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Abstract. Railway control systems are timed and safety-critical. Tes-
ting these systems is a key issue. Prior to system testing, the software of
a railway control system is tested separately from the hardware. Here we
show that real time and scaled time semantics are inefficient for testing
this software. We provide a time semantics with simulated time and show
that this semantics is more suitable for testing of software of railway
control systems.
TTCN-3 is a standardized language for specifying and executing test
suites. It supports real time and scaled time but not simulated time.
We provide a solution that allows simulated time testing with TTCN-
3. Our solution is based on Dijkstra’s distributed termination detection
algorithm. The solution is implemented and can be reused for simulated
time testing of other systems with similar characteristics.
Keywords: testing, real time, discrete time, scaled time, simulated time,
interlockings, TTCN-3.

1 Introduction

Railway control systems are safety-critical and therefore we have to ensure that
they are designed and implemented correctly. The interlocking is a layer of rail-
way control systems that guarantees safety. It allows to execute commands given
by a user only if they are safe; unsafe commands are rejected. Interlockings also
react in dangerous situations that can lead to derailments and collisions. In this
paper we propose a testing method for interlockings and indicate the character-
istics of systems for which this method will be suitable as well.

The software part of the interlocking is a program that consists of a large
number of guarded assignments. The program defines a control cycle that is
? This work is done within the project “TTMedal. Test and Testing Methodologies
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repeated by the system. The control cycle consists of two phases: an active
phase and an idle phase. The active phase starts with reading the inputs, then
proceeds by evaluating the guards and by computing new output values, and
finally issues outputs. After the active phase, the system becomes idle for the
rest of the control cycle. The point of the control cycle where the idle phase starts
is further referred to as an idleness point. The total time of the active and the
idle phases of the control cycle is fixed. Although the environment of the system
changes continuously, the system sees only snapshots of the environment made
at the beginning of each control cycle. Thus the environment is discrete from the
system’s point of view. The system is timed, delays are used to guarantee safety.
To keep the logic of the system simple and safe, the delays are chosen based on
the worst case assumptions about the environment behavior. In this paper, we
try and choose a time semantics that is the most suitable and efficient to test
this kind of systems.

Real time is usually considered to be the most adequate choice when testing
timed systems. In real time, the system clock is driven by a physical clock. In the
interlocking, the length of the active phase of the control cycle is much smaller
than the length of the control cycle. Therefore, the total time spent by the system
on being idle is much larger than the time spent on real computations. Hence,
with testing interlockings in real time, we waste a large amount of time on idle
phases.

When testing interlockings, we actually test a software system, so we have
the control over the timing of test executions. The most simple, näıve solution
is to test the system using scaled time. Scaled time is calculated as initial time
plus the product of a time factor and a difference between the current physical
time and the initial moment. The larger the factor is the faster we can execute
tests. Choosing the time factor is however not as simple as it seems. The time
factor must be small enough to make the longest active phase fit into the scaled
control cycle. Hence, we have to determine the largest possible time factor that
still satisfies this condition. Determining the largest time factor is difficult, time-
consuming and potentially error-prone. Any simple change in the system or in
the test suite implies that the factor has to be determined again.

Even if we have found the time factor, it still would not be optimal for testing.
The time spent on computations differs from cycle to cycle. If computations in
one control cycle take ten times as much time as computations in the other ten
cycles, the total time spent by the system on being idle is still much larger than
the total computation time. Hence, testing with scaled time is not the best choice
for this kind of systems.

In this paper, we propose a solution based on simulated time where the system
clock is a discrete logical clock. Simulated time is based on the assumption that
the time spent by the system on computations is negligible compared to the
duration of the external events. Therefore, the computations are considered to
be instantaneous and time progresses only when the system is idle.

