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Abstract

Conformance testing is one of the most rigorous and
well-developed testing techniques. Model-based test gener-
ation is an essential phase of the conformance testing ap-
proach. The main problem in this phase is the explosion
of the number of test cases, often caused by large or in-
finite data domains for input and output data. In this pa-
per we propose a test generation framework based on the
use of data abstraction and constraint solving to suppress
the number of test cases. The approach is evaluated on
the CEPS (Common Electronic Purse Specifications) case
study.

1. Introduction

Throughout the years, testing remains one of the most
popular techniques that are used by industry to ensure the
reliability of systems. The main purpose of testing is to dis-
cover as many defects in a system implementation as pos-
sible. A large number of testing techniques have been de-
veloped by academic and industrial communities to provide
efficient and reliable ways of finding errors.Conformance
testing[19] is one of the most rigorous among existing test-
ing techniques. Given a specification, conformance testing
is concerned with checking whether an implementation un-
der test (IUT) conforms the specification.

Intuitively, an IUT conforms its specification if after each
input foreseen by the specification, the IUT exhibits only
the behavior allowed in the specification [17]. Assessing
conformance of an IUT is done by executingtest cases. A
test case contains all possible reactions of an IUT on cer-
tain environmental inputs. Reactions of an IUT may lead
to different verdicts: VerdictFail denotes a violation of the
specification while verdictPass means that the reaction of
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an IUT is correct wrt. the specification. Checking all possi-
ble test cases is however not feasible, only a subset of sys-
tem behavior can be tested. Therefore sometest selection
should be done prior to testing.

Using test purposesis one of the most popular strate-
gies for selecting test cases. A test purpose defines a subset
of the system behavior on which test cases should be fo-
cused. In case the IUT exhibits a behavior allowed by the
specification but not fitting the test purpose, verdictInconc
(inconclusive) is given.

One way to generate test cases is to enumerate the state
space of the specification and select a part of it satisfying
a test purpose [11]. The generation does not always termi-
nate and even if terminated it often produces a huge num-
ber of test cases. The most important reason the number ex-
plodes is that data exchanged within and with the system
comes from large or even infinite domains. Here we propose
a testing framework that alleviates this problem by combin-
ing data abstractions and constraint solving with enumera-
tive test generation techniques.

We consider specifications that describe open sys-
tems communicating with theirenvironments. Assumptions
about the component’s environment that software program-
mers are making is an important source of software errors.
They are often not documented and in many cases er-
roneous. Two classical examples of failures caused by
this kind of errors are an incorrect handling of an arith-
metic exception that led to a power shutdown of cruiser
USS Yorktown and an unanticipated floating-point excep-
tion that caused a rocket boost failure in Ariane 5 [16].
Therefore, for testing purposes, we consider the most gen-
eral possible environment that can send all possible inputs
wrt. the specification, parameterized with arbitrary data.
Further we refer to these environments as”chaotic” envi-
ronments.

Assuming a chaotic environment, we abstract the en-
vironmental data parameterizing inputs into one abstract
value. The abstract system shows then at least the behav-
ior of the original system [15]. We implement the abstrac-



tion as a program transformation on the level of specifica-
tion. Given a test purpose, we obtain an abstract test case by
applying already existing enumerative test generation algo-
rithms [11] to the abstract system that is derived from the
transformed specification.

An abstract system is an overapproximation of the orig-
inal one. Inputs and outputs of an abstract test case gener-
ated from the abstract system carry abstract values. To make
the abstract test cases executable, abstract values should be
concretized. We employ constraint solving to find concrete
values that will substitute the abstract ones. Substituting all
occurrences of abstract values is expensive and unneces-
sary. Therefore, we transform the original specification into
a constraint logic program (CLP) and shift constraint solv-
ing to the test execution phase.

When testing a system, we want to reduce the number of
inconclusive verdicts. For this purpose, we start test execu-
tion by choosing a shortest trace to verdictPass. We trans-
form the chosen trace into a query for the CLP. If the query
has at least one solution, then a concretization of this ab-
stract trace is present in the original specification. The so-
lution provides concrete values to substitute occurrences of
abstract values. In case there is no solution, the trace is in-
troduced by the abstraction and has to be removed from the
test case.

