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Abstract an IUT is correct wrt. the specification. Checking all possi-

ble test cases is however not feasible, only a subset of sys-
Conformance testing is one of the most rigorous and tem behavior can be tested. Therefore sdast selection
well-developed testing techniques. Model-based test genershould be done prior to testing.
ation is an essential phase of the conformance testing ap-  Using test purposess one of the most popular strate-
proach. The main problem in this phase is the explosion gjes for selecting test cases. A test purpose defines a subset
of the number of test cases, often caused by large or in-of the system behavior on which test cases should be fo-
finite data domains for input and output data. In this pa- cused. In case the IUT exhibits a behavior allowed by the

per we propose a test generation framework based on thespecification but not fitting the test purpose, verdiicbnc
use of data abstraction and constraint solving to suppress (inconclusive) is given.

the number of test cases. The approach is evaluated on  ne way to generate test cases is to enumerate the state
the CEPS (Common Electronic Purse Specifications) caségnace of the specification and select a part of it satisfying
study. a test purpose [11]. The generation does not always termi-
nate and even if terminated it often produces a huge num-
ber of test cases. The most important reason the number ex-
1. Introduction plodes is that data excha_nge_d within .and with the system
comes from large or even infinite domains. Here we propose

Throughout the years, testing remains one of the most@ testing framework that alleviates this problem by combin-
popular techniques that are used by industry to ensure thdng data abstractions and constraint solving with enumera-
reliability of systems. The main purpose of testing is to dis- tive test generation techniques.
cover as many defects in a system implementation as pos- We consider specifications that describe open sys-
sible. A large number of testing techniques have been de-tems communicating with the@nvironmentsAssumptions
veloped by academic and industrial communities to provide about the component’s environment that software program-
efficient and reliable ways of finding errol€onformance  mers are making is an important source of software errors.
testing[19] is one of the most rigorous among existing test- They are often not documented and in many cases er-
ing techniques. Given a specification, conformance testingroneous. Two classical examples of failures caused by
is concerned with checking whether an implementation un- this kind of errors are an incorrect handling of an arith-
der test (IUT) conforms the specification. metic exception that led to a power shutdown of cruiser

Intuitively, an IUT conforms its specification if after each USS Yorktown and an unanticipated floating-point excep-
input foreseen by the specification, the IUT exhibits only tion that caused a rocket boost failure in Ariane 5 [16].
the behavior allowed in the specification [17]. Assessing Therefore, for testing purposes, we consider the most gen-
conformance of an IUT is done by executitegt casesA eral possible environment that can send all possible inputs
test case contains all possible reactions of an IUT on cer-wrt. the specification, parameterized with arbitrary data.
tain environmental inputs. Reactions of an IUT may lead Further we refer to these environments’@saotic” envi-
to different verdicts: VerdicEail denotes a violation of the  ronments.
specification while verdicPass means that the reaction of Assuming a chaotic environment, we abstract the en-
vironmental data parameterizing inputs into one abstract
«  This work is done within the project “TTMedal. Test and Testing value. The abstract system shows then at least the behav-

Methodologies for Advanced Languages (TT-Medal)” [18] ior of the original system [15]. We implement the abstrac-