The reasons why simulated time is adequate for testing this kind of systems
are the following: The length of the control cycle is fixed by the design of the
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system. The environmental changes are seen by the system as snapshots made
at the beginning of each control cycle. This provides natural discretization of
the system behavior. Interlockings are designed in such a way that the dura-
tion of the control cycle is much smaller than the minimal time within which
the system must react on the changes in the environment. Therefore, we may
safely use simulated time for testing this kind of systems. In general, simulated
time can be seen as scaled time with a dynamic time factor that is determined
automatically. Since the factor is dynamic, the approach is efficient in case of
varying computation times and allows adequate simulation of the environment
in case the system cannot be tested in field.

We have chosen TTCN-3 to implement our solution for testing interlockings.
TTCN-3 is a language with the syntax and the operational semantics standard-
ized by ETSI [9, 3, 4]. TTCN-3 was originally developed for real-time testing of
telecommunication systems. A TTCN-3 test executable has predefined standard
interfaces [5, 6] that allows to offer TTCN-3 solutions that do not depend on
the implementation details of a system under test (SUT). Therefore, applying
TTCN-3 to domains other than telecommunication systems is potentially ben-
eficial. Implementing simulated time for existing TTCN-3 interfaces is however
not straightforward.

In simulated time, a test system and an SUT should agree on simulated time.
To guarantee this, we provide a mechanism that detects an idleness point of an
SUT together with a test system for each control cycle and then synchronizes
them on time progression. A TTCN-3 test system and an SUT usually consist of
several concurrent components, so we extend a distributed termination detection
algorithm [2] to decide on idleness of all components and to synchronize them
on time progression. Our implementation consists of a TTCN-3 module and
Java classes for simulated time. The TTCN-3 module supports simulated time
within the TTCN-3 executable entity. The Java classes provide implementation
of simulated time for platform and system adapters. The solution is general and
can be used to test systems other than interlockings.

The rest of the paper is organized as follows: Section 2 provides a brief
survey on a general structure of a TTCN-3 test system [5]. In Section 3 we
describe particularities of railway control systems and interlockings. In Section4
we define a time semantics for testing interlockings. In Section 5, we present the
implementation of simulated time for TTCN-3 test systems. We conclude with
Section 6 where we discuss the limitations of our solution, propose possible ways
to resolve them and outline future work.

2 TTCN-3 test systems

TTCN-3 is intended for specification of (abstract) test suites [9]. The specifica-
tions can be generated automatically or developed manually. A specification of
a test suite is a TTCN-3 module which possibly imports some other modules.
Modules are the TTCN-3 building blocks which can be parsed and compiled
autonomously. A module consists of two parts: a definition part and a control
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part. The first one specifies test cases. The second one defines the order in which
these test cases should be executed.

A test suite is executed by a TTCN-3 test system whose general structure
is defined in [5]. Fig. 1 illustrates this structure. The Test Management (TM)
entity controls the order of execution of test cases and logs test events. Typically,
this entity also implements the user interface of the test system. The TTCN-
3 executable (TE) entity actually executes or interprets a test suit. The SUT
adapter (SA) implements communication between a TTCN-3 test system and
an SUT. It adapts message- and procedure-based communication of the TTCN-
3 test system to the particular execution platform of the test system. The SA
entity also propagates messages and calls from the TE entity to the SUT and
notifies the TE about messages and calls from the SUT. The platform adapter
(PA) realizes platform-dependant issues like external functions and time.

The TE entity executes TTCN-3 modules. A call of a test case can be seen as
an invocation of an independent program. Starting a test case leads to creating
a configuration. A configuration consists of several test components running in
parallel and communicating with each other and with an SUT by message passing
or by procedure calls. The first test component created at the starting point of
a test case execution is the main test component (MTC).

For communication purposes, a test component owns a set of ports. Each
port has in and out directions. Infinite FIFO queues are used to represent in
directions; out directions are linked directly to the communication partners. A
configuration can be changed dynamically by performing configuration opera-
tions create, connect, map, start and stop that allow to create a test
component, to map and connect its ports to the ports of other components, to
start the component with a certain behavior and finally to stop it. The behavior
of a test component is defined by a function given as a reference to the start op-
eration. All components and ports are implicitly destroyed at the termination of
each test case, so each test case will completely create its required configuration
of components and connections when its execution starts.