Having a substitution for just one trace, we start the test
execution. If the IUT follows the selected trace all the way,
verdict Pass is assigned. In case the reaction of the IUT
deviates from the selected trace, there are two possibilities:
the IUT violates the specification or it follows a different
but still correct trace, which is possible due to nondetermin-
ism in the specification. When the IUT violates the specifi-
cation, we stop the test execution and assign the verdictFail.
Otherwise, we form a new query and a constraint solver is
consulted again. If there is a solution then we proceed with
the test execution. If no solution is found, verdictInconc is
assigned.

Here, we assume decidability of all guards in the spec-
ification, e.g. the guards might belong to a decidable frag-
ment of Presburger arithmetic [14] with uninterpreted func-
tions [1]. We implement our approach to generate test cases
fromµCRL specifications with TGV [11] and use theµCRL
toolset [2] to specify systems and test purposes, and to gen-
erate and reduce the state space. Eclipse Prolog [7, 6] is
used to implement constraint solving.

The rest of the paper is organized as follows: In Sec-
tion 2, we give an overview of testing theory our approach is
based on. Section 3 defines a set of specifications we work
with and provides an implementation for the data abstrac-
tion. In Section 4, we first illustrate our approach to using
the data abstraction for testing and then provide its general-
ization. We conclude with Section 5 where we also discuss
related and future works.

2. Testing Theory

For the generation of abstract test cases from specifica-
tions, we rely on the approach to conformance test gener-
ation proposed in [11] and implemented in the tool TGV.
This approach relates specifications with conforming im-
plementations by aconformance relation. It formalizes the
notions of a test case and a test purpose and also defines cor-
rectness criteria for test cases.

Specifications and implementations are modelled by in-
put output labelled transition systems (IOLTSs). An
IOLTS M is given by a tuple(Σ,Lab,→λ, σ0), where
Σ 6= ∅ is a set of states,Lab is a set of labels (ac-
tions), →λ⊆ Σ × Lab × Σ is a transition relation, and
σ0 ∈ Σ is the initial state. The set of labelsLab con-
sists of three subsets of actions,LabI , LabO, and{τ} de-
noting visible input, output and invisible internal actions.
An IOLTS is deterministiciff there is at most one out-
going transition for each actionλ ∈ Lab in each state
σ ∈ Σ.

The behavior of anIOLTS is given by sequences of
states and transitionsζ = σ0 →λ σ1 →λ . . . starting from
the initial one. Intraces, the states are projected out, i.e.
[[M ]]trace ⊆ Lab?, where[[M ]]trace denotes the set of traces
of anIOLTS M . IOLTSs modellingIUTs are assumed to
be input-complete, meaning, the implementation must ac-
cept any input from its environment.

Conformance testing is restricted to observing outputs
(or deadlock) only after those traces that are contained in
the specification. The specification maybepartial, in which
case the output of the IUT after unspecified inputs is not re-
stricted. The approach in [11] (following Tretmans in [17])
describes the set of conforming IUTs by anioco relation on
implementations and specifications. Given a modelMIUT

of an implementation and a modelMSpec of a specifica-
tion, the IUT is inioco-relation withSpec if and only if for
all tracesβ from MSpec , wheneverMIUT can issue an out-
put (or deadlock) after executingβ, then alsoMSpec can ex-
ecute traceβ followed by the same output (or deadlock). In
this paper, we will not consider deadlocks.

The conformance test generation in [11] is guided by test
purposes that are deterministicIOLTSs (denoted further
MTP ) equipped with a non-empty set of accepting states
Accept and a set of refusing statesRefuse which can be
empty. Both accepting and refusing states are sink states.
Moreover,MTP is complete in all the states except the ac-
cepting and refusing ones.

Test generationguided by a test purpose consists in
building a standardsynchronous productMSP of MSpec

with MTP and assigning verdicts. ThePass verdict is as-
signed to those states of the product which correspond to
acceptstates in the test purpose. TheInconc verdict is as-
signed to the states from which accepting states are not



reachable. TheFail verdict is implicit and is assigned af-
ter all unspecified outputs. Since the product represents ex-
pected behavior of an IUT from the tester’s point of view,
all input and output actions are mirrored during the genera-
tion of the product.

