Approximation and Mechanism Design

Jason D. Hartline — Northwestern University

September 3, 2010
Mechanism Design: how can a social planner / optimizer achieve objective when participant preferences are private.

Challenge: designer does not know participant preferences, participants may strategize when reporting preference!
Goals for Theory

Goals for Mechanism Design Theory:

- **Descriptive**: predict/affirm mechanisms arising in practice.
- **Prescriptive**: suggest how good mechanisms can be designed.
- **Conclusive**: pinpoint salient characteristics of good mechanisms.
Goals for Theory

Goals for Mechanism Design Theory:

- **Descriptive:** predict/affirm mechanisms arising in practice.
- **Prescriptive:** suggest how good mechanisms can be designed.
- **Conclusive:** pinpoint salient characteristics of good mechanisms.

Informal Thesis: *approximately optimality* is often descriptive, prescriptive, and conclusive.
Example 1: Gambler’s Stopping Game

A Gambler’s *Stopping Game*:

- *sequence* of n games,
- *prize* of game i is distributed from F_i,
- *prior-knowledge* of distributions.

On day i, gambler plays game i:

- *realizes* prize $v_i \sim F_i$,
- chooses to keep prize and *stop*, or
- discard prize and *continue*.
Example 1: Gambler’s Stopping Game

A Gambler’s *Stopping Game*:

- *sequence* of \(n \) games,
- *prize* of game \(i \) is distributed from \(F_i \),
- *prior-knowledge* of distributions.

On day \(i \), gambler plays game \(i \):

- *realizes* prize \(v_i \sim F_i \),
- chooses to keep prize and *stop*, or
- discard prize and *continue*.

Question: How should our gambler play?
Optimal Strategy:

- threshold t_i for stopping with ith prize.
- solve with “backwards induction”.
Optimal Strategy:

• threshold t_i for stopping with ith prize.
• solve with “backwards induction”.

Discussion:

• *Complicated*: n different, unrelated thresholds.
• *Inconclusive*: what are properties of good strategies?
• *Non-robust*: what if order changes? what if distribution changes?
• *Non-general*: what do we learn about variants of Stopping Game?
Threshold Strategies and Prophet Inequality

Threshold Strategy: “fix \(t \), gambler takes first prize \(v_i \geq t \)”. (clearly suboptimal, may not accept prize on last day!)
Threshold Strategies and Prophet Inequality

Threshold Strategy: “fix t, gambler takes first prize $v_i \geq t$.”

(clearly suboptimal, may not accept prize on last day!)

Theorem: *(Prophet Inequality)* For t such that $\Pr[\text{“no prize”}] = 1/2$,

\[E[\text{prize for strategy } t] \geq E[\max_i v_i]/2. \]

[Samuel-Cahn ’84]
Threshold Strategies and Prophet Inequality

Threshold Strategy: “fix t, gambler takes first prize $v_i \geq t$”.

(clearly suboptimal, may not accept prize on last day!)

Theorem: (Prophet Inequality) For t such that $\Pr[\text{“no prize”}] = 1/2$,

$$E[\text{prize for strategy } t] \geq E[\max_i v_i] / 2.$$ [Samuel-Cahn ’84]

Discussion:

- **Simple**: one number t.
- **Conclusive**: trade-off “stopping early” with “never stopping”.
- **Robust**: change order? change distribution above or below t?
- **General**: same solution works for similar games: invariant of “tie-breaking rule”
0. Notation:

- \(q_i = \Pr[v_i < t] \).
- \(x = \Pr[\text{never stops}] = \prod_i q_i \).

1. Upper Bound on \(\mathbb{E}[\text{max}] \):

2. Lower Bound on \(\mathbb{E}[\text{prize}] \):

3. Choose \(x = 1/2 \) to prove theorem.
Prophet Inequality Proof

0. Notation:

- \(q_i = \Pr[v_i < t] \).
- \(x = \Pr[\text{never stops}] = \prod_i q_i \).

1. Upper Bound on \(E[\text{max}] \):

\[
E[\text{max}] \leq t + E[\max_i (v_i - t)^+] \]

2. Lower Bound on \(E[\text{prize}] \):

3. Choose \(x = 1/2 \) to prove theorem.
0. Notation:

- \(q_i = \Pr[v_i < t] \).
- \(x = \Pr[\text{never stops}] = \prod_i q_i \).

1. Upper Bound on \(E[\text{max}] \):

\[
E[\text{max}] \leq t + E[\max_i (v_i - t)^+] \\
\leq t + \sum_i E[(v_i - t)^+] .
\]

2. Lower Bound on \(E[\text{prize}] \):

3. Choose \(x = 1/2 \) to prove theorem.
Prophet Inequality Proof

0. Notation:
 - \(q_i = \Pr[v_i < t] \).
 - \(x = \Pr[\text{never stops}] = \prod_i q_i \).

1. Upper Bound on \(E[\max] \):

 \[
 E[\max] \leq t + E[\max_i (v_i - t)^+] \leq t + \sum_i E[(v_i - t)^+] .
 \]

2. Lower Bound on \(E[\text{prize}] \):

 \[
 E[\text{prize}] \geq (1 - x)t +
 \]