To specify time delays, TTCN-3 supports a timer mechanism. Timers are
local, namely each timer belongs to a certain test component. For each test
component, there exists a timeout list. A test component can start a timer for
a certain duration by operation start, stop a timer by operation stop, check

TRI

TCI

TEST MANAGEMENT (TM)

TTCN−3 EXECUTABLE (TE)

SUT ADAPTER (SA) PLATFORM ADAPTER (PA)

Fig. 1. General structure of a TTCN-3 test system
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whether a timer is running by operation running, read the elapsed time of a
running timer by operation read and consume timeouts from the timeout list
by operation timeout. A timer can be active or inactive. An active timer runs
from 0 up to the specified duration. When the specified duration is reached, a
timer expires, i.e. it adds a timeout to the timeout list of the test component
and becomes inactive. Operation timeout allows a test component to consume
a timeout message from its list.

An implementation of timers is platform-dependent, so the timer instances
created in the TE and operations on them are implemented by the PA entity.
Timers are distinguished by unique timer identifiers (TID). The runtime inter-
face [5] (TRI) allows the TE entity to invoke external functions and the opera-
tions on timers implemented by the PA entity. For invocations of some TTCN-3
operations, there exists a direct correlation to invocations of TRI operations.
TTCN-3 timer operations start, stop, read, running are realized by TRI
operations triStartTimer, triStopTimer, triReadTimer, triTimerRun-
ning respectively. These operations are invoked by the TE entity and performed
by the PA entity.

If the TE invokes triStartTimer, the PA starts the indicated timer with the
specified duration. If the TE invokes triStopTimer, the PA stops the timer. If
the TE calls triReadTimer, the PA returns the time elapsed from the moment
of starting the timer. In case the timer has not been started or already expired,
the PA returns zero. If the TE calls triTimerRunning, the PA replies whether
the timer is active or not.

The PA is responsible for expiring the timers. If an active timer reaches
its specified duration, the PA deactivates the timer and notifies the TE about
the expiration by calling TRI operation triTimeout. On the invocation of this
operation, the TE entity adds the timeout to the timeout list of the corresponding
test component. When starting, stopping or expiring a timer whose timeout is
still in the timeout list, the TE removes the timeout message from the timeout
list.

In the next section, we give a short overview of railway control systems and
describe the control cycle typical for railway interlockings.

3 Testing Railway Interlockings

Railway control systems consist of three layers: infrastructure, logistic, and in-
terlocking. The infrastructure represents a railway yard that basically consists of
a collection of linked railway tracks supplied with such features as signals, points
and level crossings. The logistic layer is responsible for the interface with hu-
man experts, who give control instructions for the railway yard to guide trains.
The interlocking guarantees that the execution of these instructions does not
cause train collisions or derailments. Thus it is responsible for the safety of the
railway system. If the interlocking considers a command as unsafe, the execu-
tion of the command is postponed until the command can be safely executed or
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discarded. Since the interlocking is the most safety-critical layer of the railway
control system, we further concentrate on this layer.

Here we consider interlocking systems based on Vital Processor Interlock-
ing (VPI) that is used nowadays in Australia, some Asian countries, Italy, the
Netherlands, Spain and the USA [12]. A VPI is implemented as a machine which
executes hardware checks and a program consisting of a large number of guarded
assignments. The assignments reflect dependencies between various objects of a
specific railway yard like points, signals, level crossings and delays on electrical
devises and ensure the safety of the railway system. An example of a VPI specifi-
cation can be found in [1]. In the TTMedal project [15], we develop an approach
to testing VPI software with TTCN-3. This work is done in cooperation with
engineers of ProRail who take care of capacity, reliability and safety on Dutch
railways. They have formulated general safety requirements for VPIs. We use
these requirements to develop a TTCN-3 test system for VPIs.