Test cases are derived from the product by resolving
choices between several outputs and between inputs and
outputs that might be present in the product. Formally, a
test caseMTC is a deterministic input-completeIOLTS
equipped with sink statesPass, Inconc andFail. A test suite
is a collection of test cases.

Test execution consists in giving outputs of a test case
as stimuli to an IUT and observing whether reactions of the
IUT match inputs expected by the test case. Execution of
test cases on an IUT should give a verdict about confor-
mance of an IUT wrt.Spec. Verdicts assigned by a test case
should besound[11]. Fail is assigned if and only if a viola-
tion of the specification is observed.Pass is assigned if and
only if we observe a trace that fits the test purpose and be-
longs to the specification.Inconc may be assigned only if an
observed trace belongs toSpec but is refused by the test pur-
pose.

3. Data Abstraction

Inadequate and underspecified assumptions about envi-
ronment are an important source of software errors. We aim
at automatic generation of test cases that does not depend on
particular assumptions about environmental behavior. Thus
we use the most general, ”chaotic”, environment that can
send and receive all possible messages in an arbitrary or-
der. Values exchanged by the system with an environment
are coming from large or even infinite domains. That imme-
diately leads to large or infinite number of test case obtained
during test case generation. Here we use a data abstraction
that allows us to obtain an smaller (finite) overapproxima-
tion of the original system.

We abstract data coming from environment to one
“chaotic” value, denoted by>>. Values that are not in-
fluenced by the environment remain unchanged. They
should be treated in the same way as in the original sys-
tem. This data abstraction was first proposed in [15] and
successfully used for model checking open systems. A sys-
tem obtained by this approach is a safe abstraction of
the original one, meaning, it showsat least the behav-
ior of the original system [15].

In this section, we first define the syntax and the seman-
tics of specifications we work with and further explain the
implementation of the data abstraction as a transformation
on the level of specifications.

3.1. Syntax and Semantics

Our operational model is based on synchronously com-
municating processes with top-level concurrency. This is
a simplification of a model used in [15]. A specification
Spec is given as the parallel compositionΠn

i=1Pi of a fi-
nite number of processes. A process definitionP is given
by a four-tuple(Var ,Loc, σ0,Edg), whereVar denotes a
finite set of variables, andLoc denotes a finite set oflo-
cations, or control states. A mapping of variables to val-
ues is called a valuation; we denote the set of valuations
by Val = {η | η : Var → D}. We assume standard data
domains such asN, Bool , etc. We writeD when leaving
the data-domain unspecified and silently assume all expres-
sions to be well-typed. LetΣ = Loc × Val be the set
of states, where a process has one designated initial state
σ0 = (l0, η0) ∈ Σ. The setEdg ⊆ Loc × Act × Loc de-
notes the set of edges. Anedgedescribes changes of config-
urations specified by anactionfrom a setAct .

As actions, we distinguish (1)inputof a signals contain-
ing a value to be assigned to a local variable, (2)outputof
a signals together with a value described by an expression,
and (3)assignments. Every action except inputs isguarded
by a boolean expressiong, its guard. The three classes of ac-
tions are written as?s(x), g B!s(e), andg B x := e, respec-
tively, and we useα, α′ . . . when leaving the class of actions
unspecified. For an edge(l, α, l̂) ∈ Edg , we write more sug-
gestivelyl −→α l̂.

The behavior of the process is then given by sequences
of statesζ = σ0 →λ σ1 →λ . . . starting from the ini-
tial one. The step semantics is given by anIOLTS M =
(Σ,Lab,→λ, σ0), where→λ ⊆ Σ× Lab × Σ is given as a
labelled transition relation between states. The labels differ-
entiate between internalτ -steps and communication steps,
either input or output, which are labelled by a signal and a
value being transmitted, i.e.?s(v) or !s(v), respectively.