3. Choose \(x = 1/2 \) to prove theorem.
Prophet Inequality Proof

0. Notation:
 • \(q_i = \Pr[v_i < t] \).
 • \(x = \Pr[\text{never stops}] = \prod_i q_i \).

1. Upper Bound on \(\mathbb{E}[\max] \):

 \[
 \mathbb{E}[\max] \leq t + \mathbb{E}[\max_i (v_i - t)^+] \\
 \leq t + \sum_i \mathbb{E}[(v_i - t)^+] .
 \]

2. Lower Bound on \(\mathbb{E}[\text{prize}] \):

 \[
 \mathbb{E}[\text{prize}] \geq (1 - x)t + \sum_i \mathbb{E}[(v_i - t)^+ \mid \text{other } v_j < t] \Pr[\text{other } v_j < t]
 \]

3. Choose \(x = 1/2 \) to prove theorem.
Prophet Inequality Proof

0. Notation:

- $q_i = \Pr[v_i < t]$.
- $x = \Pr[\text{never stops}] = \prod_i q_i$.

1. Upper Bound on $E[\text{max}]$:

$$E[\text{max}] \leq t + E[\max_i (v_i - t)^+] \leq t + \sum_i E[(v_i - t)^+] .$$

2. Lower Bound on $E[\text{prize}]$:

$$E[\text{prize}] \geq (1 - x)t + \sum_i E[(v_i - t)^+ \mid \text{other } v_j < t] \Pr[\text{other } v_j < t] \prod_{j \neq i} q_j$$

3. Choose $x = 1/2$ to prove theorem.
0. Notation:
 - \(q_i = \Pr[v_i < t] \).
 - \(x = \Pr[\text{never stops}] = \prod_i q_i \).

1. Upper Bound on \(E[\max] \):
 \[
 E[\max] \leq t + E[\max_i (v_i - t)^+] \\
 \leq t + \sum_i E[(v_i - t)^+] .
 \]

2. Lower Bound on \(E[\text{prize}] \):
 \[
 E[\text{prize}] \geq (1 - x) t + \sum_i E[(v_i - t)^+ \mid \text{other } v_j < t] \Pr[\text{other } v_j < t] \]

3. Choose \(x = 1/2 \) to prove theorem.
Prophet Inequality Proof

0. Notation:

- \(q_i = \Pr[v_i < t] \).
- \(x = \Pr[\text{never stops}] = \prod_i q_i \).

1. Upper Bound on \(E[\max] \):

\[
E[\max] \leq t + E[\max_i (v_i - t)^+] \\
\leq t + \sum_i E[(v_i - t)^+] .
\]

2. Lower Bound on \(E[\text{prize}] \):

\[
E[\text{prize}] \geq (1 - x)t + \sum_i E[(v_i - t)^+ | \text{other } v_j < t]\underbrace{\Pr[\text{other } v_j < t]}_{x \leq \prod_{j \neq i} q_j} \\
\geq (1 - x)t + x \sum_i E[(v_i - t)^+ | \text{other } v_j < t]
\]

3. Choose \(x = 1/2 \) to prove theorem.
Prophet Inequality Proof

0. Notation:
 - \(q_i = \Pr[v_i < t] \).
 - \(x = \Pr[\text{never stops}] = \prod_i q_i \).

1. Upper Bound on \(E[\max] \):

\[
E[\max] \leq t + E[\max_i (v_i - t)^+] \\
\leq t + \sum_i E[(v_i - t)^+] .
\]

2. Lower Bound on \(E[\text{prize}] \):

\[
E[\text{prize}] \geq (1 - x)t + \sum_i E[(v_i - t)^+ \mid \text{other } v_j < t] \Pr[\text{other } v_j < t] \\
\geq (1 - x)t + x \sum_i E[(v_i - t)^+ \mid \text{other } v_j < t] \\
= (1 - x)t + x \sum_i E[(v_i - t)^+] .
\]

3. Choose \(x = 1/2 \) to prove theorem.
What is the point of a 2-approximation?
What is the point of a 2-approximation?

- Must make tradeoff between understanding and optimality.

<table>
<thead>
<tr>
<th></th>
<th>$(1 + \epsilon)$</th>
<th>constant</th>
<th>super-constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>great</td>
<td>ok</td>
<td>bad</td>
</tr>
<tr>
<td>Understanding</td>
<td>little</td>
<td>lots</td>
<td>some</td>
</tr>
</tbody>
</table>
Philosophy of Approximation

What is the point of a 2-approximation?

- Must make tradeoff between understanding and optimality.

<table>
<thead>
<tr>
<th>Performance</th>
<th>Understanding</th>
<th>(1 + (\epsilon))</th>
<th>constant</th>
<th>super-constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>great</td>
<td>ok</td>
<td>bad</td>
<td></td>
</tr>
<tr>
<td>Understanding</td>
<td>little</td>
<td>lots</td>
<td>some</td>
<td></td>
</tr>
</tbody>
</table>

- Constant approximations identify salient features of model/solution.
Philosophy of Approximation

What is the point of a 2-approximation?

- Must make tradeoff between understanding and optimality.