The VPI program has several read-only input variables, auxiliary variables
used for computations and several writable variables that correspond to the
outputs of the program. The program specifies a control cycle that is repeated
with a fixed period by the hardware. The control cycle consists of two phases: an
active phase and an idle phase. The active phase starts with reading new values
for input variables. The infrastructure and the logistic layer determine the values
of the input variables. After the values are latched by the the program, it uses
them to compute new values for internal variables and finally decides on new
outputs. The values of the output variables are transmitted to the infrastructure
and to the logistic, where they are used to manage signals, points, level crossings
and trains. Here we assume that the infrastructure always follows the commands
of the interlocking. The rest of the control cycle the system stays idle.

The duration of the control cycle is fixed. Delays are used to ensure the safety
of the system. A lot of safety requirements to VPIs are timed. They describe de-
pendencies between infrastructure objects in a period of time, e.g. ”when freed,
a train track must remain unoccupied for 120 seconds”. VPIs control infras-
tructure objects. The objects of the infrastructure are represented in the VPI
program by input and output variables. Thus the requirements defined in terms
of infrastructure objects can be easily reformulated in terms of input and output
variables of the VPI program. Hence VPIs are time-critical systems. Further we
are going to propose a time semantics suitable for testing VPI software.

4 Time Semantics for Testing Interlockings

Originally TTCN-3 was developed for the real time testing of telecommunication
systems. We use it here for testing VPIs. When testing VPI software in real
time, we waste time on idle phases of each control cycle. Imagine that we have
to execute 1000 tests of 6 minutes each. Executing all of them will require thus
100 hours. Suppose that the control cycle of VPI is repeated each second and
that the active phase takes in average 0.2 seconds. Then we will lose 80 hours
on idle phases.

6



We are testing VPI software separately from hardware. That gives us the
control over the timing of test execution, so we could try to solve the problem
by using scaled time. For testing with scaled time, we have to determine a
time factor. Scaled time is calculated as initial time plus physical time that
has passed from the initial moment multiplied by the time factor. When testing
VPI software, we can scale only the idle phase of the control cycle. Time spent on
active phases will still be determined by a hardware running the VPI program,
so active phases cannot be scaled. Therefore, we have to choose a safe time factor
so that the longest active phase still fits into the scaled control cycle.

Determining a safe time factor, we have to take into account not only the
longest active phase of the VPI program but also the longest active phase of the
test system. Therefore, determining a time factor is difficult, time consuming and
potentially error-prone. Minor changes made in the program or in the test suite
can lead to a change of the duration of active phases. Even if we determined a
time factor, this time factor is still not optimal. The duration of the active phase
of the VPI program together with a test system can differ from one control cycle
to another. That means that we still lose time on idle phases of control cycles
with a short active phase. Scaled time is not optimal for testing interlockings.

In this section we try and determine which time semantics is the most suitable
for testing VPI software.

The first choice to be made is between dense and discrete time. It is normally
assumed that real-time systems operate in “real”, continuous time (though some
physicists contest against the statement that the changes of a system state may
occur at any real-numbered time point). However, a less expensive, discrete time
solution is for many systems as good as dense time in the modelling sense, and
better than the dense one when testing and verification are concerned [11]. The
duration of the control cycle of VPIs is fixed. The program sees only snapshots
of the environment at the beginning of each control cycle, meaning the program
observes the environment as a discrete system. Therefore, the choice for discrete
time is obvious.

Often, it has been argued that models where any action takes some non-zero
time allow more faithful descriptions. However, VPI software is designed in such
a way that an active phase always fits into the control cycle. The duration of a
control cycle is smaller than the time period within which the system must react
on the environmental changes. In sequel, the actual duration of the active phase
is negligible compared to the duration of the control cycle and to the reaction
time of the system. Therefore, we can treat the active phase as instantaneous.

Time constraints in a VPI program are expressed by time delays that are
much longer than the duration of the control cycle. Together with the negligible
duration of an active phase, that leads us to the conclusion that we may safely
use a logical clock instead of a physical one, namely, we may use simulated time.
In simulated time, the time progress has the least priority in a system, and time
may progress only if the system is idle. This property is known as minimal delay
or maximal progress [13]. We refer to the time progress action as tick and to the
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period of time between two ticks as a time slice. Further we define the notion
of idleness more formally.