Receiving a signals with a communication parameterx,
l −→?s(x) l̂ ∈ Edg , results in updating the valuationη[x 7→ v]

according to the parameter of the signal and changing cur-
rent location tôl. Output,l −→g B!s(e) l̂ ∈ Edg , is guarded,
so sending a message involves evaluating the guard and the
expression according to the current valuation. It leads to the
change of the location of the process froml to l̂.

Assignments,l −→g B x:=e l̂ ∈ Edg , result in the change
of a location and the update of the valuationη[x 7→ v], where
[[e]]η = v. Assignments are internal, so assignment transi-
tions are labelled byτ .

3.2. Program Transformation

Abstraction theory is well developed within the Abstract
Interpretation framework [4, 5]. Here we provide a varia-



tion of the program transformation from [9] implementing
the data abstraction.

We extend each data domain by an additional value
>>, i.e. we assume abstract domainsN>> = N ∪ {>>N},
Bool>> = Bool ∪ {>>Bool} etc. These>>-values are con-
sidered as the largest ones.

The transformation of the process specification consists
in lifting all variables, expressions and guards to>>-data do-
mains. Each occurrence of a variablex carrying values from
domainD, is substituted by an occurrence of the variable
x>> carrying values of domainD>>.

Each expressione is strictly lifted to expressione>>. If
at least one of the variables ofe>> carries a>>-value, then
[[e>>]]η>> = >>. Otherwise, expressione>> has the same value
as in the original system.

The transformation of guards is similar to the transfor-
mation of expressions. Every occurrence of a guardg is
lifted to a guardg>> of type Bool>>. While transforming
guards we should ensure that the abstract system showsat
leastthe behavior of the original system. The guards valu-
ated to>> behave as guards valuated totrue. To avoid in-
troducing unnecessary nondeterminism, we provide a more
refined lifting for boolean operations.

After lifting system variables, expressions and guards,
we obtain a system that can receive all values defined by the
original specification as well as>>-values from the environ-
ment. The environment can influence data only via inputs.
We transform every inputl −→?s(x) l̂ from the environ-
ment into an input of signals parameterized by the>>-value
from the corresponding domain followed by assigning this
>>-value to the variablex>>, i.e. every input edge is substi-
tuted byl −→?s(>>)−→true B x>>:=>> l̂ ∈ Edg>>.

A specification obtained by this transformation is re-
ferred further asSpec>>. An abstract system modelling the
transformed specification is referred further asM>>. This
system can receive only>> values from the environment, so
the infinity of the environmental data is collapsed into one
value. Basically, the transformed system shows at least the
traces of the original system where data influenced by envi-
ronment are substituted by>> values [10].

Although we provide here the program transformation
for specifications consisting of one process only, it does not
limit our approach. Existing linearization techniques [8] al-
low to obtain a single process definition for a parallel com-
position of a finite number of process definitions by resolv-
ing communication and parallel composition.

4. Testing with abstraction

In this section, we first illustrate our approach on a sim-
ple example and then generalize it.
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?getBalance

2

3

4

5

!Balance(b)6
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8
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 !pinCorrect
>)( px ==

!Money(y);
b:=b-y

>)( by ≤
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!pinIncorrect>)( px ≠

Figure 1. Simple Cash Machine

4.1. Cash Machine Example

Fig. 1 gives a specification of a simple cash machine.
When a customer enters a card, the machine initializes a
pin and a balance according to the card. Then the customer
should enter a pin number. The machine checks whether the
entered pin is the same as the one it expects after the initial-
ization. If an incorrect pin is entered, the machine sends the
pinIncorrect-message and stops the communication with
the customer. Otherwise, it sends thepinCorrect-message
and allows the user to choose between two options: (i) to
withdraw some cash or (ii) to ask information about the cur-
rent balance and then to get money. In case the customer
tries to withdraw more money than the balance, the mes-
sageLowBalance parameterized by the balance value is
issued. Otherwise, the machine dispenses money to the cus-
tomer and updates the balance.

As atest purposewe choose entering a pin followed (af-
ter some steps) by dispensing some money. Already for this
simple specification, test generation yields a large number
of test cases, which is caused by large domains for input
values. Therefore we produce an abstract specification by
transforming the original one as described in Section 3. The
simplified result of the transformation is given in Fig. 2.
Then we apply the enumerative test generation [11] to ob-
tain the synchronous product of the transformed specifica-
tion and the test purpose. The result of the generation is
given in Fig. 3.