<table>
<thead>
<tr>
<th></th>
<th>$1 + \epsilon$</th>
<th>constant</th>
<th>super-constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>great</td>
<td>ok</td>
<td>bad</td>
</tr>
<tr>
<td>Understanding</td>
<td>little</td>
<td>lots</td>
<td>some</td>
</tr>
</tbody>
</table>

- Constant approximations identify salient features of model/solution.

Example: is X important in MD?

- no, if mech without X is constant approx
- yes, otherwise.
What is the point of a 2-approximation?

- Must make tradeoff between understanding and optimality.

<table>
<thead>
<tr>
<th></th>
<th>$(1 + \epsilon)$</th>
<th>constant</th>
<th>super-constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>great</td>
<td>ok</td>
<td>bad</td>
</tr>
<tr>
<td>Understanding</td>
<td>little</td>
<td>lots</td>
<td>some</td>
</tr>
</tbody>
</table>

- Constant approximations identify salient features of model/solution.

Example: is X important in MD? competition?

- no, if mech without X is constant approx
- yes, otherwise.
Philosophy of Approximation

What is the point of a 2-approximation?

- Must make tradeoff between understanding and optimality.

<table>
<thead>
<tr>
<th></th>
<th>(1 + (\epsilon))</th>
<th>constant</th>
<th>super-constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>great</td>
<td>ok</td>
<td>bad</td>
</tr>
<tr>
<td>Understanding</td>
<td>little</td>
<td>lots</td>
<td>some</td>
</tr>
</tbody>
</table>

- Constant approximations identify salient features of model/solution.

Example: is X important in MD? competition? transfers?

- no, if mech without X is constant approx
- yes, otherwise.
What is the point of a 2-approximation?

- Must make tradeoff between understanding and optimality.

<table>
<thead>
<tr>
<th></th>
<th>(1 + ε)</th>
<th>constant</th>
<th>super-constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>great</td>
<td>ok</td>
<td>bad</td>
</tr>
<tr>
<td>Understanding</td>
<td>little</td>
<td>lots</td>
<td>some</td>
</tr>
</tbody>
</table>

- Constant approximations identify salient features of model/solution.

Example: is X important in MD? competition? transfers?

- no, if mech without X is constant approx
- yes, otherwise.

- Seller can always try ad hoc improvements on approximation.
 (e.g., single-item auctions)

2. Multi-dimensional Bayesian settings.
 (e.g., multi-item auctions)

3. Prior-free settings.
Part I: Approximation for single-dimensional Bayesian mechanism design

(where agent preferences are given by a private value for service, zero for no service; preferences are drawn from a distribution)
Example 2: Single-item auction

Problem: Bayesian Single-item Auction Problem

- a single item for sale,
- \(n \) buyers, and
- a dist. \(F = F_1 \times \cdots \times F_n \) from which the consumers’ values for the item are drawn.

Goal: seller opt. auction for \(F \).
Example 2: Single-item auction

Problem: Bayesian Single-item Auction Problem

- a single item for sale,
- \(n \) buyers, and
- a dist. \(F = F_1 \times \cdots \times F_n \) from which the consumers’ values for the item are drawn.

Goal: seller opt. auction for \(F \).

Question: What is optimal auction?
1. Def: revenue curve: \(R_i(q) = q \cdot F_i^{-1}(1 - q) \).
1. **Def:** revenue curve: \(R_i(q) = q \cdot F_i^{-1}(1 - q). \)

2. **Def:** virtual value: \(\varphi_i(v_i) = v_i - \frac{1 - F_i(v)}{f_i(v_i)} = \text{marginal revenue}. \)
1. **Def:** *revenue curve:* \(R_i(q) = q \cdot F_i^{-1}(1 - q) \).

2. **Def:** *virtual value:* \(\varphi_i(v_i) = v_i - \frac{1 - F_i(v)}{f_i(v_i)} \) = marginal revenue.

3. **Def:** *virtual surplus:* virtual value of winner(s).
1. **Def:** revenue curve: $R_i(q) = q \cdot F_i^{-1}(1 - q)$.

2. **Def:** virtual value: $\varphi_i(v_i) = v_i - \frac{1 - F_i(v)}{f_i(v_i)} = \text{marginal revenue}.$

3. **Def:** virtual surplus: virtual value of winner(s).

4. **Thm:** $E[\text{revenue}] = E[\text{virtual surplus}].$
1. **Def:** *revenue curve*:
 \[R_i(q) = q \cdot F_i^{-1}(1 - q). \]

2. **Def:** *virtual value*:
 \[\phi_i(v_i) = v_i - \frac{1 - F_i(v)}{f_i(v_i)} = \text{marginal revenue}. \]

3. **Def:** *virtual surplus*: virtual value of winner(s).

4. **Thm:** \(\mathbb{E}[\text{revenue}] = \mathbb{E}[\text{virtual surplus}] \).

5. **Def:** \(F_i \) is *regular* iff revenue curve concave iff virtual values monotone.
1. **Def:** *revenue curve*: \(R_i(q) = q \cdot F_i^{-1}(1 - q) \).

2. **Def:** *virtual value*: \(\varphi_i(v_i) = v_i - \frac{1 - F_i(v)}{f_i(v_i)} \) = marginal revenue.