Here we consider closed systems consisting of multiple components. Timers
are used to express time constraints of the system. We say that a component is
idle iff it cannot proceed by performing computations or by receiving messages.
As a consequence, all in ports of an idle component are empty and the timeout
list of the component is empty as well. Otherwise, the component could still
proceed by receiving a message or by consuming a timeout. Further we refer
to the idleness of a single component as local idleness. We say that a system is
idle iff all components of the system are idle and none of the active timers can
expire in the current time slice. We refer to the idleness of the whole system as
global idleness. If the system is globally idle, the time progresses by action tick
that increases the elapsed time of active timers by one. If a timer has reached
its specified duration, it expires within the current time slice. Timers ready to
expire within the same time slice expire in an arbitrary order.

In the next section, we provide a TTCN-3 solution for testing with simulated
time.

5 Simulated time in TTCN-3

TTCN-3 is developed for real time testing, simulated time is not included as
an option of a TTCN-3 test system. Our goal is to implement simulated time
within the existing structure of a TTCN-3 test system using only standard TRI
interface and without introducing any changes into the syntax and the semantics
of the TTCN-3 language. Here, we consider a closed system formed by an SUT
and a TTCN-3 test system. In simulated time, we have to keep time of all system
components synchronized. Therefore, we should provide a mechanism that allows
to detect the idleness point of the system in each control cycle and to implement
tick-steps.

An SUT is idle if it cannot progress further by performing internal compu-
tations or by receiving input messages from the test system, i.e. all its in ports
have to be empty. When doing black-box testing, we do not have control over
the computations of an SUT and we cannot observe its internal FIFO queues.
Therefore, we make two assumption about an SUT: an SUT supports an in-
terface notifying us of its status (active or idle); an SUT supports an interface
for time progression. These are reasonable assumptions when interlockings are
concerned. Interlockings have the control cycle with an explicit input/output
structure, thus extending VPI software with such interfaces is straightforward.

A TTCN-3 test system is idle if all its entities are idle. The TE entity is idle
if all the test components are idle, i.e. they cannot progress further by receiving
new messages or by performing computations, meaning, the timeout lists are
empty and the channels are empty as well. The PA is idle if it is not performing
any external function and there are no timers that have reached their specified
duration but not expired yet. The SA cares for the communication with the
SUT, so we use it to decide on the idleness of the SUT.
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5.1 Distributed termination detection algorithm of Dijkstra

To decide on the global idleness of the system, we employ the well-known dis-
tributed termination detection algorithm of Dijkstra [2]. The algorithm allows
to decide on the termination of a system of N components. Each component
has a unique identity that is a natural number from 0 to N − 1. The algorithm
differentiates two kinds of messages: (i) basic messages exchanged by the com-
ponents; (ii) termination detection messages. The main assumption important
for the correctness of the algorithm is that communication is reliable, meaning,
no message is lost.

Each component has a status that is either active or idle. Active components
can send messages, idle components are waiting. An idle component can become
active only if it gets a basic message. An active component can always become
idle. The system is terminated only if all components have the idle status and
all channels are empty. The Dijkstra’s algorithm allows one of the components,
for example the 0-component, to detect whether termination has been reached.

We cannot decide on termination only by looking at the status of the com-
ponents. The idle status of the components is necessary but not sufficient in this
case. The status of a component changes from idle to active only by receiving a
basic message, so we have to keep the track of all the messages in the network.
Each component has a local message counter. A component decreases its counter
when it receives a basic message. When a component sends a basic message, it
increases its message counter. Moreover, each component has a local flag. The
flag is initially false, and it turns true only when the component receives a basic
message.

The components are connected into a ring that is used to transmit the ter-
mination message that is referred to as a token. The termination token consists
of a global message counter and a global flag. The 0-component initiates a ter-
mination detection by sending a termination token with the counter equal to 0
and the flag equal to false to the next component in the ring. The 0-component
expects that no messages are pending in the network and none of the compo-
nents has the active status, which is to be checked by passing the token along
the ring.