To present the (expected) behavior of the system from
the tester point of view, inputs and outputs in the product are
mirrored with the specification. The product also contains
verdicts. Note that the product might implement multiple
test strategies - after entering a pin we still can choose be-
tween asking for some cash and inquiring the balance. Since
we want testing results to be repeatable, we choose one of
the options, namely, withdrawing money without asking for
the balance. The selected test case is depicted in solid lines.

To make the selected test case executable, we need to
concretize abstract values in it. We employ constraint solv-
ing to find concrete values. The information about con-
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Figure 2. Transformed Cash Machine
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Figure 3. Synchronous product with verdicts

crete data and their dependencies is contained in the orig-
inal specification. Therefore, we transform the specification
into a constraint logic program. The fragment of the pro-
gram for the edgesgetP in, pinIncorrect andpinCorrect
is given in Fig. 4.

The constraint logic program is a set of rules that con-
sist of an action name, three parameters and a guard that can
be empty. The first parameter given by the firststate-tuple
represents states in which the action is enabled. The second
parameter given by the secondstate-tuple represents states
reachable by the action. The third parameter, theparam-
tuple, contains variables local to the rule, which are intro-
duced to represent input and output data.

In the fragment in Fig. 4, variablesP,B,X, Y of the
specification represent respectively the initialized pin, the
initialized balance, the pin entered by the customer, and the
required money. In the rulegetP in(state(2, P, B, X, Y ),
state(3, P,B,X1, Y ), param(X1)), variable X1 repre-
sents the value entered by the customer andgetP in-action
substitutes the value of the variableX of the original speci-
fication by the value ofX1. This action is possible only in
location2 and it leads to location3. The other variables re-
main unchanged.

We are interested in gettingPass or Fail verdicts and
want to avoidInconc verdicts because test executions end-
ing with Inconc verdict neither cover the behavior of inter-
est nor discover software failures. Therefore, we choose a

% C o n s t r a i n t l o g i c program. . .
getP in(state(2, P, B, X, Y ), state(3, P, B, X1, Y ),

param(X1)).
pinIncorrect(state(3, P, B, X, Y ), state(8, P, B, X, Y ),

param(_)) :−X 6= Pin.
pinCorrect(state(3, P, B, X, Y ), state(4, P, B, X, Y ),

param(_)) :−X = Pin.
. . .
% Query
oracle(P, B, X, Y in, Y out) :−

initP in(state(0, 0, 0, 0, 0), G1, param(P )),
initBalance(G1, G2, param(B)),
getP in(G2, G3, param(X)),
pinCorrect(G3, G4, _),
getAmount(G4, G5, param(Y in)),
money(G5, _, param(Y out)).

Figure 4. Query and a fragment of the con-
straint logic program

[eclipse2] : oracle(P, B, X, Y in, Y out).
P = P{−1.0inf ..1.0inf } B = B{−1.0inf ..1.0inf }
X = P{−1.0inf ..1.0inf } Y in = Y out{−1.0inf ..1.0inf }
Y out = Y out{−1.0inf ..1.0inf }
Delayed g o a l s :
Y out{−1.0inf ..1.0inf } −B{−1.0inf ..1.0inf } =< 0
Yes

Figure 5. Solver’s output

trace of the abstract test case toPass and transform it into
a query for the constraint logic program. The query for the
Pass-trace of the abstract test case is given in Fig. 4. In the
query, variablesP , B, X, Y in, Y out denote respectively
the initial pin, the initial balance, the pin entered by a cus-
tomer, the amount of money requested by the customer and
the amount of money dispensed by the cash machine. We
useEclipse Prolog[7, 6] to solve the query.

The output of the solver is given in Fig. 5. The query has
solutions and the solver returns the information about them:
The pin-value entered by the customer should be the same
as the value of the initialized pin and the amount of money
dispensed by the machine should be the same as the amount
required by the user. The solver also provides an additional
information, delayed goals, meaning the amount dispensed
by the machine should not be greater than the initial bal-
ance.