tion as a program transformation on the level of specifica- 2. Testing Theory
tion. Given a test purpose, we obtain an abstract test case by
applying already existing enumerative test generation algo-  For the generation of abstract test cases from specifica-
rithms [11] to the abstract system that is derived from the tions, we rely on the approach to conformance test gener-
transformed specification. ation proposed in [11] and implemented in the tool TGV.
An abstract system is an overapproximation of the orig- This approach relates specifications with conforming im-
inal one. Inputs and outputs of an abstract test case generplementations by aonformance relationlt formalizes the
ated from the abstract system carry abstract values. To makeaotions of a test case and a test purpose and also defines cor-
the abstract test cases executable, abstract values should lsectness criteria for test cases.
concretized. We employ constraint solving to find concrete  Specifications and implementations are modelled by in-
values that will substitute the abstract ones. Substituting allput output labelled transition systemdOLTSs). An
occurrences of abstract values is expensive and unnecesfOLTS M is given by a tuple(X, Lab, —», 0¢), where
sary. Therefore, we transform the original specificationinto ¥ # () is a set of statesLab is a set of labels &c-
a constraint logic program (CLP) and shift constraint solv- tionsg), —,C X x Lab x X is a transition relation, and
ing to the test execution phase. oo € X is the initial state. The set of labelbab con-
When testing a system, we want to reduce the number ofsists of three subsets of actiorsib;, Labo, and{r} de-
inconclusive verdicts. For this purpose, we start test execu-noting visible input, output and invisible internal actions.
tion by choosing a shortest trace to verdtass. We trans- ~ An IOLTS is deterministiciff there is at most one out-
form the chosen trace into a query for the CLP. If the query going transition for each action e Lab in each state
has at least one solution, then a concretization of this ab-o € X.
stract trace is present in the original specification. The so- The behavior of anfOLTS is given by sequences of
lution provides concrete values to substitute occurrences ofstates and transitions= oy —» o1 — ... Starting from
abstract values. In case there is no solution, the trace is inthe initial one. Intraces the states are projected out, i.e.
troduced by the abstraction and has to be removed from the] M| ;... C Lab*, where[M].... denotes the set of traces
test case. ofanIOLTS M. IOLTSs modelling/UT's are assumed to
Having a substitution for just one trace, we start the test be input-completemeaning, the implementation must ac-
execution. If the IUT follows the selected trace all the way, cept any input from its environment.
verdict Pass is assigned. In case the reaction of the IUT  Conformance testing is restricted to observing outputs
deviates from the selected trace, there are two possibilities:(or deadlock) only after those traces that are contained in
the IUT violates the specification or it follows a different the specification. The specification maytsgtial, in which
but still correct trace, which is possible due to nondetermin- case the output of the IUT after unspecified inputs is not re-
ism in the specification. When the IUT violates the specifi- stricted. The approach in [11] (following Tretmans in [17])
cation, we stop the test execution and assign the vefalilct describes the set of conforming IUTs byiawo relation on
Otherwise, we form a new query and a constraint solver isimplementations and specifications. Given a maudgl;r
consulted again. If there is a solution then we proceed with of an implementation and a modéf{g,.. of a specifica-
the test execution. If no solution is found, verdigtonc is tion, the IUT is inioco-relation with Spec if and only if for
assigned. all tracesg from Mg,.., whenevetM 7 can issue an out-
Here, we assume decidability of all guards in the spec- put (or deadlock) after executing then alsal/s,.. can ex-
ification, e.g. the guards might belong to a decidable frag- ecute trace? followed by the same output (or deadlock). In
ment of Presburger arithmetic [14] with uninterpreted func- this paper, we will not consider deadlocks.
tions [1]. We implement our approach to generate test cases The conformance test generation in [11] is guided by test
from uCRL specifications with TGV [11] and use th€RL purposes that are deterministi©LTSs (denoted further
toolset [2] to specify systems and test purposes, and to gend/rp) equipped with a non-empty set of accepting states
erate and reduce the state space. Eclipse Prolog [7, 6] isdccept and a set of refusing statd®efuse which can be
used to implement constraint solving. empty. Both accepting and refusing states are sink states.
The rest of the paper is organized as follows: In Sec- Moreover,Mrp is complete in all the states except the ac-
tion 2, we give an overview of testing theory our approach is cepting and refusing ones.
based on. Section 3 defines a set of specifications we work Test generatiorguided by a test purpose consists in
with and provides an implementation for the data abstrac-building a standarcsynchronous produci/sp of Mgpe.
tion. In Section 4, we first illustrate our approach to using with Mrp and assigning verdicts. THeass verdict is as-
the data abstraction for testing and then provide its general-signed to those states of the product which correspond to
ization. We conclude with Section 5 where we also discussacceptstates in the test purpose. Theonc verdict is as-
related and future works. signed to the states from which accepting states are not



reachable. Théail verdict is implicit and is assigned af- 3.1. Syntax and Semantics

ter all unspecified outputs. Since the product represents ex-

pected behavior of an IUT from the tester’s point of view, Our operational model is based on synchronously com-
all input and output actions are mirrored during the genera- municating processes with top-level concurrency. This is
tion of the product. a simplification of a model used in [15]. A specification