3. **Def:** *virtual surplus*: virtual value of winner(s).

4. **Thm:** \(\mathbb{E}[\text{revenue}] = \mathbb{E}[\text{virtual surplus}] \).

5. **Def:** \(F_i \) is *regular* iff revenue curve concave iff virtual values monotone.

6. **Thm:** for regular dists, optimal auction sells to bidder with highest positive virtual value.
1. **Def:** revenue curve: \(R_i(q) = q \cdot F_i^{-1}(1 - q) \).

2. **Def:** virtual value: \(\varphi_i(v_i) = v_i - \frac{1 - F_i(v)}{f_i(v_i)} \) = marginal revenue.

3. **Def:** virtual surplus: virtual value of winner(s).

4. **Thm:** \(E[\text{revenue}] = E[\text{virtual surplus}] \).

5. **Def:** \(F_i \) is regular iff revenue curve concave iff virtual values monotone.

6. **Thm:** for regular dists, optimal auction sells to bidder with highest positive virtual value.

7. **Cor:** for iid, regular dists, optimal auction is *Vickrey with monopoly reserve price* \(\varphi^{-1}(0) \).
Optimal Auctions:

- *iid, regular distributions*: Vickrey with monopoly reserve price.
- *general*: sell to bidder with highest positive virtual value.
Optimal Auctions:

- *iid, regular distributions*: Vickrey with monopoly reserve price.
- *general*: sell to bidder with highest positive virtual value.

Discussion:

- iid, regular case: seems very special.
- general case: nobody runs optimal auction (too complicated?).
Approximation with reserve prices

Question: when is reserve pricing a good approximation?
Question: when is reserve pricing a good approximation?

Thm: Vickrey with reserve = constant virtual price with
\[\Pr[\text{no sale}] = \frac{1}{2} \] is a 2-approximation. [Chawla, H, Malec, Sivan ’10]
Approximation with reserve prices

Question: when is reserve pricing a good approximation?

Thm: Vickrey with reserve $=$ constant virtual price with $\Pr[\text{no sale}] = 1/2$ is a 2-approximation. [Chawla, H, Malec, Sivan ’10]

Proof: apply prophet inequality (tie-breaking by value) to virtual values.
Approximation with reserve prices

Question: when is reserve pricing a good approximation?

Thm: Vickrey with reserve = *constant virtual price* with $Pr[no sale] = 1/2$ is a 2-approximation. [Chawla, H, Malec, Sivan ’10]

Proof: apply prophet inequality (tie-breaking by value) to virtual values.

<table>
<thead>
<tr>
<th>prophet inequality</th>
<th>Vickrey with reserves</th>
</tr>
</thead>
<tbody>
<tr>
<td>prizes</td>
<td>virtual values</td>
</tr>
<tr>
<td>threshold t</td>
<td>virtual price</td>
</tr>
<tr>
<td>$E[\text{max prize}]$</td>
<td>$E[\text{optimal revenue}]$</td>
</tr>
<tr>
<td>$E[\text{prize for } t]$</td>
<td>$E[\text{Vickrey revenue}]$</td>
</tr>
</tbody>
</table>
Approximation with reserve prices

Question: when is reserve pricing a good approximation?

Thm: Vickrey with reserve = constant virtual price with
\[\Pr[\text{no sale}] = \frac{1}{2} \] is a 2-approximation. [Chawla, H, Malec, Sivan ’10]

Proof: apply prophet inequality (tie-breaking by value) to virtual values.

<table>
<thead>
<tr>
<th>prophet inequality</th>
<th>Vickrey with reserves</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{prizes})</td>
<td>(\text{virtual values})</td>
</tr>
<tr>
<td>(\text{threshold } t)</td>
<td>(\text{virtual price})</td>
</tr>
<tr>
<td>(\mathbb{E}[\text{max prize}])</td>
<td>(\mathbb{E}[\text{optimal revenue}])</td>
</tr>
<tr>
<td>(\mathbb{E}[\text{prize for } t])</td>
<td>(\mathbb{E}[\text{Vickrey revenue}])</td>
</tr>
</tbody>
</table>

Discussion:

- constant virtual price \(\Rightarrow \) bidder-specific reserves.
- **simple:** reserve prices natural, practical, and easy to find.
- **robust:** posted pricing with arbitrary tie-breaking works fine, collusion fine, etc.
Anonymous Reserves

Question: for non-identical distributions, is *anonymous reserve* approximately optimal?

(e.g., eBay)
Anonymous Reserves

Question: for non-identical distributions, is *anonymous reserve* approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, Vickrey with *anonymous reserve price* is 4-approximation. [H, Roughgarden ’09]
Question: for non-identical distributions, is anonymous reserve approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, Vickrey with anonymous reserve price is 4-approximation. [H, Roughgarden ’09]

Proof: more complicated extension of prophet inequalities.
Anonymous Reserves

Question: for non-identical distributions, is *anonymous reserve* approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, Vickrey with *anonymous reserve price* is 4-approximation. [H, Roughgarden ’09]

Proof: more complicated extension of prophet inequalities.