If the next component has the active status, it keeps the token until the
status of the component becomes idle. If the component has the idle status it
modifies the token by adding its local message counter to the global message
counter. If the value of the local flag of the component is true, the component
propagates the flag by changing the global flag to true, meaning, that maybe
one of the system components is still active. Then the component forwards the
token to the next component along the ring. After forwarding the token, the
component changes its local flag to false, meaning that the token already got
the up-to-date information about this component. The termination is detected by
the 0-component only if the component gets back the token with the global flag
equal to false and the sum of the global message counter with the local message
counter of the 0-component is zero. In this case the 0-component can be sure that
all other components have the idle status and there are no messages pending in
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the FIFO queues representing the channels. Otherwise, the 0-component starts
a new round of termination detection by sending a termination token with the
counter equal to 0 and the flag equal to false.

5.2 An extension of the distributed detection algorithm

We extend the Dijkstra’s distributed termination detection algorithm to decide
on global idleness of the system and to provide time progression. Trying to
build an ad-hoc idleness detection into the functions that define the behavior of
the test components is error-prone and time-consuming. Therefore, we provide
simulated time as a stand alone solution that can be reused for any TTCN-3 test
system with simulated time. To check local idleness of the system components,
we introduce an idleness handler for each system component, i.e. for each test
component, for the PA entity and for the SA entity. To decide on global idleness
and to progress time, we introduce a time manager. The time manager and
the idleness handlers are connected into a ring illustrated in Fig.2. (There the
dashed lines represent the border of the original system and the channels within
the system.) Although this solution brings a certain overhead, it is generic and
independent of the details of a test suit.

The implementation of simulated time consists of a TTCN-3 module and
several Java classes. The TTCN-3 module defines the idleness handlers and time
progression for the test components. The module can be imported by a spec-
ification of a test suite. The Java classes implement a time manager, a timer
unit, idleness handlers for the timer unit and for the SUT. The classes are part
of the platform and system adapters respectively. When implementing our ap-
proach, we have used a series of tools for TTCN-3-based testing provided by the
TestingTech company [14].

ComponentComponent

ComponentComponent
Handler
Idleness

Handler
Idleness

Handler
Idleness

Handler
Idleness

Manager
Time

Fig. 2. A Closed System with Simulated Time
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To implement simulated time, we have to detect global idleness, not termi-
nation. After idleness is detected time progresses and detecting global idleness
starts in the next time slice again. So we have to ensure time progression and
restarting the idleness detection in each time slice. For the sake of simplicity, we
consider here only communication based on message passing. The same approach
can be used in the case of communication based on procedure calls.

The original algorithm works with two kinds of messages: basic messages
and token. In a TTCN-3 test system, we also have to deal with time progression
and timeouts. Timeouts are a special kind of messages that are not sent via
usual ports but placed into timeout lists. Timeouts can disappear from lists as a
result of stopping or resetting timers. The original algorithm works only in case
all sent messages are received. Not all timeouts are received by the components.
Some of timeouts are lost by stopping and resetting timers, so we handle timeouts
separately from basic messages. For basic messages, we assume that the channels
of TTCN-3 test system are reliable and that no dynamic reconfiguration takes
place in the system.

Time Manager A time manager initializes idleness detection, decides on
global idleness and realizes time progression. The time manager initiates idleness
detection by sending an idleness token. As in the original algorithm, the idle-
ness token has a global message counter and a global flag. In order to support
time progression, we extend the set of values of the global flag carried by the
idleness token. In the original algorithm, the global flag was true or false. In
the extended version, the global flag can be “IDLE TAG” meaning that there
are not active components in the system, “ACTIVE TAG” meaning that maybe
one of the system components is still active, and “TICK TAG” meaning that
time progresses by one time slice. The time manager initiates idleness detection
by sending an idleness token with the counter equal to 0 and the flag equal to
“IDLE TAG” to the next idleness handler along the ring.