Assume we have chosen a substitution{P 7→ 888, B 7→
9999, X 7→ 888, Y in 7→ 9000, Y out 7→ 9000} that is one
of the possible solutions of the query. We start the test ex-
ecution that consists in providing stimuli to an IUT and



checking whether the response of the IUT is the same as
we expect according to the selected trace and data.

Assume that during the execution of selected trace we
observe a reaction of the IUT that does not match the ex-
pected one according to the selected trace. For example, af-
ter sending requestgetAmount(9000) to the IUT, it returns
Money(9001) instead ofMoney(9000). For the cash ma-
chine, this reaction is obviously a wrong one because the
substitution{P 7→ 888, B 7→ 9999, X 7→ 888, Y in 7→
9000, Y out 7→ 9001} is not a solution for the query. There-
fore, we issue verdictFail and stop the test execution.

Specifications might be nondeterministic, so more than
one correct response is possible on one input. In this case,
assigning a verdict or proceeding test execution will require
an analysis of responses obtained from the IUT, which we
explain in the next subsection.

4.2. The Approach

Here we generalize our testing framework that covers the
test selectionandtest executionphases.

Test selectionconsists of the following steps: (1) Given a
test purposeTP and a specificationSpec, we transform the
specification into the abstracted one,Spec>>. (2) Then we
apply the enumerative test generation algorithm from [11]
to obtain a synchronous product ofIOLTSs modelling
Spec>> andTP . (3) Abstract test cases are selected from
the product by resolving choices between several outputs or
between inputs and outputs that might exist in some states
of the product [11]. (4) To execute an abstract test case,
abstract data should be concretized. Prior to executing the
test case, we concretize only a part of abstract values suf-
ficient to start the execution. Having a partial concretiza-
tion we startexecutingthe test case, while the concretiza-
tion of other abstract values happens "on-demand", i.e. it is
shifted to the test execution phase. Now we consider these
steps in more detail.

The transformation of a specification into an abstract one
is given in Section 3. The product generated from the ab-
stract specification and the test purpose might implement
many testing strategies. To keep testing results repeatable,
we have to select one of the strategies. By pruning conflict-
ing inputs and outputs [11], we single-out an input-complete
subgraph of the product. It does not contain choices be-
tween several outputs or choices between inputs and out-
puts. We further refer to the subgraph as anabstract test
case. Here, we limit our attention to subgraphs without
loops.

Environmental data occurring in the product are ab-
stracted into>>-values. To make the abstract test case exe-
cutable, abstract values should be concretized. For the con-
cretization of abstract values, we employ constraint solv-
ing [13]. The information necessary for concretization is

l −→g B!s(e) l̂ ∈ Edg
ROUT

s(state(l, η̃), state(l̂, η̃), param(X)) :− g ∧X = e

l −→?s(x) l̂ ∈ Edg
RINP

s(state(l, η̃), state(l̂, η̃[x 7→Y ]), param(Y ))

l −→g B x:=e l̂ ∈ Edg
RASSIGN

τ(state(l, η̃), state(l̂, η̃[x 7→ e]), param(_)) :− g

Table 1. From specification Spec to constraint
logic program RS

contained in the original specification. Therefore, we trans-
form it into a constraint logic programRS that consists of
rules. Each edge of the specification is mapped into a rule
as defined in Table 1.

Rules of the constraint program are of the following
form:name(state(l, η̃), state(l̂, η̃′), param(Y )) :−g where
name(state(l, η̃), state(l̂, η̃′), param(Y )) is auser defined
constraint andg is a guard. The first parameterstate of the
constraint describes the source states in terms of locations
and valuations of process variables. The second parame-
ter state describes the destination states in terms of loca-
tions and valuations of process variables. The third param-
eterparam contains parameters representing input and out-
put values. The constraint is satisfied iff the guardg is sat-
isfied.

By ROUT, the output edgel −→g B!s(e) l̂ is transformed

into the rules(state(l, η̃), state(l̂, η̃), param(X)) :− (g ∧
X = e). The name of the constraint coincides with signals.
The edge leads to the change of location froml to l̂. The val-
ues of the process variablesη̃ remain unmodified. The out-
put value is represented by parameterX. The value of this
variable is given by expressione.