Discussion:

- theorem is not tight, actual bound is in $[2, 4]$.
- justifies wide prevalence.
- approximation good for *platform design*.
Beyond single-item auctions: *general feasibility constraints*.
Extensions

Beyond single-item auctions: *general feasibility constraints*.

Thm: for non-identical regular distributions, VCG with monopoly reserves is often a 2-approximation.
[H, Roughgarden ’09]

Thm: non-identical (possibly irregular) distributions, *posted pricing mechanisms* are often constant approximations.
[Chawla, H, Malec, Sivan ’10]
Beyond single-item auctions: *general feasibility constraints*.

Thm: for non-identical regular distributions, VCG with monopoly reserves is often a 2-approximation.
[H, Roughgarden ’09]

Thm: non-identical (possibly irregular) distributions, *posted pricing mechanisms* are often constant approximations.
[Chawla, H, Malec, Sivan ’10]

Proof technique:

- optimal mechanism is a virtual surplus maximizer.

- reserve-price mechanisms are virtual surplus approximators.
Extensions

Beyond single-item auctions: *general feasibility constraints*.

Thm: for non-identical regular distributions, VCG with monopoly reserves is often a 2-approximation.
[H, Roughgarden ’09]

Thm: non-identical (possibly irregular) distributions, *posted pricing mechanisms* are often constant approximations.
[Chawla, H, Malec, Sivan ’10]

Proof technique:

- optimal mechanism is a virtual surplus maximizer.
- reserve-price mechanisms are virtual surplus approximators.

Basic Open Question: to what extent do simple mechanisms approximate (well understood but complex) optimal ones?

Challenges: non-downward-closed settings, negative virtual values.
Part II: Approximation for multi-dimensional Bayesian mechanism design

(where agent preferences are given by values for each available service, zero for no service; preferences drawn from distribution)
Example 3: unit-demand pricing

Problem: Bayesian Unit-Demand Pricing

- a single, unit-demand consumer.
- n items for sale.
- a dist. $F = F_1 \times \cdots \times F_n$ from which the consumer’s values for each item are drawn.

Goal: seller optimal *item-pricing* for F.
Example 3: unit-demand pricing

Problem: Bayesian Unit-Demand Pricing

- a single, unit-demand consumer.
- \(n \) items for sale.
- a dist. \(F = F_1 \times \cdots \times F_n \) from which the consumer’s values for each item are drawn.

Goal: seller optimal item-pricing for \(F \).

Question: What is optimal pricing?
Optimal Pricing: consider distribution, feasibility constraints, incentive constraints, and solve!
Optimal Pricing: consider distribution, feasibility constraints, incentive constraints, and solve!

Discussion:

• little conceptual insight and

• not generally tractable.
Analogy

Challenge: approximate optimal but we do not understand it?
Analogy

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand Pricing (a.k.a., MD-PRICING)

- a single, *unit-demand* buyer,
- \(n \) items for sale, and
- a dist. \(F \) from which the consumer’s value for each item is drawn.

Goal: seller opt. item-pricing for \(F \).

Problem: Bayesian Single-item Auction (a.k.a., SD-AUCTION)

- a single item for sale,
- \(n \) buyers, and
- a dist. \(F \) from which the consumers’ values for the item are drawn.

Goal: seller opt. auction for \(F \).
Analogy

Challenge: approximate optimal but we do not understand it?

<table>
<thead>
<tr>
<th>Problem: Bayesian Unit-demand Pricing (a.k.a., MD-PRICING)</th>
<th>Problem: Bayesian Single-item Auction (a.k.a., SD-AUCTION)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• a single, unit-demand buyer,</td>
<td>• a single item for sale,</td>
</tr>
<tr>
<td>• n items for sale, and</td>
<td>• n buyers, and</td>
</tr>
<tr>
<td>• a dist. F from which the consumer’s value for each item is drawn.</td>
<td>• a dist. F from which the consumers’ values for the item are drawn.</td>
</tr>
</tbody>
</table>

Goal: seller opt. item-pricing for F.

Goal: seller opt. auction for F.

Note: Same informational structure.
Analogy

Challenge: approximate optimal but we do not understand it?

<table>
<thead>
<tr>
<th>Problem: Bayesian Unit-demand Pricing (a.k.a., MD-PRICING)</th>
<th>Problem: Bayesian Single-item Auction (a.k.a., SD-AUCTION)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• a single, unit-demand buyer,</td>
<td>• a single item for sale,</td>
</tr>
<tr>
<td>• n items for sale, and</td>
<td>• n buyers, and</td>
</tr>
<tr>
<td>• a dist. F from which the consumer’s value for each item is drawn.</td>
<td>• a dist. F from which the consumers’ values for the item are drawn.</td>
</tr>
</tbody>
</table>

Goal: seller opt. item-pricing for F.
Goal: seller opt. auction for F.

Note: Same informational structure.
Thm: for any indep. distributions, MD-PRICING \leq SD-AUCTION.
Analogy

Challenge: approximate optimal but we do not understand it?

