),known (0),known (0),known (0),known (0),known (0),known (0),known (0),

known (0),known(x9580)))

CepCommand(commandData(known(ALLSLOTS00),TT_Nat ,known(TxCancelLastPurchase),TT_Nat ,

TT_Nat))

CepReply(replyData(known (0),known(succ (0)),known(succ (0)),known(succ (0)),known (0),

known (0),known (0),known (0),known (0),known (0),known (0),known (0),known (0),known (0),

known (0),known(x9580)))
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CepCommand(commandData(known(REFCURR),TT_Nat ,known(TxCancelLastPurchase),TT_Nat ,TT_Nat

))

CepReply(replyData(known (0),known(succ (0)),known(succ (0)),known(succ (0)),known(succ(

succ(succ (0)))),getCurrency(refCurr(known(succ (0)),known(succ (0)))),getBalMax(

refCurr(known(succ (0)),known(succ (0)))),getCurrency(refCurr(known(succ(succ (0))),

known(succ(succ (0))))),getBalMax(refCurr(known(succ(succ (0))),known(succ(succ (0)))

)),getCurrency(refCurr(known(succ(succ(succ (0)))),known(succ(succ(succ (0)))))),

getBalMax(refCurr(known(succ(succ(succ (0)))),known(succ(succ(succ (0)))))),known (0)

,known (0),known (0),known (0),known(x9000)))

---

B.3 Summand Rule

...

cepCommand(global(tState(Vs0),tNat(VpSlotCount),tNat(VpRefCurCount),

tNat(VpLogSize),tNat(VpNT_Limit),tNat(VvIssId),

..., tBool(VvDeactivated) ,... % lots of parameters

tCommandType(VmInquiry),tReplyType(VmSlotInfo),

... % and even some more

tNat(VmRefCurrCurrency),tNat(VmRefCurBalMax)),

global(tState(cx2p1(tState(cx2p1(tState(cone))))),

tNat(VpSlotCount),tNat(VpRefCurCount),

tNat(VpLogSize),tNat(VpNT_Limit),tNat(VvIssId),

..., tBool(VvDeactivated) ,... % unchanged parameters

tCommandType(VmInquiry2),tReplyType(VmSlotInfo),

... % more of them

tNat(VmRefCurrCurrency),tNat(VmRefCurBalMax)),

local(tCommandType(VmInquiry2))):-

getCommand(tCommandType(VmInquiry2),Tmp0),and(tBool(eq(tState(Vs0),tState(

cx2p0(tState(cx2p0(tState(cx2p1(tState(cx2p0(tState(cone))))))))))),tBool(

and(tBool(eq(Tmp0 ,tCommandCodeType(cLOADINIT))),tBool(VvDeactivated)))).

...

B.4 Test Oracle

oracle0(VPower_0_0 ,VCepCommand_3_0 ,VCepReply_4_0 ,VSelect_5_0 ,

VSelectReply_6_0 ,VCepCommand_7_0 ,VCepReply_10_0 ,VCepReply_11_0 ,

VCepCommand_12_0 ,VCepReply_29_0 ,VCepCommand_30_0 ,

VCepReply_47_0 ,VCepCommand_48_0 ,VCepReply_65_0 ,

VCepCommand_66_0 ,VCepReply_83_0 ,VCepCommand_84_0 ,

VCepReply_85_0 ,VCepCommand_86_0 ,VCepReply_87_0 ,

VCepCommand_88_0 ,VCepReply_89_0):-

power(global(tState(cx2p0(tState(cx2p1(tState(cx2p0(tState(cx2p1(tState(cone))

))))))),

tNat(csucc(tNat(csucc(tNat(csucc(tNat(csucc(tNat(csucc(tNat(csucc

(tNat(csucc(tNat(csucc(tNat(csucc(tNat(csucc(tNat(csucc(tNat(

csucc(tNat(csucc(tNat(csucc(tNat(csucc(tNat(c0)))))))))))))))

)))))))))))))))),

... % a lot more initialization parameters from

% the specification

tNat(c0), tNat(c0), tNat(csucc(tNat(csucc(tNat(csucc(tNat(csucc(

tNat(csucc(tNat(c0)))))))))))),

G1 , local(VPower_0_0)),

reset(G1 , G2 , local), aTR(G2, G3, local), cepCommand(G3, G4, local(

VCepCommand_3_0)),

..., cepReply(G10 , G11 , local(VCepReply_10_0)), ...,

cepCommand(G84 , G85 , local(VCepCommand_84_0)), cepReply(G85 , G86 , local(

VCepReply_85_0)),

cepCommand(G86 , G87 , local(VCepCommand_86_0)), cepReply(G87 , G88 , local(

VCepReply_87_0)),

cepCommand(G88 , G89 , local(VCepCommand_88_0)), cepReply(G89 , _, local(

VCepReply_89_0)).

B.5 Oracle Query Results
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[eclipse 2]: oracle(Power ,CC1 ,CR1 ,S1 ,SR1 ,CC2 ,CR2 ,CR3 ,CC3 ,CR4 ,CC4 ,CR5 ,CC5 ,CR6 ,CC6 ,CR7 ,

CC7 ,CR8 ,CC8 ,CR9 ,CC9 ,CR10).

Power = tPowerType(cON)

CC1 = tCommandType(ccommandData(tCommandCodeType(cLOADINIT), tNat(c0), tTxTypeType(

cTxLoad), tNat(csucc(tNat(csucc(tNat(csucc(tNat(csucc(tNat(c0))))))))), tNat(csucc

(tNat(csucc(tNat(csucc(tNat(csucc(tNat(csucc(tNat(c0)))))))))))))

CR1 = tReplyType(creplyData(tNat(c0), tNat(c0), tNat(c0), tNat(c0), tNat(c0), tNat(c0)

, tNat(c0), tNat(c0), tNat(c0), tNat(c0), tNat(c0), tNat(c0), tNat(c0), tNat(c0),

tNat(c0), tStatusType(cx9101)))

S1 = tAidType(cCEP)

SR1 = tFCIType(cStatus(tStatusType(cx9000)))

... % solutions for CC2 , CR2 , CC3 , CR3 , CC4 , CR4 , CC5 , CR5 , CC6 , CR6 , CC7 , CR7 , CC8 ,

CR8

CC9 = tCommandType(ccommandData(tCommandCodeType(cALLSLOTS01), tNat(V1), tTxTypeType(

V2), tNat(V3), tNat(V4)))

CR10 = tReplyType(creplyData(tNat(csucc(tNat(csucc(tNat(csucc(tNat(c0))))))), tNat(

csucc(tNat(csucc(tNat(csucc(tNat(c0))))))), tNat(csucc(tNat(csucc(tNat(csucc(tNat(

c0))))))), tNat(csucc(tNat(csucc(tNat(csucc(tNat(c0))))))), tNat(c0), tNat(c0),

tNat(c0), tNat(c0), tNat(c0), tNat(c0), tNat(c0), tNat(c0), tNat(c0), tNat(c0),

tNat(c0), tStatusType(cx6A83)))

Yes (0.00s cpu , solution 1, maybe more) ? ;

... % second solution

Yes (0.00s cpu , solution 2, maybe more) ? ;

...

[eclipse 3]: _
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