By RINPUT, the input edgel −→?s(x) l̂ is transformed

into the rules(state(l, η̃), state(l̂, η̃[x 7→Y ]), param(Y )).
Here, input leads to the substitution of process variablex
by input parameterY .

By RASSIGN, an assign-edgel −→g B x:=e l̂ is mapped
into aτ -rule τ(state(l, η̃), state(l̂, η̃[x 7→ e]), param(_)) :−
g. An assignment is represented by substituting process
variablex by expressione. τ -rules have no local parame-
ters, which is denoted by the underscore (don’t-care) here.

Specifications are often nondeterministic meaning mul-
tiple reactions might be specified for one input. We cannot
predict which of the reactions are implemented by an IUT,
so concretizing all abstract values is time-consuming and
unnecessary. Therefore, we try to find a concretization only
for abstract values of one trace and shift the concretization
of other abstract values to the execution phase.

Different occurrences of the same abstract value do not
necessarily represent the same concrete value. In order to



differentiate the occurrences of abstract values, we substi-
tute each occurrence of>> values by a unique variable that
does not occur in the original specification. We will further
refer to these variables asparametersof the abstract test
case.

Formally, an abstract test case is an input complete
IOLTS M>>

TC equipped with a set of parametersVarparam .
Test caseM>>

TC might contain severalPass-traces. We select
one (for instance, the shortest one)Pass-traceβ of M>>

TC

and transform it into a queryOβ for the constraint logic
program.

Basically, a query is a conjunction of constraints corre-
sponding to the steps of the selectedPass-traceβ. We con-
struct the query by induction on the length of the selected
trace. Initially, the query is empty and the first step of the
trace becomes the first element of the conjunction.

The initial input(output)-step,σinit −→?s(Y ) σ̂
(σ −→!s(Y ) σ̂), is transformed into a querys(state(linit,
η̃init), state(L1, η̃1), param(Y )). There linit is the ini-
tial location of Spec, variableL1 denotes the location of
Spec reachable by the step.̃ηinit gives the initial valua-
tion of system variables,̃η1 denotes a valuation of process
variables reachable from the initial one by the step. Param-
eterY represents an input (output) value. The initialτ -step,
σinit →τ σ̂, is mapped into the queryτ(state(linit , η̃),
state(L1, η̃1), param(_)).

The next input(output)-step σ −→?s(Y ) σ̂
(σ −→!s(Y ) σ̂) is transformed into the constraint
s(state(L(k+1), η̃(k+1)), state(L(k+2), η̃(k+2)),
param(Y )). The nextτ -step σ →τ σ̂ is mapped into
the constraint τ(state(L(k+1), η̃(k+1)), state(L(k+2),
η̃(k+2)), param(_)). The constraint is added to the al-
ready constructed query by conjunction.

We useEclipse Prolog[7, 6] to solve the query. If there is
no solution for the query, the selected trace is introduced by
the data abstraction. Therefore, we remove the trace from
the test case. If none of thePass traces of the abstract test
case is solvable, we proceed by selecting another abstract
test case from the product. If there is at least one solution
for the query, the traceβ can be mapped to a trace of the
original system.

Let θ : Varparam → D be a solution of the query in the
rule systemRS. We refer to traceβ with parameters substi-
tuted according toθ as aninstantiated trace, denoted[[β]]θ.
By the construction of the constraint logic program and the
query, the instantiated trace[[β]]θ is a trace of the original
system.

Test execution Knowing one possible solution for the
selectedPass-trace, we start the execution of the abstract
test caseM>>

TC . Test execution consists in giving output-
steps as stimuli to an IUT and checking whether reactions
of the IUT match inputs expected according to the selected
trace. Theτ -steps are not observable, so we just skip them

during the execution. In case responses match expected in-
puts, we just proceed the execution until thePass verdict is
reached.