<table>
<thead>
<tr>
<th>Problem: Bayesian Unit-demand Pricing (a.k.a., MD-PRICING)</th>
<th>Problem: Bayesian Single-item Auction (a.k.a., SD-AUCTION)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• a single, unit-demand buyer,</td>
<td>• a single item for sale,</td>
</tr>
<tr>
<td>• n items for sale, and</td>
<td>• n buyers, and</td>
</tr>
<tr>
<td>• a dist. F from which the consumer’s value for each item is drawn.</td>
<td>• a dist. F from which the consumers’ values for the item are drawn.</td>
</tr>
</tbody>
</table>

Goal: seller opt. item-pricing for F.

Goal: seller opt. auction for F.

Note: Same informational structure.

Thm: for any indep. distributions, $\text{MD-PRICING} \leq \text{SD-AUCTION}$.

Thm: a constant virtual price for MD-PRICING is 2-approx. . . .

[Chawla, H, Malec, Sivan’10]
Analogy

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand Pricing (a.k.a., MD-PRICING)
- a single, *unit-demand* buyer,
- \(n \) items for sale, and
- a dist. \(F \) from which the consumer’s value for each item is drawn.

Goal: seller opt. item-pricing for \(F \).

Problem: Bayesian Single-item Auction (a.k.a., SD-AUCTION)
- a single item for sale,
- \(n \) buyers, and
- a dist. \(F \) from which the consumers’ values for the item are drawn.

Goal: seller opt. auction for \(F \).

Note: Same informational structure.

Thm: for any indep. distributions, MD-PRICING \(\leq \) SD-AUCTION.

Thm: a constant virtual price for MD-PRICING is 2-approx. [Chawla,H,Malec,Sivan’10]

Proof: prophet inequality (tie-break by \(v_i - p_i \)).
Sequential Posted Pricing: agents arrive in sequence, offer posted prices.
Sequential Posted Pricing: agents arrive in sequence, offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.
[Chawla, H, Malec, Sivan ’10]
Multi-item Auctions

Sequential Posted Pricing: agents arrive in sequence, offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism. [Chawla, H, Malec, Sivan ’10]

Approach:

1. Analogy: “single-dimensional analog”
 (replace unit-demand agent with many single-dimensional agents)
Sequential Posted Pricing: agents arrive in sequence, offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism. [Chawla, H, Malec, Sivan ’10]

Approach:

1. Analogy: “single-dimensional analog”
 (replace unit-demand agent with many single-dimensional agents)

2. Upper bound: SD-AUCTION \geq MD-PRICING
 (competition increases revenue)
Multi-item Auctions

Sequential Posted Pricing: agents arrive in sequence, offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism. [Chawla, H, Malec, Sivan '10]

Approach:

1. *Analogy:* “single-dimensional analog”
 (replace unit-demand agent with many single-dimensional agents)

2. *Upper bound:* SD-AUCTION \geq MD-PRICING
 (competition increases revenue)

3. *Reduction:* MD-PRICING \geq SD-PRICING
 (pricings don’t use competition)
Multi-item Auctions

Sequential Posted Pricing: agents arrive in sequence, offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan ’10]

Approach:

1. **Analogy:** “single-dimensional analog”
 (replace unit-demand agent with many single-dimensional agents)

2. **Upper bound:** SD-AUCTION \geq MD-PRICING
 (competition increases revenue)

3. **Reduction:** MD-PRICING \geq SD-PRICING
 (pricings don’t use competition)

4. **Instantiation:** SD-PRICING $\geq 1/\beta$ SD-AUCTION
 (virtual surplus approximation)
Sequential Posted Pricing: agents arrive in sequence, offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan ’10]
Sequential Posted Pricing: agents arrive in sequence, offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism. [Chawla, H, Malec, Sivan ’10]

Discussion:
- robust to agent ordering, collusion, etc.
- conclusive: competition not important for approximation.
- practical: posted pricings widely prevalent. (e.g., eBay)
- role of randomization is crucial.

[Briest, Chawla, Kleinberg, Weinberg’10; Chawla, Malec, Sivan’10]
Sequential Posted Pricing: agents arrive in sequence, offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism. [Chawla, H, Malec, Sivan ’10]

Discussion:

• robust to agent ordering, collusion, etc.
• conclusive: competition not important for approximation.
• practical: posted pricings widely prevalent. (e.g., eBay)
• role of randomization is crucial. [Briest, Chawla, Kleinberg, Weinberg’10; Chawla, Malec, Sivan’10]

Open Question: identify upper bounds beyond unit-demand settings that are

• conceptually tractable and
• approximable.
Part III: Approximation for prior-free mechanism design.

(mechanisms should be good for any set of agent preferences, not just given distributional assumptions)
The problem with priors

Prior assumption: the mechanism designer knows the distribution of agent preferences.
The problem with priors

Prior assumption: the mechanism designer knows the distribution of agent preferences.

Where does prior come from:

- historical data

 then using prior affects incentives of earlier transactions.

 (e.g. Coase Conjecture)

- market analysis

 accuracy depends on market size, auctions are for small markets.
The problem with priors

Prior assumption: the mechanism designer knows the distribution of agent preferences.

Where does prior come from:

- historical data

 then using prior affects incentives of earlier transactions.
 (e.g. Coase Conjecture)

- market analysis

 accuracy depends on market size, auctions are for small markets.