If the time manager receives the idleness token back with the zero message
counter and the global flag with value “IDLE TAG”, it detects global idleness.
Otherwise, it repeats idleness detection in the same time slice. If global idleness is
detected, the time manager changes the global flag of the token to “TICK TAG”
and sends it along the ring to reinitialise the handlers for idleness detection
in the next time slice. After the time manager gets back the token with the
“TICK TAG” global flag, it safely triggers time progression and then starts the
idleness detection in the next time slice. Since all time issues are realized by the
PA entity, we implement the timer manager as a part of the PA entity.

Idleness handler Here we define the general behavior of an idleness han-
dler. A TTCN-3 function in Fig. 3 specifies the behavior of idleness handlers.
In the Dijkstra’s algorithm, termination detection was built into the function-
ality of components. We separate idleness detection from normal functionality
of components by introducing idleness handlers. To guarantee the correctness
of this extension of the algorithm, the communication between a component
and its idleness handler is synchronized. An idleness handler acknowledges each
message received from its component. An idleness handler and its component
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function IdlenessHandler ( ) runs on IdlenessComponent {
var Token token ; var boolean TokenPresent := false ;
var boolean flag := true ; var boolean idle := false ;
var integer count := 0 ;
while ( true ){

alt {
[ ] Comp . receive (SEND)

{ count := count+1; Comp . send (ACK) ;}
[ ] Comp . receive (RECV)

{count := count−1; flag := true ; idle := false ; Comp . send (ACK) ; }
[ ] Comp . receive (ACTIVATE)

{flag := true ; idle := false ; Comp . send (ACK) ; }
[ ] Comp . receive (IDLE)

{ idle := true ; Comp . send (ACK) ; }
[ ] RingIn . receive (Token) −> value token

{TokenPresent := true ;}
}

i f ( idle and TokenPresent )
{ i f ( token . flag==IDLE TAG or token . flag==ACTIVE TAG)
{ i f ( flag ){token . flag:=ACTIVE TAG; flag:=false ;}
token . count:=token . count+count ;}

i f ( token . tag==TICK TAG)
{log (” time progression ” ) ;
count :=0; flag:=true ; idle :=true ;}

RingOut . send (token ) ;
TokenPresent := false ;
}}}

Fig. 3. A TTCN-3 idleness handler

communicate via port Comp. Ports RingIn and RingOut are used by a han-
dler to receive a token from a previous handler and resp. to send a token to the
next handler along the ring.

The local message counter, the status represented by the variable idle and
the local flag of the component are now kept by its idleness handler. Initially,
the idle status is false, meaning the component is potentially active, the local
flag is true, meaning the token does not have up-to-date information about the
component yet, and the local message counter is zero. The idleness handler keeps
track of all the messages sent and received by the component, the component
informs the idleness handler about receiving a basic message, sending a basic
message or becoming idle by sending “RECV”, “SEND”, and “IDLE” messages
respectively. In case of sending, receiving a message or becoming idle, the idleness
handler follows the original distributed termination detection algorithm.

In a TTCN-3 test system, a component can become active also if it consumes
a timeout. Therefore, the component client notifies its idleness handler about
consuming a timeout by the “ACTIVATE” message. This message triggers the
idleness handler to change the the local flag to true and the idle status to false.

Forwarding the idleness token with an “IDLE TAG” global flag or “AC-
TIVE TAG” global flag happens on the same conditions as forwarding the ter-
mination token with the false and true global flag respectively. In case the idle-
ness handler gets the token with the “TICK TAG”-flag, it reinitializes the local
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message counter counter, sets the local idleness status and the local flag to true.
Now the handler is ready for the next time slice.