Test cases are derived from the product by resolving Spec is given as the parallel compositidii_, P; of a fi-

choices between several outputs and between inputs andite number of processes. A process definitiris given
outputs that might be present in the product. Formally, a by a four-tuple(Var, Loc, 0o, Edg), where Var denotes a

test caseM ¢ is a deterministic input-completeOLTS finite set of variables, andoc denotes a finite set db-
equipped with sink stateass, Inconc andFail. A test suite  cations or control states. A mapping of variables to val-
is a collection of test cases. ues is called a valuation; we denote the set of valuations

by Val = {n | n: Var — D}. We assume standard data
domains such abl, Bool, etc. We writeD when leaving
the data-domain unspecified and silently assume all expres-
sions to be well-typed. LeE = Loc x Val be the set
of states, where a process has one designated initial state
oo = (lg,m0) € . The setEdg C Loc x Act x Loc de-
notes the set of edges. A&xdgedescribes changes of config-
urations specified by aactionfrom a setAct.

As actions, we distinguish (10putof a signals contain-
ing a value to be assigned to a local variable,q@put of
a signals together with a value described by an expression,
and (3)assignmentsEvery action except inputs guarded
by a boolean expressignits guard. The three classes of ac-

tions are written a8s(z), g >!s(e), andg > = := e, respec-

3. Data Abstraction tively, and we use, o’ . .. when leaving the class of actions

unspecified. For an eddg «, 1) € Edg, we write more sug-

Inad d und ified . b gestivelyl —, 1.
nadequate and underspecified assumptions about envi- The behavior of the process is then given by sequences

ronment are an important source of software errors. We aimof statesC = oy —y 0y — starting from the ini-

at automatic generation of test cases that does not depend Ofi one. The stoep sgmz;nticé\ iS‘ .g.;iven by BALTS M —

particular assumptions about environmental behavior. Thus.(E Lab.—>,\ 00), Where—, C X x Lab x 3 is given as a
) ) 00/ =

we use the most general, "chaotic”, environment that €aN abelled transition relation between states. The labels differ-

send and receive all possible messages in an arbitrary or-__.. . L
P 9 Y Ontiate between internalsteps and communication steps,

gfer.c\c/)?:\l:rfs f?gfnh;?gg(:)rbgvtehr?irSn}il;[teen:j(\)Nrggir?Q _T_E\gtr?rgnnlzteither input or output, which are labelled by a signal and a
: 9 ge oreve ' .~ value being transmitted, i.8s(v) or Is(v), respectively.

diately leads to large or infinite number of test case obtained Receivi ianad with icat te

during test case generation. Here we use a data abstractiop ecelving a sighas with a communication parametey

that allows us to obtain an smaller (finite) overapproxima- * —_ ’s(z) < Edg, results in updatmg the valuatm;rpw,_v]
tion of the original system. according to the parameter of the signal and changing cur-

_ _ rent location td. Output,l —, 14y [ € Edg, is guarded,

We abstract data coming from environment to one gq sending a message involves evaluating the guard and the
“chaotic” value, denoted byT. Values that are not in-  eypression according to the current valuation. It leads to the
fluenced by the environment remain unchanged. Theychange of the location of the process froto .
should be treated in the same way as in the original sys- Assignments] —, . .. | € Edg, result in the change
tem. This data abstraction was first proposed in [15] and ¢ - |5cation and the gupé;t; of the v,aluating 1. where

successfully used for model checking open systems. A sys-ﬂ — v. Assignments are internal, so assignment transi-
tem obtained by this approach is a safe abstraction of,; "

tions are labelled by.
the original one, meaning, it showat leastthe behav- y
ior of the original system [15].