An IUT does not always follow the selected trace during
the test execution: The IUT might provide an input?s′(v′)
that does not match the input expected according to the se-
lected trace. In this case, we first need to decide whether
this input violates the specification. Letρ be the already ex-
ecuted prefix of[[β]]θ. We transformρ followed by the ob-
served input?s′(v′) into the new query for the constraint
system. If the query has no solution, meaning, the observed
input violates the specification, we assign theFail verdict
and stop the test execution. If the query has a solution, then
the observed input does not violate the specification and we
may proceed the test execution.

To proceed, we first check whether the abstract test case
has a trace toPass with prefix ρ?s′(v′). If there is such a
trace, we transformρ followed first by?s′(v′) and then by
the selected trace toPass to a new query. If the query has
a solution, we use the solution to proceed with the test exe-
cution. Otherwise, we stop the test execution. We also can-
not proceed if there is no trace toPass afterρ followed by
?s′(v′). Since we do not observe any violation of the speci-
fication in both cases, we assign verdictInconc.

The abstract system shows at least the behavior of the
original one and assigning test case verdicts is based on
solving queries for the rule system obtained from the orig-
inal specification. Therefore the test case verdicts assigned
in result of the proposed test execution aresound.

Implementation and CEPS case studyWe have imple-
mented our approach for test generation fromµCRL spec-
ifications (seewww.cwi.nl/̃ calame/dataabstr.html for
more detail). We use theµCRL toolset [2] to specify sys-
tems and test purposes, to generate and to optimize state
spaces. TGV [11] is employed to generate abstract test cases
from abstract systems.Eclipse Prolog[7, 6] is used to solve
queries.

We evaluated our approach to test generation on
Common Electronic Purse Specifications (CEPS) [3].
CEPS define a protocol for electronic payment us-
ing a multi-currency smart-card. A card has a number
of slots, each corresponds to one currency and the bal-
ance for this currency. CEPS defines how the informa-
tion stored in slots can be loaded, accessed and modi-
fied.

We have specified inquiry and load functionality of
CEPS and performed test case generation for the test pur-
pose based on theload transactionprocessing. We applied
our abstraction tool to the specification and then instan-
tiated and reduced the abstracted specification using the
µCRL toolset. The instantiation and reduction took 16 min-
utes 5 seconds on a cluster of five 2.2GHz AMD Athlon
64 bit single CPU computers with 1 GB RAM each (oper-



ating system: SuSE Linux 9.3, kernel 2.6.11.4-20a-default).
Using TGV, we generated two test cases without loops:
one of 594 states with 597 transitions and another one of
109 states with 111 transitions. Test case generation took
0.65 seconds and 0.42 seconds, respectively, on a worksta-
tion with one 2.2GHz AMD Athlon XP 32 bit CPU and
1 GB main memory (operating system: Redhat Linux Fe-
dora Core 1, kernel 2.4.22-1.2199.nptl). For more detail see
www.cwi.nl/̃ calame/dataabstr.html.

5. Conclusion

In this paper we proposed an approach to test genera-
tion combining data abstraction and constraint solving with
enumerative test generation techniques. Application of the
approach to the CEPS case study shows that it is scalable
to systems of industrial size. Currently we are working on
the automation of the test execution process as described in
Section 4.

The closest to our approach issymbolic test genera-
tion [12]. This method works directly on higher-level spec-
ifications given as Input-Output Symbolic Transition Sys-
tems (IOSTSs) without enumerating their state space. Given
a test purpose and a specification, their product is built.
Since coreachability problem is undecidable for the sym-
bolic case, the coreachability analysis is overapproximated
by classical Abstract Interpretation technique [4].

The purpose and usage of abstraction techniques in our
approach is conceptually different from the one of sym-
bolic test generation. We use a data abstraction that miti-
gates infinity of external data. It allows to obtain abstract
test cases by applying existing enumerative test generation
algorithms. Abstract test cases are further supplied by con-
crete data derived by constraint solving. In the symbolic
test generation approach, approximate coreachability anal-
ysis is used for pruning pathes potentially not leading to
Pass-verdicts. Both approaches are valid for any abstrac-
tion leading to an overapproximation of system behaviors.
Both approaches employ constraint solving to choose a sin-
gle testing strategy during test execution. More case stud-
ies are still needed to draw conclusions which approach is
more suitable for which class of systems.
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