Transformation of the TTCN-3 code The idleness detection works cor-
rectly only if the TTCN-3 code of test components follows certain specification
pattern and the whole system is configured correctly. By correct configuration
we mean that each test component has an port for communication with a unique
idleness handler. Moreover the handlers together with the time manager are con-
nected into a ring. The SimulatedTime module implementing simulated time is
imported. No dynamic reconfiguration is possible. By the specification pattern,
we mean that the code specifying behavior of test components should satisfy the
following conditions:

– every TTCN-3 blocking operation (receive, timeout, done, etc.) is preceded
by sending “IDLE” to its idleness handler;

– every receive statement is followed by sending “RECV” to the idleness
handler;

– every send statement is followed by sending “SEND” to the idleness handler;
– a timeout statement should be followed by sending “ACTIVATE” to the

idleness handler
– sending “IDLE”, “RECV”, “SEND” and “ACTIVATE” are followed by re-

ceiving an acknowledgment from the idleness handler;
– an acknowledgment for “ACTIVATE” is followed by stopping the timer to

inform the PA that the timeout is consumed.

The specification pattern can be implemented as an automatic transforma-
tion of TTCN-3 specifications. Further we consider implementation of the timer
unit in the PA.

Timer Unit. A timer unit implements the TRI operations on timers. Our
solution for timer unit keeps active timers in three tables: a “blocked” table for
active timers that are not going to expire in the current time slice, a “ready”
table for timers ready to expire, and an “expired” table for expired timers, whose
timeout message is not consumed yet.

Starting a timer with the zero value leads to deleting the timer from all three
tables and adding the timer into the “ready” table. This timer will cause a time-
out during the current time slice. Therefore, the timer unit sends “ACTIVATE”
to its idleness handler.

Starting a timer with a value greater than zero leads to deleting the timer
from all three tables and to adding the timer into the “blocked” table. Stopping
a timer leads to removing the timer from all the tree tables. Issuing a timeout
moves an expired timer from the “ready” table to the “expired” table. In case
there are no other “ready” or “expired” timers, the timer unit reports to its
idleness handler “IDLE”.

On time progression issued by the time manager, the timer unit increases
the elapsed time of all active timers by one, moves the timers that expire in the
next time slice into the “ready” table and notifies its idleness handler by the
“ACTIVATE” message.
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6 Conclusion and Future Work

Using formal methods for the verification of railway control systems is an active
area of research. Model checking [8] and theorem proving [7] have been success-
fully applied to untimed verification of interlockings. Several domain-specific
languages [1, 10] have been developed to support automatic verification, valida-
tion and system testing.

In this paper, we provided a time semantics that is the most efficient for
testing VPI software. When testing with simulated time, we do not waste time
on idle phases as in real time testing. Simulated time can be considered as scaled
time with a dynamic time factor that is defined automatically. Hence simulated
time provides a fair and effective scaling.

We provided a “simulated time” solution for TTCN-3 test systems. The solu-
tion is based on an extension of the well-known distributed termination detection
algorithm [2]. We implemented our approach as a stand alone solution that can
be used for any TTCN-3 test system when testing with simulated time is nec-
essary. This work together with other case studies within the TT-Medal project
showed the necessity of simulated time for testing. Formulating proposals for
changing TRI so that it allows a straightforward implementation of simulated
time in a TTCN-3 test system is the subject of future work.

The Dijkstra’s algorithm that we use as a basis for idleness detection works
correctly only if the channels of the system are reliable, i.e. no basic message gets
lost. The TTCN-3 language provides operations that allow dynamic reconfigu-
ration and clearing the contents of channels. Our current implementation has
two limitations: no distributed testing, no dynamic reconfiguration. Dynamic
reconfiguration means dynamically adding and removing test components and,
consequently, mapping and unmapping ports. Dynamic reconfiguration is poten-
tially dangerous because a reconfiguration can lead to loosing messages. An easy
solution is to forbid dynamic reconfiguration of non-idle components.

Distributed testing, where a test system consists of multiple instances of a
TTCN-3 test system, is not possible with the current implementation of our solu-
tion because such a system would have multiple copies of a time manager instead
of a mandatory single copy. This can be solved by disabling time managers in
slave copies and by extending termination ring across all the copies. The current
implementation of the solution is available on www.cwi.nl/∼ustin/stime.html.
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