In this section, we first define the syntax and the seman-3.2. Program Transformation
tics of specifications we work with and further explain the
implementation of the data abstraction as a transformation Abstraction theory is well developed within the Abstract
on the level of specifications. Interpretation framework [4, 5]. Here we provide a varia-

Test execution consists in giving outputs of a test case
as stimuli to an IUT and observing whether reactions of the
IUT match inputs expected by the test case. Execution of
test cases on an IUT should give a verdict about confor-
mance of an IUT wrtSpec. Verdicts assigned by a test case
should besound[11]. Fail is assigned if and only if a viola-
tion of the specification is observelass is assigned if and
only if we observe a trace that fits the test purpose and be-
longs to the specificatiomnconc may be assigned only if an
observed trace belongs $pec but is refused by the test pur-
pose.



tion of the program transformation from [9] implementing
the data abstraction.

We extend each data domain by an additional value
T, i.e. we assume abstract domaii$ = N U {Ty},
Bool" = Bool U {T Boot} €tC. TheseT -values are con-
sidered as the largest ones.

The transformation of the process specification consists
in lifting all variables, expressions and guardSitedata do-
mains. Each occurrence of a variablearrying values from
domainD, is substituted by an occurrence of the variable
x T carrying values of domai 7.

Each expression is strictly lifted to expressior . If
at least one of the variables ef carries aT-value, then
[e"],r = T.Otherwise, expression’ has the same value
as in the original system.

The transformation of guards is similar to the transfor-
mation of expressions. Every occurrence of a guaid
lifted to a guardg "™ of type Bool T. While transforming
guards we should ensure that the abstract system stiows
leastthe behavior of the original system. The guards valu-
ated toT behave as guards valuatedtiae. To avoid in-

troducing unnecessary nondeterminism, we provide a more”

refined lifting for boolean operations.

After lifting system variables, expressions and guards,
we obtain a system that can receive all values defined by th
original specification as well ak-values from the environ-
ment. The environment can influence data only via inputs.
We transform every input —(, [ from the environ-
ment into an input of signal parameterized by th& -value
from the corresponding domain followed by assigning this
T-value to the variable T, i.e. every input edge is substi-
tuted byl T2s(T) ™ Ttrue>aT:=T iE EdgT

A specification obtained by this transformation is re-
ferred further asSpec " . An abstract system modelling the
transformed specification is referred further &S . This
system can receive only values from the environment, so

e

?initPin(p 7imrBalance(b °

?getPin(x)

(x # p) >Ipinincorrect

(x=p)>
IpinCorrect

(y>b)>

2 ?getBalance
ILowBalance(b) g

?getAmount(y)

2getAmount(y)

(v < b) >!Money(y); IBalance(b)
b:=b-y

Figure 1. Simple Cash Machine

4.1. Cash Machine Example

Fig. 1 gives a specification of a simple cash machine.
When a customer enters a card, the machine initializes a
pin and a balance according to the card. Then the customer
should enter a pin number. The machine checks whether the
entered pin is the same as the one it expects after the initial-
ization. If an incorrect pin is entered, the machine sends the
inIncorrect-message and stops the communication with
the customer. Otherwise, it sends i@ Correct-message
and allows the user to choose between two options: (i) to
withdraw some cash or (i) to ask information about the cur-
rent balance and then to get money. In case the customer
tries to withdraw more money than the balance, the mes-
sageLowBalance parameterized by the balance value is
issued. Otherwise, the machine dispenses money to the cus-
tomer and updates the balance.

As atest purposeve choose entering a pin followed (af-
ter some steps) by dispensing some money. Already for this
simple specification, test generation yields a large number
of test cases, which is caused by large domains for input
values. Therefore we produce an abstract specification by
transforming the original one as described in Section 3. The
simplified result of the transformation is given in Fig. 2.

the infinity of the environmental data is collapsed into one Then we apply the enumerative test generation [11] to ob-

value. Basically, the transformed system shows at least th i, the synchronous product of the transformed specifica-
traces of the original system where data influenced by eNVi-tion and the test purpose. The result of the generation is

ronment are substituted by values [10].

Although we provide here the program transformation
for specifications consisting of one process only, it does not
limit our approach. Existing linearization techniques [8] al-
low to obtain a single process definition for a parallel com-
position of a finite number of process definitions by resolv-
ing communication and parallel composition.