Must commit to use one mechanism in many settings (e.g., the Internet).
The problem with priors

Prior assumption: the mechanism designer knows the distribution of agent preferences.

Where does prior come from:

- historical data
 then using prior affects incentives of earlier transactions.
 (e.g. Coase Conjecture)

- market analysis
 accuracy depends on market size, auctions are for small markets.

Must commit to use one mechanism in many settings (e.g., the Internet).

Question: can we design good auctions without knowledge of prior-distribution?
Resource augmentation

Approach 1: “resource” augmentation.
Approach 1: “resource” augmentation.

Thm: for iid, regular, single-item auctions, the Vickrey auction on $n + 1$ bidders has more revenue than the optimal auction on n bidders.
[Bulow, Klemperer ’96]
Approach 1: “resource” augmentation.

Thm: for iid, regular, single-item auctions, the Vickrey auction on $n + 1$ bidders has more revenue than the optimal auction on n bidders. [Bulow, Klemperer ’96]

Discussion: [Dhangwatnotai, Roughgarden, Yan ’10]

- “recruit one more bidder” is prior-free strategy.
- “bicriteria” approximation result.
- **conclusive:** competition more important than optimization.
Approach 1: “resource” augmentation.

Thm: for iid, regular, single-item auctions, the Vickrey auction on \(n + 1 \) bidders has more revenue than the optimal auction on \(n \) bidders. [Bulow, Klemperer ’96]

Discussion: [Dhangwatnotai, Roughgarden, Yan ’10]

- “recruit one more bidder” is prior-free strategy.
- “bicriteria” approximation result.
- **conclusive:** competition more important than optimization.
- **non-generic:** e.g., for \(k \)-unit auctions, need \(k \) additional bidders.
Special Case: $n = 1$

Special Case: for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.
Special Case: $n = 1$

Special Case: for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan ’10]
Special Case: $n = 1$

Special Case: for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan ’10]

- each bidder in Vickrey views other bid as “random reserve”.
Special Case: $n = 1$

Special Case: for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan ’10]

- each bidder in Vickrey views other bid as “random reserve”.
- Vickrey revenue $= 2 \times$ random reserve revenue.
Special Case: $n = 1$

Special Case: for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan ’10]

- each bidder in Vickrey views other bid as “random reserve”.
- Vickrey revenue $= 2 \times$ random reserve revenue.
- random reserve revenue $\geq \frac{1}{2} \times$ optimal reserve revenue:
Special Case: \(n = 1 \)

Special Case: for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan ’10]

- each bidder in Vickrey views other bid as “random reserve”.
- Vickrey revenue \(= 2 \times \) random reserve revenue.
- random reserve revenue \(\geq \frac{1}{2} \times \) optimal reserve revenue:

\[
R(q)
\]
Special Case: for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan ’10]

- each bidder in Vickrey views other bid as “random reserve”.
- Vickrey revenue $= 2 \times$ random reserve revenue.
- random reserve revenue $\geq \frac{1}{2} \times$ optimal reserve revenue:
Special Case: for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan ’10]

- each bidder in Vickrey views other bid as “random reserve”.
- Vickrey revenue = $2 \times$ random reserve revenue.
- random reserve revenue $\geq \frac{1}{2} \times$ optimal reserve revenue:

![Diagram](image)
Special Case: $n = 1$

Special Case: for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan ’10]

- each bidder in Vickrey views other bid as “random reserve”.
- Vickrey revenue $= 2 \times$ random reserve revenue.
- random reserve revenue $\geq \frac{1}{2} \times$ optimal reserve revenue:

![Diagram showing the relationship between Vickrey revenue and optimal reserve revenue]
Special Case: \(n = 1 \)

Special Case: for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan ’10]

- each bidder in Vickrey views other bid as “random reserve”.
- Vickrey revenue = \(2 \times \) random reserve revenue.
- random reserve revenue \(\geq \frac{1}{2} \times \) optimal reserve revenue:

\[
\begin{align*}
R(q) & \geq \frac{1}{2} \times \text{optimal reserve revenue} \\
\end{align*}
\]

- So Vickrey with two bidders \(\geq \) optimal revenue from one bidder.
Example 4: digital goods

Question: how should a profit-maximizing seller sell a digital good (n bidder, n copies of item)?
Question: how should a profit-maximizing seller sell a digital good (n bidder, n copies of item)?

Bayesian Optimal Solution: if values are iid from known distribution, post the monopoly price $\varphi^{-1}(0)$. [Myerson ’81]
Question: how should a profit-maximizing seller sell a digital good (n bidder, n copies of item)?

Bayesian Optimal Solution: if values are iid from known distribution, post the monopoly price $\varphi^{-1}(0)$. [Myerson ’81]

Discussion:

- optimal,
- simple, but
- not prior-free
Single-Sample Auction: (for digital goods) [Dhangwatnotai, Roughgarden, Yan ’10]

1. pick random agent i as sample.

2. offer all other agents price v_i.

3. reject i.

Approximation via Single Sample
Single-Sample Auction: (for digital goods) [Dhangwatnotai, Roughgarden, Yan ’10]

1. pick random agent i as sample.

2. offer all other agents price v_i.

3. reject i.