4. Testing with abstraction

In this section, we first illustrate our approach on a sim-
ple example and then generalize it.

given in Fig. 3.

To present the (expected) behavior of the system from
the tester point of view, inputs and outputs in the product are
mirrored with the specification. The product also contains
verdicts. Note that the product might implement multiple
test strategies - after entering a pin we still can choose be-
tween asking for some cash and inquiring the balance. Since
we want testing results to be repeatable, we choose one of
the options, namely, withdrawing money without asking for
the balance. The selected test case is depicted in solid lines.

To make the selected test case executable, we need to
concretize abstract values in it. We employ constraint solv-
ing to find concrete values. The information about con-



initPin(T, ?initBalance () . )
‘ . . % Constraint logic program..

7getPintr) getPin(state(2, P, B, X,Y), state(3, P, B, X1,Y)

true > Ipinincorrect param(Xl ) ) .
e > pinlncorrect(state(3, P, B, X,Y), state(8, P, B, X,Y),
{pincorrect param(_)):— X # Pin.
true > rgetBalance pinCorrect(state(3, P, B, X,Y), state(4, P, B, X, Y),

ILowBalance() SetAmonri(y)
! Ay

param(_)):— X = Pin.

2getAmount()

IBalance(r) % Query

oracle(P, B, X,Yin,Y out) —
Figure 2. Transformed Cash Machine initPin(state(0,0,0,0,0), G1, param(P)),
initBalance(G1, G2, param(B)),
getPin(Ga, Gs, param(X)),
pinCorrect(Gs,Ga, _),

.!imran(y‘!r‘mtsa/anceﬁr; @ get Amount(Ga, Gs, param(Y'in)),

etPinty) money(Gs, _, param(Y out)).

true v>!Money(y)

?pinincorrect

Figure 4. Query and a fragment of the con-
straint logic program

?pinCorrect

~_ lgetBalance

~

IgetAmount(t) Prand
K .
“?Balance()

?Money()

leclipse2] : oracle(P, B, X,Yin,Y out).

P = P{-1.0inf..1.0inf} B = B{—1.0inf..1.0inf}

X = P{-1.0inf..1.0inf} Yin = Yout{—1.0inf..1.0inf}
Yout = Yout{—1.0inf..1.0inf }

. L . . . Delayed goals:
crete data and their dependencies is contained in the 0Ny ,1{—1.0inf..1.0inf} — B{—1.0inf..1.0inf} =< 0

inal specification. Therefore, we transform the specification v ¢g
into a constraint logic program. The fragment of the pro-
gram for the edgeget Pin, pinIncorrect andpinCorrect Figure 5. Solver's output
is given in Fig. 4.

The constraint logic program is a set of rules that con-
sist of an action name, three parameters and a guard that catrace of the abstract test caseRass and transform it into
be empty. The first parameter given by the firgtte-tuple a query for the constraint logic program. The query for the
represents states in which the action is enabled. The secon&ass-trace of the abstract test case is given in Fig. 4. In the
parameter given by the secortdite-tuple represents states query, variables?, B, X, Yin, Yout denote respectively

Figure 3. Synchronous product with verdicts

reachable by the action. The third parameter, ghem- the initial pin, the initial balance, the pin entered by a cus-
tuple, contains variables local to the rule, which are intro- tomer, the amount of money requested by the customer and
duced to represent input and output data. the amount of money dispensed by the cash machine. We

In the fragment in Fig. 4, variableB, B, X, Y of the useEclipse Prolog7, 6] to solve the query.
specification represent respectively the initialized pin, the  The output of the solver is given in Fig. 5. The query has
initialized balance, the pin entered by the customer, and thesolutions and the solver returns the information about them:

required money. In the rulget Pin(state(2, P, B, X,Y), The pin-value entered by the customer should be the same
state(3, P, B, X1,Y), param(X1)), variable X; repre- as the value of the initialized pin and the amount of money
sents the value entered by the customer gatdin-action dispensed by the machine should be the same as the amount
substitutes the value of the variabteof the original speci-  required by the user. The solver also provides an additional

fication by the value ofX;. This action is possible only in  information, delayed goals, meaning the amount dispensed
location2 and it leads to locatiofl. The other variables re- by the machine should not be greater than the initial bal-
main unchanged. ance.

We are interested in gettinBass or Fail verdicts and Assume we have chosen a substitut{dh+— 888, B —
want to avoidinconc verdicts because test executions end- 9999, X — 888, Yin +— 9000, Yout — 9000} that is one
ing with Inconc verdict neither cover the behavior of inter- of the possible solutions of the query. We start the test ex-
est nor discover software failures. Therefore, we choose aecution that consists in providing stimuli to an IUT and



checking whether the response of the IUT is the same as -
I —gp1s(e) L € Edg

we expect according to the selected trace and data. k ROUT
Assume that during the execution of selected trace wes(state(l,7), state(l, 7)), param(X)): =g A X = e
observe a reaction of the IUT that does not match the ex- L —25(2) L € Edg

pected one according to the selected trace. For example, afy;.c(1, ), state(, T v1), param () RINP

ter sending requegtt Amount(9000) to the IUT, it returns | — g e | € Edg
Money(9001) instead ofM oney(9000). For the cash ma- — : RASSIGN
chine, this reaction is obviously a wrong one because theT (state(l;7), state(l, 7z o)), param(_)): = g
substitution{P — 888, B — 9999, X — 888,Yin o _
9000, Y out — 9001} is not a solution for the query. There- Table 1. From specification  Spec to constraint
fore, we issue verdidtail and stop the test execution. logic program = RS

Specifications might be nondeterministic, so more than
one correct response is possible on one input. In this case,
assigning a verdict or proceeding test execution will require contained in the original specification. Therefore, we trans-

an analysis of responses obtained from the IUT, which we form itinto a constraint logic prograrR.S that consists of
explain in the next subsection. rules. Each edge of the specification is mapped into a rule

as defined in Table 1.

Rules of the constraint program are of the following
form: name(state(l, 7), state(l, i), param(Y)) —g where
name(state(l, 7), state(l, 7' ), param(Y)) is auser defined
constraint andy is a guard. The first parametetate of the
constraint describes the source states in terms of locations
and valuations of process variables. The second parame-
ter state describes the destination states in terms of loca-
tions and valuations of process variables. The third param-
eterparam contains parameters representing input and out-

4.2. The Approach

Here we generalize our testing framework that covers the
test selectiomndtest executiophases.

Test selectiorconsists of the following steps: (1) Given a
test purposé’P and a specificatio§pec, we transform the
specification into the abstracted orféec " . (2) Then we
apply the enumerative test generation algorithm from [11]

to obtain a synchronous product ¢OLTSs modelling o A : i
Spec” and TP. (3) Abstract test cases are selected from r)sl:ite\(/jalues. The constraint is satisfied iff the gugns sat