Thm: for iid, regular distributions, single sample auction on $(n + 1)$-agents is 2-approx to optimal on n agents. [Dhangwatnotai, Roughgarden, Yan ’10]
Single-Sample Auction: (for digital goods) [Dhangwatnotai, Roughgarden, Yan ’10]

1. pick random agent i as sample.

2. offer all other agents price v_i.

3. reject i.

Thm: for iid, regular distributions, single sample auction on $(n + 1)$-agents is 2-approx to optimal on n agents. [Dhangwatnotai, Roughgarden, Yan ’10]

Proof: from geometric argument.
Single-Sample Auction: (for digital goods) [Dhangwatnotai, Roughgarden, Yan ’10]

1. pick random agent i as sample.
2. offer all other agents price v_i.
3. reject i.

Thm: for iid, regular distributions, single sample auction on $(n + 1)$-agents is 2-approx to optimal on n agents. [Dhangwatnotai, Roughgarden, Yan ’10]

Proof: from geometric argument.

Discussion:

- *prior-free.*
- *conclusive,* don’t need precise distribution, only need single sample for approximation. (more samples can improve approximation factor.)
- *generic,* applies to general settings.
Average-case vs Worst-case

Note: prior-free auction cannot be optimal in every setting.
Average-case vs Worst-case

Note: prior-free auction cannot be optimal in every setting.

Average Case Approximation: \(\exists A, \forall F \in \text{IID}, \)

\[
E_{v \sim F}[A(v)] \geq \frac{E_{v \sim F}[\text{OPT}_F(v)]}{\beta}.
\]
Note: prior-free auction cannot be optimal in every setting.

Average Case Approximation: \(\exists A, \forall F \in \text{IID}, \)
\[
E_{v \sim F}[A(v)] \geq \frac{E_{v \sim F}[\text{OPT}_F(v)]}{\beta}.
\]

Worst Case Approximation: \(\exists A, \forall v, \)
\[
A(v) \geq \frac{\sup_{F \in \text{IID}} \text{OPT}_F(v)}{\beta}.
\]
Average-case vs Worst-case

Note: prior-free auction cannot be optimal in every setting.

Average Case Approximation: \(\exists A, \forall F \in \text{IID}, \)

\[
E_{v \sim F}[A(v)] \geq \frac{E_{v \sim F}[\text{OPT}_F(v)]}{\beta}.
\]

Worst Case Approximation: \(\exists A, \forall v, \)

\[
A(v) \geq \frac{\sup_{F \in \text{IID}} \text{OPT}_F(v)}{\beta}.
\]

Notes:

- worst-case approximation implies average-case approximation.
- \(\sup_{F \in \text{IID}} \text{OPT}_F(v) \) is *prior-free performance benchmark*.
- for digital goods, prior-free benchmark = optimal posted price revenue.
Random Sampling Auction: (for digital goods) [Goldberg, H, Wright ’01]

1. Randomly partition agents into two sets.
2. Compute optimal posted prices for each set.
3. Offer prices to opposite set.
Random Sampling Auction: (for digital goods)

1. Randomly partition agents into two sets.
2. Compute optimal posted prices for each set.
3. Offer prices to opposite set.

Thm: Random sampling auction is worst-case 4.68-approximation.*

[Goldberg, H, Wright ’01]

[Aleai, Malekian, Srinivasan ’09]
Random Sampling Auction: (for digital goods)

1. Randomly partition agents into two sets.
2. Compute optimal posted prices for each set.
3. Offer prices to opposite set.

Thm: Random sampling auction is worst-case 4.68-approximation.*

Conjecture: Random sampling auction is worst-case 4-approximation.
Random Sampling Auction: (for digital goods)
[Goldberg, H, Wright ’01]

1. Randomly partition agents into two sets.

2. Compute optimal posted prices for each set.

3. Offer prices to opposite set.

Thm: Random sampling auction is worst-case 4.68-approximation.*
[Aleai, Malekian, Srinivasan ’09]

Conjecture: Random sampling auction is worst-case 4-approximation.

Discussion:

- **conclusive,** market analysis can be done “on the fly”
- **worst-case** is for $n = 2$.
- **practical,** bounds approach 1 in limit with n.
- **generic,** analysis extends beyond digital goods.
Extensions

Prior-free results extend to limited supply, downward-closed settings, non-identical distributions, other objectives, etc. [citations omitted]
Prior-free results extend to limited supply, downward-closed settings, non-identical distributions, other objectives, etc.

Open Questions:

- non-downward-closed settings?
- multi-dimensional settings?
- beyond the *revelation principle*?
Conclusions:

1. Approximation predictive, descriptive, and conclusive.
Conclusions:

1. Approximation predictive, descriptive, and conclusive.

2. Key step for approximation: concise description of upper bound.
Conclusions:

1. Approximation predictive, descriptive, and conclusive.

2. Key step for approximation: concise description of upper bound.

3. Approximation mechanisms for *multi-dimensional* and *prior-free* settings.
Conclusions:

1. Approximation predictive, descriptive, and conclusive.

2. Key step for approximation: concise description of upper bound.

3. Approximation mechanisms for multi-dimensional and prior-free settings.

Basic Open Question: attack economic impossibility w. approximation.