Lhe produ_ct by resolving choices beMeen geyeral outputs or By ROUT, the output edgé —, - 1.(.) iis transformed
etween inputs and outputs that might exist in some states ~ LY
of the product [11]. (4) To execute an abstract test case, NtO the rules(state(l,7), state(l,7), param(X)): — (g A
abstract data should be concretized. Prior to executing theX = ¢)- The name of the constraint coincides with signal
test case, we concretize only a part of abstract values suf-1he edge leads to the change of location fidou. The val-
ficient to start the execution. Having a partial concretiza- Ues of the process variablgsemain unmodified. The out-
tion we startexecutingthe test case, while the concretiza- PUt value is represented by parameterThe value of this
tion of other abstract values happens "on-demand", i.e. it isvariable is given by expressien .
shifted to the test execution phase. Now we consider these BY RINPUT, the input edgé —-(,) ! is transformed
steps in more detail. into the rules(state(l,7), state(l, iz y1), param(Y)).
The transformation of a specification into an abstract one Here, input leads to the substitution of process variable
is given in Section 3. The product generated from the ab- by input parametey’. .
stract specification and the test purpose might implement By RASSIGN an assign-edge— . ,.—. [ is mapped
many testing strategies. To keep testing results repeatableinto ar-rule 7 (state(l, i), state(l, Mz e])> PaTam(_)):—
we have to select one of the strategies. By pruning conflict- g. An assignment is represented by substituting process
ing inputs and outputs [11], we single-out an input-complete variablex by expressiore. T-rules have no local parame-
subgraph of the product. It does not contain choices be-ters, which is denoted by the underscater(’t-care) here.
tween several outputs or choices between inputs and out- Specifications are often nondeterministic meaning mul-
puts. We further refer to the subgraph asadrstract test  tiple reactions might be specified for one input. We cannot
case Here, we limit our attention to subgraphs without predict which of the reactions are implemented by an IUT,
loops. so concretizing all abstract values is time-consuming and
Environmental data occurring in the product are ab- unnecessary. Therefore, we try to find a concretization only
stracted intoT -values. To make the abstract test case exe-for abstract values of one trace and shift the concretization
cutable, abstract values should be concretized. For the conef other abstract values to the execution phase.
cretization of abstract values, we employ constraint solv-  Different occurrences of the same abstract value do not
ing [13]. The information necessary for concretization is necessarily represent the same concrete value. In order to



differentiate the occurrences of abstract values, we substi-during the execution. In case responses match expected in-
tute each occurrence df values by a unique variable that puts, we just proceed the execution until s verdict is
does not occur in the original specification. We will further reached.

refer to these variables gmrametersof the abstract test An IUT does not always follow the selected trace during
case. the test execution: The IUT might provide an ingut(v’)
Formally, an abstract test case is an input completethat does not match the input expected according to the se-
IOLTS M} equipped with a set of parametersr,u, am- lected trace. In this case, we first need to decide whether
Test casél/ ], might contain severdass-traces. We select  this input violates the specification. Lebe the already ex-
one (for instance, the shortest orfgss-trace 3 of M ], ecuted prefix of|3]s. We transforny followed by the ob-
and transform it into a querys for the constraint logic  served input’s’(v’) into the new query for the constraint
program. system. If the query has no solution, meaning, the observed
Basically, a query is a conjunction of constraints corre- input violates the specification, we assign thel verdict
sponding to the steps of the seleci&ds-trace3. We con- and stop the test execution. If the query has a solution, then

struct the query by induction on the length of the selected the observed input does not violate the specification and we
trace. Initially, the query is empty and the first step of the may proceed the test execution.

trace becomes the first element of the conjunction. To proceed, we first check whether the abstract test case
The initial input(output)-step,oinic  ——25y) O has a trace t®ass with prefix p?s’(v’). If there is such a

(0 —15(v) 0), is transformed into a query(state(lint, trace, we transformp followed first by?s’(v’) and then by

Tlinit), state(Ly,71), param(Y)). Therel;,;; is the ini- the selected trace t@ass to a new query. If the query has

tial location of Spec, variable L; denotes the location of a solution, we use the solution to proceed with the test exe-
Spec reachable by the step,,.;; gives the initial valua-  cution. Otherwise, we stop the test execution. We also can-
tion of system variablesj; denotes a valuation of process not proceed if there is no trace Rass after p followed by
variables reachable from the initial one by the step. Param-?s’(v’). Since we do not observe any violation of the speci-
eterY represents an input (output) value. The initiedtep, fication in both cases, we assign verdietonc.

oinit —+ 0, 1S mapped into the query(state(l;nit ,7), The abstract system shows at least the behavior of the

state(Lq, 71), param()). original one and assigning test case verdicts is based on
The next input(output)-stepo —25(Y) o solving queries for the rule system obtained from the orig-

(0 — vy 0) is transformed into the constraint inal specification. Therefore the test case verdicts assigned

s(state(Lig+1y,  Trt1))s  state(Lgt2),  Tkt2)), in result of the proposed test execution soeind

param(Y)). The nextr-stepo —, & is mapped into Implementation and CEPS case studyVe have imple-

the constraint 7(state(L(x41), 7k+1))s state(Lpy2), mented our approach for test generation fro€RL spec-

Nik+2)), param(_)). The constraint is added to the al- ifications (seewww.cwi.nl/calame/dataabstr.html for

ready constructed query by conjunction. more detail). We use theCRL toolset [2] to specify sys-

We useEclipse Prolod7, 6] to solve the query. Ifthereis  tems and test purposes, to generate and to optimize state
no solution for the query, the selected trace is introduced byspaces. TGV [11] is employed to generate abstract test cases
the data abstraction. Therefore, we remove the trace fromfrom abstract systemgclipse Prolod7, 6] is used to solve
the test case. If none of thass traces of the abstract test queries.
case is solvable, we proceed by selecting another abstract We evaluated our approach to test generation on
test case from the product. If there is at least one solutionCommon Electronic Purse Specifications (CEPS) [3].
for the query, the tracg can be mapped to a trace of the CEPS define a protocol for electronic payment us-
original system. ing a multi-currency smart-card. A card has a number

Let6 : Varperem — D be a solution of the query inthe  of slots, each corresponds to one currency and the bal-
rule systenRS. We refer to traced with parameters substi- ance for this currency. CEPS defines how the informa-

tuted according t@ as aninstantiated tracedenoted5]. tion stored in slots can be loaded, accessed and modi-
By the construction of the constraint logic program and the fied.

query, the instantiated trad@], is a trace of the original We have specified inquiry and load functionality of
system. CEPS and performed test case generation for the test pur-

Test execution Knowing one possible solution for the pose based on tHead transactiorprocessing. We applied
selectedPass-trace, we start the execution of the abstract our abstraction tool to the specification and then instan-
test caseM}rC. Test execution consists in giving output- tiated and reduced the abstracted specification using the
steps as stimuli to an IUT and checking whether reactions uCRL toolset. The instantiation and reduction took 16 min-
of the IUT match inputs expected according to the selectedutes 5 seconds on a cluster of five 2.2GHz AMD Athlon
trace. Ther-steps are not observable, so we just skip them 64 bit single CPU computers with 1 GB RAM each (oper-



ating system: SUSE Linux 9.3, kernel 2.6.11.4-20a-default). [3] CEPSCO.Common Electronic Purse Specifications, Techni-

Using TGV, we generated two test cases without loops:
one of 594 states with 597 transitions and another one of [4]
109 states with 111 transitions. Test case generation took
0.65 seconds and 0.42 seconds, respectively, on a worksta-
tion with one 2.2GHz AMD Athlon XP 32 bit CPU and

1 GB main memory (operating system: Redhat Linux Fe-
dora Core 1, kernel 2.4.22-1.2199.nptl). For more detail see S

www.cwi.nl[~calame/dataabstr.html.

5. Conclusion

In this paper we proposed an approach to test genera-
tion combining data abstraction and constraint solving with
enumerative test generation techniques. Application of the [9]
approach to the CEPS case study shows that it is scalable
to systems of industrial size. Currently we are working on
the automation of the test execution process as described in

Section 4.

The closest to our approach §ymbolic test genera-
tion [12]. This method works directly on higher-level spec-
ifications given as Input-Output Symbolic Transition Sys-
tems (IOSTSs) without enumerating their state space. Given
a test purpose and a specification, their product is built.
Since coreachability problem is undecidable for the sym-
bolic case, the coreachability analysis is overapproximated

by classical Abstract Interpretation technique [4].

The purpose and usage of abstraction techniques in our 2]
approach is conceptually different from the one of sym-
bolic test generation. We use a data abstraction that miti-
gates infinity of external data. It allows to obtain abstract
test cases by applying existing enumerative test generation
algorithms. Abstract test cases are further supplied by con-[13]
crete data derived by constraint solving. In the symbolic
test generation approach, approximate coreachability anal{14]
ysis is used for pruning pathes potentially not leading to
Pass-verdicts. Both approaches are valid for any abstrac-
tion leading to an overapproximation of system behaviors.
Both approaches employ constraint solving to choose a sin-
gle testing strategy during test execution. More case stud-
ies are still needed to draw conclusions which approach is

more suitable for which class of systems.
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